1
|
Yousef SG, Damaty HME, Elsheikh HA, El-Shazly YA, Metwally E, Atwa S. Genetic characterization of foot-and-mouth disease virus in cattle in Northern Egypt. Vet World 2025; 18:238-248. [PMID: 40041512 PMCID: PMC11873393 DOI: 10.14202/vetworld.2025.238-248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/23/2024] [Indexed: 03/06/2025] Open
Abstract
Background and Aim Foot-and-mouth disease (FMD) is a highly contagious viral disease that poses significant economic threats to livestock globally. This study aimed to confirm the presence of FMD virus (FMDV) in Egyptian cattle and identify the predominant serotypes contributing to outbreaks in Sharkia and Dakahlia provinces in 2022. Materials and Methods A total of 65 cattle showing acute FMD symptoms were sampled. Desquamated epithelial tissues and oral secretions were analyzed using reverse transcriptase polymerase chain reaction with universal and serotype-specific primers. Seven representative samples underwent sequencing for phylogenetic and genetic variability analysis. Results All sampled animals tested positive for FMDV. Serotype A accounted for 72.3% of cases, while 27.7% were serotype O. Sequence analysis identified FMDV serotype A (African topotype, genotype IV) and serotype O (East Africa-3 topotype) as the outbreak-causing strains. The identified strains exhibited significant genetic divergence from the vaccine strains used in Egypt, with notable amino acid substitutions in the VP1 protein's G-H loop. These mutations raise concerns about the efficacy of existing vaccines against current field strains. Conclusion The study highlights the ongoing threat of FMD in Egypt, particularly among smallholder cattle farmers. The genetic divergence between circulating FMDV and vaccine strains underscores the need to continuously monitor and update vaccine formulations to enhance disease control efforts. Implementing stricter animal movement regulations and tailored vaccination strategies is essential for effective management.
Collapse
Affiliation(s)
- Sarah G. Yousef
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Sharkia, Egypt
| | - Hend M. El Damaty
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Sharkia, Egypt
| | - Hussein A. Elsheikh
- Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Sharkia, Egypt
| | - Yousry A. El-Shazly
- Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Sharkia, Egypt
| | - Eman Metwally
- Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Sharkia, Egypt
| | - Samar Atwa
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, 35516, Mansoura, Dakahlia, Egypt
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
2
|
Hamada R, Giovambattista G, Metwally S, Borjigin L, Polat Yamanaka M, Matsuura R, Ali AO, Mahmoud HYAH, Mohamed AEA, Kyaw Moe K, Takeshima SN, Wada S, Aida Y. First characterization of major histocompatibility complex class II DRB3 diversity in cattle breeds raised in Egypt. Gene 2024; 918:148491. [PMID: 38649062 DOI: 10.1016/j.gene.2024.148491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Genes encoding bovine leukocyte antigen (BoLA) enable the immune system to identify pathogens. Therefore, these genes have been used as genetic markers for infectious and autoimmune diseases as well as for immunological traits in cattle. Although BoLA polymorphisms have been reported in various cattle breeds worldwide, they have not been studied in cattle populations in Egypt. In this study, we characterized BoLA-DRB3 in two local Egyptian populations and one foreign population using polymerase chain reaction-sequence-based typing (PCR-SBT) method. Fifty-four previously reported BoLA-DRB3 alleles and eight new alleles (BoLA-DRB3*005:08, *015:07, *016:03, *017:04, *020:02:02, *021:03, *164:01, and *165:01) were identified. Alignment analysis of the eight new alleles revealed 90.7-98.9 %, and 83.1-97.8 % nucleotide and amino acid identities, respectively, with the BoLA-DRB3 cDNA clone NR-1. Interestingly, BoLA-DRB3 in Egyptian cattle showed a high degree of allelic diversity in native (na = 28, hE > 0.95), mixed (na = 61, hE > 0.96), and Holstein (na = 18, hE > 0.88) populations. BoLA-DRB3*002:01 (14.3 %), BoLA-DRB3*001:01 (8.5 %), and BoLA-DRB3*015:01 (20.2 %) were the most frequent alleles in native, mixed, and Holstein populations, respectively, indicating that the genetic profiles differed in each population. Based on the allele frequencies of BoLA-DRB3, genetic variation among Egyptian, Asian, African, and American breeds was examined using Nei's distances and principal component analysis. The results suggested that native and mixed cattle populations were most closely associated with African breeds in terms of their gene pool, whereas Holstein cattle were more distinct from the other breeds and were closely related to Holstein cattle populations from other countries.
