1
|
Gyöngyösi M, Guthrie J, Hasimbegovic E, Han E, Riesenhuber M, Hamzaraj K, Bergler-Klein J, Traxler D, Emmert MY, Hackl M, Derdak S, Lukovic D. Critical analysis of descriptive microRNA data in the translational research on cardioprotection and cardiac repair: lost in the complexity of bioinformatics. Basic Res Cardiol 2025:10.1007/s00395-025-01104-1. [PMID: 40205177 DOI: 10.1007/s00395-025-01104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
The unsuccessful translation of cardiac regeneration and cardioprotection from animal experiments to clinical applications in humans has raised the question of whether microRNA bioinformatics can narrow the gap between animal and human research outputs. We reviewed the literature for the period between 2000 and 2024 and found 178 microRNAs involved in cardioprotection and cardiac regeneration. On analyzing the orthologs and annotations, as well as downstream regulation, we observed species-specific differences in the diverse regulation of the microRNAs and related genes and transcriptomes, the influence of the experimental setting on the microRNA-guided biological responses, and database-specific bioinformatics results. We concluded that, in addition to reducing the number of in vivo experiments, following the 3R animal experiment rules, the bioinformatics approach allows the prediction of several currently unknown interactions between pathways, coding and non-coding genes, proteins, and downstream regulatory elements. However, a comprehensive analysis of the miRNA-mRNA-protein networks needs a profound bioinformatics and mathematical education and training to appropriately design an experimental study, select the right bioinformatics tool with programming language skills and understand and display the bioinformatics output of the results to translate the research data into clinical practice. In addition, using in-silico approaches, a risk of deviating from the in vivo processes exists, with adverse consequences on the translational research.
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Julia Guthrie
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Ena Hasimbegovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Emilie Han
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Martin Riesenhuber
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Kevin Hamzaraj
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jutta Bergler-Klein
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charite (DHZC), Berlin, Germany
| | | | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Rios-Valencia DG, Estrada K, Calderón-Gallegos A, Tirado-Mendoza R, Bobes RJ, Laclette JP, Cabrera-Bravo M. Effect of Hydroxyurea on Morphology, Proliferation, and Protein Expression on Taenia crassiceps WFU Strain. Int J Mol Sci 2024; 25:6061. [PMID: 38892261 PMCID: PMC11172544 DOI: 10.3390/ijms25116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Flatworms are known for their remarkable regenerative ability, one which depends on totipotent cells known as germinative cells in cestodes. Depletion of germinative cells with hydroxyurea (HU) affects the regeneration of the parasite. Here, we studied the reduction and recovery of germinative cells in T. crassiceps cysticerci after HU treatment (25 mM and 40 mM of HU for 6 days) through in vitro assays. Viability and morphological changes were evaluated. The recovery of cysticerci's mobility and morphology was evaluated at 3 and 6 days, after 6 days of treatment. The number of proliferative cells was evaluated using EdU. Our results show morphological changes in the size, shape, and number of evaginated cysticerci at the 40 mM dose. The mobility of cysticerci was lower after 6 days of HU treatment at both concentrations. On days 3 and 6 of recovery after 25 mM of HU treatment, a partial recovery of the proliferative cells was observed. Proteomic and Gene Ontology analyses identified modifications in protein groups related to DNA binding, DNA damage, glycolytic enzymes, cytoskeleton, skeletal muscle, and RNA binding.
Collapse
Affiliation(s)
- Diana G. Rios-Valencia
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| | - Karel Estrada
- Unit for Massive Sequencing and Bioinformatics, Biotechnology Institute, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico;
| | - Arturo Calderón-Gallegos
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Rocío Tirado-Mendoza
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| | - Raúl J. Bobes
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Juan P. Laclette
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Margarita Cabrera-Bravo
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| |
Collapse
|
3
|
Caballero-Sánchez N, Alonso-Alonso S, Nagy L. Regenerative inflammation: When immune cells help to re-build tissues. FEBS J 2024; 291:1597-1614. [PMID: 36440547 PMCID: PMC10225019 DOI: 10.1111/febs.16693] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Inflammation is an essential immune response critical for responding to infection, injury and maintenance of tissue homeostasis. Upon injury, regenerative inflammation promotes tissue repair by a timed and coordinated infiltration of diverse cell types and the secretion of growth factors, cytokines and lipids mediators. Remarkably, throughout evolution as well as mammalian development, this type of physiological inflammation is highly associated with immunosuppression. For instance, regenerative inflammation is the consequence of an in situ macrophage polarization resulting in a transition from pro-inflammatory to anti-inflammatory/pro-regenerative response. Immune cells are the first responders upon injury, infiltrating the damaged tissue and initiating a pro-inflammatory response depleting cell debris and necrotic cells. After phagocytosis, macrophages undergo multiple coordinated metabolic and transcriptional changes allowing the transition and dictating the initiation of the regenerative phase. Differences between a highly efficient, complete ad integrum tissue repair, such as, acute skeletal muscle injury, and insufficient regenerative inflammation, as the one developing in Duchenne Muscular Dystrophy (DMD), highlight the importance of a coordinated response orchestrated by immune cells. During regenerative inflammation, these cells interact with others and alter the niche, affecting the character of inflammation itself and, therefore, the progression of tissue repair. Comparing acute muscle injury and chronic inflammation in DMD, we review how the same cells and molecules in different numbers, concentration and timing contribute to very different outcomes. Thus, it is important to understand and identify the distinct functions and secreted molecules of macrophages, and potentially other immune cells, during tissue repair, and the contributors to the macrophage switch leveraging this knowledge in treating diseases.
