1
|
Louviot F, Abdelrahman O, Abou-Mansour E, L'Haridon F, Allard PM, Falquet L, Weisskopf L. Oligomycin-producing Streptomyces sp. newly isolated from Swiss soils efficiently protect Arabidopsis thaliana against Botrytis cinerea. mSphere 2024; 9:e0066723. [PMID: 38864637 PMCID: PMC11288007 DOI: 10.1128/msphere.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/05/2024] [Indexed: 06/13/2024] Open
Abstract
Botrytis cinerea is a necrotrophic phytopathogen able to attack more than 200 different plant species causing strong yield losses worldwide. Many synthetic fungicides have been developed to control this disease, resulting in the rise of fungicide-resistance B. cinerea strains. The aim of this study was to identify Streptomyces strains showing antagonistic activity against B. cinerea to contribute to plant protection in an environmentally friendly way. We isolated 15 Actinomycete strains from 9 different Swiss soils. The culture filtrates of three isolates showing antifungal activity inhibited spore germination and delayed mycelial growth of B. cinerea. Infection experiments showed that Arabidopsis thaliana plants were more resistant to this pathogen after leaf treatment with the Streptomyces filtrates. Bioassay-guided isolation of the active compounds revealed the presence of germicidins A and B as well as of oligomycins A, B, and E. While germicidins were mostly inactive, oligomycin B reduced the mycelial growth of B. cinerea significantly. Moreover, all three oligomycins inhibited this fungus' spore germination, suggesting that these molecules might contribute to the Streptomyces's ability to protect plants against infection by the broad host-pathogen Botrytis cinerea. IMPORTANCE This study reports the isolation of new Streptomyces strains with strong plant-protective potential mediated by their production of specialized metabolites. Using the broad host range pathogenic fungus Botrytis cinerea, we demonstrate that the cell-free filtrate of selected Streptomyces isolates efficiently inhibits different developmental stages of the fungus, including mycelial growth and the epidemiologically relevant spore germination. Beyond in vitro experiments, the strains and their metabolites also efficiently protected plants against the disease caused by this pathogen. This work further identifies oligomycins as active compounds involved in the observed antifungal activity of the strains. This work shows that we can harness the natural ability of soil-borne microbes and of their metabolites to efficiently fight other microbes responsible for significant crop losses. This opens the way to the development of environmentally friendly health protection measures for crops of agronomical relevance, based on these newly isolated strains or their metabolic extracts containing oligomycins.
Collapse
Affiliation(s)
- Fanny Louviot
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ola Abdelrahman
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | | | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Food Research and Innovation Centre, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Inferences of actinobacterial metabolites to combat Corona virus. ADVANCES IN TRADITIONAL MEDICINE 2022. [PMCID: PMC9469815 DOI: 10.1007/s13596-022-00661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The entire globe is reeling under the magnitude of the current corona virus pandemic. This menace has proposed severe health and economic threats for all, thereby challenging our human existence itself. Since its outbreak, it has raised the concern and imperative need of developing novel and effective agents to combat viral diseases and now its variants as well. Despite the sincere and concerted efforts of scientists and pharma giants all over the world, there seems to be no ideal recourse found till date. Natural products are rich sources of novel compounds used in the treatment of infectious and non-infectious diseases. There are reports on natural products from microbes, plants and marine organisms that are active against viral targets. Actinobacteria, the largest phylum under the bacterial kingdom, is known for its secondary metabolite production with diverse bioactive potentials. Nearly 65% of antibiotics used in medicine are contributed by Actinobacteria. Compared to antibacterial and antifungal agents, antiviral compounds from Actinobacteria are less studied. In recent years Actinobacteria from under studied/extreme ecosystems are explored for their antiviral properties. Ivermectin and teicoplanin are examples of Actinobacteria-derived antiviral drugs available for commercial use. This review highlights the importance of actinobacteria as future sources of antiviral drug discovery.