Collapse
Affiliation(s)
- Rania Hamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour City, El Beheira 22511, Egypt
| | - Guillermo Giovambattista
- Facultad de Ciencias Veterinarias UNLP, IGEVET - Instituto de Genética Veterinaria (UNLP-CONICET LA PLATA), La Plata, Argentina; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Samy Metwally
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour City, El Beheira 22511, Egypt
| | - Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Meripet Polat Yamanaka
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Alsagher O Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Hassan Y A H Mahmoud
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Adel E A Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Kyaw Kyaw Moe
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
3
|
Di Felice E, Pinoni C, Rossi E, Amatori G, Mancuso E, Iapaolo F, Taraschi A, Di Teodoro G, Di Donato G, Ronchi GF, Mercante MT, Di Ventura M, Morelli D, Monaco F. Susceptibility of Mediterranean Buffalo ( Bubalus bubalis) following Experimental Infection with Lumpy Skin Disease Virus. Viruses 2024; 16:466. [PMID: 38543831 PMCID: PMC10974937 DOI: 10.3390/v16030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 05/23/2024] Open
Abstract
Lumpy skin disease (LSD) is a viral disease of cattle and water buffalo characterized by cutaneous nodules, biphasic fever, and lymphadenitis. LSD is endemic in Africa and the Middle East but has spread to different Asian countries in recent years. The disease is well characterized in cattle while little is known about the disease in buffaloes in which no experimental studies have been conducted. Six buffaloes and two cattle were inoculated with an Albanian LSD virus (LSDV) field strain and clinically monitored for 42 days. Only two buffaloes showed fever, skin nodules, and lymphadenitis. All samples collected (blood, swabs, biopsies, and organs) were tested in real-time PCR and were negative. Between day 39 and day 42 after inoculation, anti-LSDV antibodies were detected in three buffaloes by ELISA, but all sera were negative by virus neutralization test (VNT). Cattle showed severe clinical signs, viremia, virus shedding proven by positive real-time PCR results, and seroconversion confirmed by both ELISA and VNT. Clinical findings suggest that susceptibility in buffaloes is limited compared to in cattle once experimentally infected with LSDV. Virological results support the hypothesis of buffalo resistance to LSD and its role as an accidental non-adapted host. This study highlights that the sensitivity of ELISA and VNT may differ between animal species and further studies are needed to investigate the epidemiological role of water buffalo.
Collapse
Affiliation(s)
- Elisabetta Di Felice
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
- Servizio Veterinario Igiene degli Allevamenti e Produzioni Zootecniche, ASL2 Lanciano Vasto Chieti, 66054 Vasto, Italy
| | - Chiara Pinoni
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Giorgia Amatori
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Elisa Mancuso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
- Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Angela Taraschi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Guido Di Donato
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Gaetano Federico Ronchi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Maria Teresa Mercante
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Mauro Di Ventura
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Daniela Morelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (C.P.); (E.R.); (G.A.); (E.M.); (F.I.); (A.T.); (G.D.T.); (G.F.R.); (M.T.M.); (M.D.V.); (D.M.); (F.M.)
| |
Collapse
|
4
|
Hamada R, Metwally S, Matsuura R, Borjigin L, Lo CW, Ali AO, Mohamed AEA, Wada S, Aida Y. BoLA-DRB3 Polymorphism Associated with Bovine Leukemia Virus Infection and Proviral Load in Holstein Cattle in Egypt. Pathogens 2023; 12:1451. [PMID: 38133334 PMCID: PMC10746042 DOI: 10.3390/pathogens12121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, the most prevalent neoplastic disease of cattle worldwide. The immune response to BLV and disease susceptibility and resistance in cattle are strongly correlated with the bovine leukocyte antigen (BoLA)-DRB3 allelic polymorphism. BLV infection continues to spread in Egypt, in part because the relationships between BLV infection, proviral load in Egypt, and BoLA-DRB3 polymorphism are unknown. Here, we identified 18 previously reported alleles in 121 Holstein cows using a polymerase chain reaction sequence-based typing method. Furthermore, BoLA-DRB3 gene polymorphisms in these animals were investigated for their influence on viral infection. BoLA-DRB3*015:01 and BoLA-DRB3*010:01 were identified as susceptible and resistant alleles, respectively, for BLV infection in the tested Holsteins. In addition, BoLA-DRB3*012:01 was associated with low PVL in previous reports but high PVL in Holstein cattle in Egypt. This study is the first to demonstrate that the BoLA-DRB3 polymorphism confers resistance and susceptibility to PVL and infections of BLV in Holstein cattle in Egypt. Our results can be useful for the disease control and eradication of BLV through genetic selection.
Collapse
Affiliation(s)
- Rania Hamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour City 22511, Egypt
| | - Samy Metwally
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour City 22511, Egypt
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
| | - Chieh-Wen Lo
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Alsagher O. Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City 83523, Egypt; (A.O.A.); (A.E.A.M.)
| | - Adel E. A. Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City 83523, Egypt; (A.O.A.); (A.E.A.M.)
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Nakatsuchi A, Matsumoto Y, Aida Y. Influence of BoLA-DRB3 Polymorphism and Bovine Leukemia Virus (BLV) Infection on Dairy Cattle Productivity. Vet Sci 2023; 10:vetsci10040250. [PMID: 37104405 PMCID: PMC10143785 DOI: 10.3390/vetsci10040250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Enzootic bovine leukosis caused by the bovine leukemia virus (BLV) results in substantial damage to the livestock industry; however, we lack an effective cure or vaccine. BoLA-DRB3 polymorphism in BLV-infected cattle is associated with the proviral load (PVL), infectivity in the blood, development of lymphoma, and in utero infection of calves. Additionally, it is related to the PVL, infectivity, and anti-BLV antibody levels in milk. However, the effects of the BoLA-DRB3 allele and BLV infection on dairy cattle productivity remain poorly understood. Therefore, we investigated the effect of BLV infection and BoLA-DRB3 allele polymorphism on dairy cattle productivity in 147 Holstein dams raised on Japanese dairy farms. Our findings suggested that BLV infection significantly increased milk yield. Furthermore, the BoLA-DRB3 allele alone, and the combined effect of BLV infection and the BoLA-DRB3 allele had no effect. These results indicate that on-farm breeding and selection of resistant cattle, or the preferential elimination of susceptible cattle, does not affect dairy cattle productivity. Additionally, BLV infection is more likely to affect dairy cattle productivity than BoLA-DRB3 polymorphism.