Collapse
|
3
|
Antiviral, Cytotoxic, and Antioxidant Activities of Three Edible Agaricomycetes Mushrooms: Pleurotus columbinus, Pleurotus sajor-caju, and Agaricus bisporus. J Fungi (Basel) 2021; 7:jof7080645. [PMID: 34436184 PMCID: PMC8399653 DOI: 10.3390/jof7080645] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 01/02/2023] Open
Abstract
In this study, we investigated aqueous extracts of three edible mushrooms: Agaricus bisporus (white button mushroom), Pleurotus columbinus (oyster mushroom), and Pleurotus sajor-caju (grey oyster mushroom). The extracts were biochemically characterized for total carbohydrate, phenolic, flavonoid, vitamin, and protein contents besides amino acid analysis. Triple TOF proteome analysis showed 30.1% similarity between proteomes of the two Pleurotus spp. All three extracts showed promising antiviral activities. While Pleurotus columbinus extract showed potent activity against adenovirus (Ad7, selectivity index (SI) = 4.2), Agaricus bisporus showed strong activity against herpes simplex II (HSV-2; SI = 3.7). The extracts showed low cytotoxicity against normal human peripheral blood mononuclear cells (PBMCs) and moderate cytotoxicity against prostate (PC3, DU-145); colorectal (Colo-205); cecum carcinoma (LS-513); liver carcinoma (HepG2); cervical cancer (HeLa); breast adenocarcinoma (MDA-MB-231 and MCF-7) as well as leukemia (CCRF-CEM); acute monocytic leukemia (THP1); acute promyelocytic leukemia (NB4); and lymphoma (U937) cell lines. Antioxidant activity was evaluated using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging, 2,2′-Azinobis-(3-Ethylbenzthiazolin-6-Sulfonic Acid) ABTS radical cation scavenging, and oxygen radical absorbance capacity (ORAC) assays. The three extracts showed potential antioxidant activities with the maximum activity recorded for Pleurotus columbinus (IC50 µg/mL) = 35.13 ± 3.27 for DPPH, 13.97 ± 4.91 for ABTS, and 29.42 ± 3.21 for ORAC assays.
Collapse
|
4
|
Elhusseiny SM, El-Mahdy TS, Awad MF, Elleboudy NS, Farag MMS, Yassein MA, Aboshanab KM. Proteome Analysis and In Vitro Antiviral, Anticancer and Antioxidant Capacities of the Aqueous Extracts of Lentinula edodes and Pleurotus ostreatus Edible Mushrooms. Molecules 2021; 26:4623. [PMID: 34361776 PMCID: PMC8348442 DOI: 10.3390/molecules26154623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we examined aqueous extracts of the edible mushrooms Pleurotus ostreatus (oyster mushroom) and Lentinula edodes (shiitake mushroom). Proteome analysis was conducted using LC-Triple TOF-MS and showed the expression of 753 proteins by Pleurotus ostreatus, and 432 proteins by Lentinula edodes. Bioactive peptides: Rab GDP dissociation inhibitor, superoxide dismutase, thioredoxin reductase, serine proteinase and lectin, were identified in both mushrooms. The extracts also included promising bioactive compounds including phenolics, flavonoids, vitamins and amino acids. The extracts showed promising antiviral activities, with a selectivity index (SI) of 4.5 for Pleurotus ostreatus against adenovirus (Ad7), and a slight activity for Lentinula edodes against herpes simplex-II (HSV-2). The extracts were not cytotoxic to normal human peripheral blood mononuclear cells (PBMCs). On the contrary, they showed moderate cytotoxicity against various cancer cell lines. Additionally, antioxidant activity was assessed using DPPH radical scavenging, ABTS radical cation scavenging and ORAC assays. The two extracts showed potential antioxidant activities, with the maximum activity seen for Pleurotus ostreatus (IC50 µg/mL) = 39.46 ± 1.27 for DPPH; 11.22 ± 1.81 for ABTS; and 21.40 ± 2.20 for ORAC assays. This study encourages the use of these mushrooms in medicine in the light of their low cytotoxicity on normal PBMCs vis à vis their antiviral, antitumor and antioxidant capabilities.
Collapse
Affiliation(s)
- Shaza M. Elhusseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Area, 6th of October City, Cairo 2566, Egypt; (S.M.E.); (T.S.E.-M.)
| | - Taghrid S. El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Area, 6th of October City, Cairo 2566, Egypt; (S.M.E.); (T.S.E.-M.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, Taif 11099, Saudi Arabia;
| | - Nooran S. Elleboudy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo 11566, Egypt; (N.S.E.); (M.A.Y.)
| | - Mohamed M. S. Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;
| | - Mahmoud A. Yassein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo 11566, Egypt; (N.S.E.); (M.A.Y.)
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo 11566, Egypt; (N.S.E.); (M.A.Y.)
| |
Collapse
|
5
|
Draft Genome Sequence of Streptomyces Strain SJ1-7, a Soil Bacterial Isolate. Microbiol Resour Announc 2021; 10:10/10/e01283-20. [PMID: 33707334 PMCID: PMC7953297 DOI: 10.1128/mra.01283-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The draft genome sequence of Streptomyces sp. strain SJ1-7, a bacterial strain isolated from the rhizosphere of a Pinus densiflora plant, is reported. The whole-genome assembly comprised 7.9 Mbp, with a GC content of 71.80% and 4,262 predicted protein-coding genes. The draft genome sequence of Streptomyces strain SJ1-7, a bacterial strain isolated from the rhizosphere of a Pinus densiflora plant, is reported. The whole-genome assembly comprised 7.9 Mbp, with a GC content of 71.80% and 4,262 predicted protein-coding genes.