Collapse
Affiliation(s)
- Ayumi Nakatsuchi
- Research and Development Section, Institute of Animal Health, JA Zen-Noh (National Federation of Agricultural Cooperative Associations), 7 Ohja-machi Sakura-shi, Chiba 285-0043, Japan
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence: ; Tel.: +81-3-5841-5383
| |
Collapse
|
6
|
Chaudhary Y, Khuntia P, Kaul R. Susceptibility to foot and mouth disease virus infection in vaccinated cattle, and host BoLA A and BoLA DRB3 genes polymorphism. Virusdisease 2022; 33:65-75. [PMID: 35493756 PMCID: PMC9005608 DOI: 10.1007/s13337-021-00754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022] Open
Abstract
The vaccination of the susceptible animal population against FMDV remains the most important measure to control the virus and prevent economic loss. Occurrence of infection in vaccinated animals is well-known in some diseases and is termed as breakthrough infection. The reasons include host genetic factors which can play an important role resulting in differences in susceptibility of animals to virus infection even with vaccine induced protective immune response. The Major Histocompatibility Complex (MHC) of bovines i.e. Bovine Leukocyte Antigen (BoLA) is important for antigen presentation. The BoLA DRB3 allele, which codes for the beta chain in Class II antigen, has been extensively studied and numerous reports have previously shown association of polymorphism in the gene with resistance/ susceptibility to several bacterial and viral diseases. In addition, previous studies have shown relationship between BoLA Class I and resistance or susceptibility to different diseases in cattle. The present study investigated the polymorphism in BoLA DRB3 and BoLA gene sequences of host and their relation with breakthrough FMDV infection in vaccinated animals. The study has identified three polymorphic sites each in both the genes which correlate with evidence of recent infection indicating their role in determining susceptibility of vaccinated animals to FMDV infection. Our limited study was performed on a relatively small samples size collected from one region of country. Further validation would require more detailed investigations on larger sample size. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00754-8.
Collapse
Affiliation(s)
- Yash Chaudhary
- grid.8195.50000 0001 2109 4999Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | | | - Rajeev Kaul
- grid.8195.50000 0001 2109 4999Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| |
Collapse
|
7
|
BoLA-DRB3 Polymorphism Controls Proviral Load and Infectivity of Bovine Leukemia Virus (BLV) in Milk. Pathogens 2022; 11:pathogens11020210. [PMID: 35215153 PMCID: PMC8879029 DOI: 10.3390/pathogens11020210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bovine leukemia virus (BLV), which causes enzootic bovine leukosis, is transmitted to calves through the milk of BLV-infected dams. Bovine leukocyte antigen (BoLA)-DRB3 is a polymorphic gene associated with BLV infectivity and proviral load (PVL). However, the effect of BoLA-DRB3 polymorphism on the infectivity and PVL of milk from BLV-infected dams remains unknown. This study examined milk from 259 BLV-infected dams, including susceptible dams carrying at least one BoLA-DRB3*012:01 or *015:01 allele with high PVL, resistant dams carrying at least one BoLA-DRB3*002:01, *009:02, or *014:01:01 allele with low PVL, and neutral dams carrying other alleles. The detection rate of BLV provirus and PVL were significantly higher in milk from susceptible dams than in that from resistant dams. This result was confirmed in a three-year follow-up study in which milk from susceptible dams showed a higher BLV provirus detection rate over a longer period than that from resistant dams. The visualization of infectivity of milk cells using a luminescence syncytium induction assay showed that the infectious risk of milk from BLV-infected dams was markedly high for susceptible dams compared to resistant ones. This is the first report confirming that BoLA-DRB3 polymorphism affects the PVL and infectivity of milk from BLV-infected dams.
Collapse
|
8
|
Ren Y, MacPhillamy C, To TH, Smith TPL, Williams JL, Low WY. Adaptive selection signatures in river buffalo with emphasis on immune and major histocompatibility complex genes. Genomics 2021; 113:3599-3609. [PMID: 34455036 DOI: 10.1016/j.ygeno.2021.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 11/27/2022]
Abstract
River buffalo is an agriculturally important species with many traits, such as disease tolerance, which promote its use worldwide. Highly contiguous genome assemblies of the river buffalo, goat, pig, human and two cattle subspecies were aligned to study gene gains and losses and signs of positive selection. The gene families that have changed significantly in river buffalo since divergence from cattle play important roles in protein degradation, the olfactory receptor system, detoxification and the immune system. We used the branch site model in PAML to analyse single-copy orthologs to identify positively selected genes that may be involved in skin differentiation, mammary development and bone formation in the river buffalo branch. The high contiguity of the genomes enabled evaluation of differences among species in the major histocompatibility complex. We identified a Babesia-like L1 LINE insertion in the DRB1-like gene in the river buffalo and discuss the implication of this finding.