Collapse
|
6
|
Draft Genome Sequence of Streptomyces sp. Strain BR123, Endowed with Broad-Spectrum Antimicrobial Potential. Microbiol Resour Announc 2020; 9:9/41/e00972-20. [PMID: 33033135 PMCID: PMC7545289 DOI: 10.1128/mra.00972-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The genome of Streptomyces sp. strain BR123, isolated from rhizospheric soil that exhibited promising antimicrobial properties, was sequenced and assembled. Here, we report an 8,157,040-bp genome sequence with a G+C content of 72.63%. This genome sequence enlightens the genes responsible for the production of secondary metabolites and antimicrobial compounds by this strain. The genome of Streptomyces sp. strain BR123, isolated from rhizospheric soil that exhibited promising antimicrobial properties, was sequenced and assembled. Here, we report an 8,157,040-bp genome sequence with a G+C content of 72.63%. This genome sequence enlightens the genes responsible for the production of secondary metabolites and antimicrobial compounds by this strain.
Collapse
|
7
|
Sánchez-Suárez J, Coy-Barrera E, Villamil L, Díaz L. Streptomyces-Derived Metabolites with Potential Photoprotective Properties-A Systematic Literature Review and Meta-Analysis on the Reported Chemodiversity. Molecules 2020; 25:E3221. [PMID: 32679651 PMCID: PMC7397340 DOI: 10.3390/molecules25143221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Sun overexposure is associated with the development of diseases that primarily affect the skin, which can lead to skin cancer. Among the main measures of photoprotection is the use of sunscreens. However, there is currently concern about the reported harmful effects to both humans and the environment due to several of the sunscreen ingredients available on the market. For this reason, the search for and development of new agents with photoprotective properties is required. In searching for these metabolites, researchers have turned their attention to microbial sources, especially the microbiota in unusual hostile environments. Among the diverse microorganisms available in nature, Actinobacteria and specifically Streptomyces, have been shown to be a source of metabolites with various biological activities of interest, such as antimicrobial, antitumor and immunomodulator activities. Herein, we present the results of a systematic review of the literature in which Streptomyces isolates were studied as a source of compounds with photoprotective properties. A meta-analysis of the structure-property and structure-activity relationships of those metabolites identified in the qualitative analysis phase was also carried out. These findings indicate that Streptomyces are a source of metabolites with potential applications in the development of new, safe and more eco-friendly sunscreens.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Bogotá 110111, Cajicá, Cundinamarca, Colombia;
| | - Luisa Villamil
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
| | - Luis Díaz
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| |
Collapse
|
8
|
Zhang K, Gu L, Zhang Y, Liu Z, Li X. Dinactin from a new producer, Streptomyces badius gz-8, and its antifungal activity against the rubber anthracnose fungus Colletotrichum gloeosporioides. Microbiol Res 2020; 240:126548. [PMID: 32653809 DOI: 10.1016/j.micres.2020.126548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Colletotrichum gloeosporioides is a main cause of rubber anthracnose, which results in very large losses for the natural rubber industry. In this study, an actinomycete strain gz-8 was isolated and had strong antagonistic activity against C. gloeosporioides, with an inhibition rate of 72.5 %. Strain gz-8 was identified as Streptomyces badius. Three active compounds were separated from S. badius gz-8 and identified as feigrisolide B, feigrisolide C and dinactin according to the mass spectrometry and NMR-spectra results. In the three compounds, dinactin exhibited the best antifungal activity against C. gloeosporioides, with an EC50 value of 2.55 μg/mL, and its minimum inhibitory concentration was 44 μg/mL. Dinactin had broad inhibitory activities against nine other pathogenic fungi, and it also had an obvious control effect on rubber anthracnose comparable to that of chlorothalonil. Dinactin could inhibit the conidiogenesis and spore germination of C. gloeosporioides. This report will contribute to understanding the antifungal activity of dinactin against C. gloeosporioides.
Collapse
Affiliation(s)
- Kai Zhang
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Liushuang Gu
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Yuefeng Zhang
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zhiqiang Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China; School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China.
| | - Xiaoyu Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China; School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China.
| |
Collapse
|
9
|
Antimicrobial Activity of Marine Actinomycetes and the Optimization of Culture Conditions for the Production of Antimicrobial Agent(s). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|