Collapse
Affiliation(s)
- Yan Ren
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Callum MacPhillamy
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Thu-Hien To
- Norwegian University of Life Sciences: NMBU, Universitetstunet 3, 1430 Ås, Norway
| | | | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia; Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia.
| |
Collapse
|
9
|
Characterization of Foot and Mouth Disease Virus Serotype SAT-2 in Swamp Water Buffaloes ( Bubalus bubalis) under the Egyptian Smallholder Production System. Animals (Basel) 2021; 11:ani11061697. [PMID: 34200281 PMCID: PMC8228956 DOI: 10.3390/ani11061697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Continuous mutations of the foot and mouth disease virus (FMDV) result in the emergence of new topotypes and lineages of FMDV, which contribute to an occasional vaccination failure. Thus, molecular characterization of the circulating FMDV strains associated with a recent outbreak in Egyptian water buffaloes is essential for the control strategies. The results revealed that the circulating virus was SAT-2 serotype, closely related to the lineage of lib12, topotype VII, with a similarity of 98.9%. The new incursions reported in this study explain the considerable high morbidity of FMDV outbreaks in Egypt in early 2019. Abstract Spontaneous mutations are a common characteristic of the foot and mouth disease virus (FMDV), leading to wide antigenic variations resulting in the emergence of new topotypes and lineages of FMDV, which contributes to occasional vaccination failures. The objectives of the present study were to genetically characterize FMDV isolated from water buffaloes and study the biochemical and histopathological indicators of infected animals. Fifty-four water buffaloes of both sexes and different ages suffered from acute symptoms of FMD were clinically examined and randomly selected for inclusion in this study. Oral desquamated epithelial and oropharyngeal fluid samples have been tested for FMDV by reverse transcriptase PCR (RT-PCR). Tissue and serum samples were also collected from the diseased buffaloes and subjected to histopathological and biochemical analysis. Our findings showed that all examined samples were confirmed to be positive to FMDV serotype SAT-2 and were adjusted to be responsible for the recent disease outbreak in this study. Phylogenetic analysis revealed that the circulating viruses were of the SAT-2 serotype, closely related to the lineage of lib12, topotype VII, with 98.9% identity. The new lineage of SAT-2 showed a high virulence resulting in the deaths of water buffaloes due to heart failure, confirmed by high serum levels of inflammatory and cardiac markers, including haptoglobin, ceruloplasmin, cardiac troponin I and creatine phosphokinase-MB, indicating an unfavorable FMD-infection prognosis. In conclusion, we document the presence of new incursions circulating in water buffalo populations in Egypt in early 2019, explaining the high morbidity rate of FMD outbreak in early 2019. Furthermore, the newly identified serotype SAT-2 lib12 lineage, topotype VII, showed an aggressive pattern in water buffaloes of the smallholder production system.
Collapse
|
10
|
Rehman SU, Hassan FU, Luo X, Li Z, Liu Q. Whole-Genome Sequencing and Characterization of Buffalo Genetic Resources: Recent Advances and Future Challenges. Animals (Basel) 2021; 11:904. [PMID: 33809937 PMCID: PMC8004149 DOI: 10.3390/ani11030904] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
The buffalo was domesticated around 3000-6000 years ago and has substantial economic significance as a meat, dairy, and draught animal. The buffalo has remained underutilized in terms of the development of a well-annotated and assembled reference genome de novo. It is mandatory to explore the genetic architecture of a species to understand the biology that helps to manage its genetic variability, which is ultimately used for selective breeding and genomic selection. Morphological and molecular data have revealed that the swamp buffalo population has strong geographical genomic diversity with low gene flow but strong phenotypic consistency, while the river buffalo population has higher phenotypic diversity with a weak phylogeographic structure. The availability of recent high-quality reference genome and genotyping marker panels has invigorated many genome-based studies on evolutionary history, genetic diversity, functional elements, and performance traits. The increasing molecular knowledge syndicate with selective breeding should pave the way for genetic improvement in the climatic resilience, disease resistance, and production performance of water buffalo populations globally.
Collapse
Affiliation(s)
- Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Xier Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| |
Collapse
|