Collapse
Affiliation(s)
- Noemí Caballero-Sánchez
- Doctoral School of Molecular Cell and Immunobiology, Faculty of Medicine, University of Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary
| | - Sergio Alonso-Alonso
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary
- Departments Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| |
Collapse
|
4
|
Pandita S, Singh S, Bajpai SK, Mishra G, Saxena G, Verma PC. Molecular aspects of regeneration in insects. Dev Biol 2024; 507:64-72. [PMID: 38160963 DOI: 10.1016/j.ydbio.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Regeneration is a fascinating phenomenon observed in various organisms across the animal kingdom. Different orders of class Insecta are reported to possess comprehensive regeneration abilities. Several signalling molecules, such as morphogens, growth factors, and others trigger a cascade of events that promote wound healing, blastema formation, growth, and repatterning. Furthermore, epigenetic regulation has emerged as a critical player in regulating the process of regeneration. This report highlights the major breakthrough research on wound healing and tissue regeneration. Exploring and reviewing the molecular basis of regeneration can be helpful in the area of regenerative medicine advancements. The understanding gathered from this framework can potentially contribute to hypothesis designing with implications in the field of synthetic biology and human health.
Collapse
Affiliation(s)
- Shivali Pandita
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India; Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Sanchita Singh
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India; Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Sanjay Kumar Bajpai
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Geetanjali Mishra
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Praveen C Verma
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
5
|
Harris RE. Investigating Tissue Regeneration Using the DUAL Control Genetic Ablation System. Methods Mol Biol 2023; 2599:255-270. [PMID: 36427155 DOI: 10.1007/978-1-0716-2847-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Genetic ablation is a highly efficient method to study regeneration in vivo by stimulating tissue-specific cell death that subsequently induces regrowth and repair in a developing organism. This approach has been particularly successful in Drosophila, for which various temperature-based genetic ablation tools have been developed to explore the complexities of regeneration in larval imaginal discs. Here, we describe the use of a recently established ablation system called DUAL Control, which can be used to both characterize the damage response and genetically manipulate blastema cells to identify novel regulators of regeneration.
Collapse
Affiliation(s)
- R E Harris
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
6
|
Printzi A, Mazurais D, Witten PE, Madec L, Gonzalez AA, Mialhe X, Zambonino-Infante JL, Koumoundouros G. Juvenile zebrafish (Danio rerio) are able to recover from lordosis. Sci Rep 2022; 12:21533. [PMID: 36513797 PMCID: PMC9748118 DOI: 10.1038/s41598-022-26112-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Haemal lordosis, a frequent skeletal deformity in teleost fish, has long been correlated with increased mechanical loads induced by swimming activity. In the present study, we examine whether juvenile zebrafish can recover from haemal lordosis and explore the musculoskeletal mechanisms involved. Juveniles were subjected to a swimming challenge test (SCT) that induced severe haemal lordosis in 49% of the animals and then immediately transferred them to 0.0 total body lengths (TL) per second of water velocity for a week. The recovery from lordosis was examined by means of whole mount staining, histology and gene expression analysis. Results demonstrate that 80% of the lordotic zebrafish are capable of internal and external recovery within a week after the SCT. Recovered individuals presented normal shape of the vertebral centra, maintaining though distorted internal tissue organization. Through the transcriptomic analysis of the affected haemal regions, several processes related to chromosome organization, DNA replication, circadian clock and transcription regulation were enriched within genes significantly regulated behind this musculoskeletal recovery procedure. Genes especially involved in adipogenesis, bone remodeling and muscular regeneration were regulated. A remodeling tissue-repair hypothesis behind haemal lordosis recovery is raised. Limitations and future possibilities for zebrafish as a model organism to clarify mechanically driven musculoskeletal changes are discussed.
Collapse
Affiliation(s)
- A. Printzi
- grid.8127.c0000 0004 0576 3437Biology Department, University of Crete, Crete, Greece ,grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - D. Mazurais
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - P. E. Witten
- grid.5342.00000 0001 2069 7798Department of Biology, Gent University, Gent, Belgium
| | - L. Madec
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - A.-A. Gonzalez
- grid.121334.60000 0001 2097 0141MGX-Montpellier GenomiX, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - X. Mialhe
- grid.121334.60000 0001 2097 0141MGX-Montpellier GenomiX, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - J.-L. Zambonino-Infante
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - G. Koumoundouros
- grid.8127.c0000 0004 0576 3437Biology Department, University of Crete, Crete, Greece
| |
Collapse
|
7
|
Moros M, Fergola E, Marchesano V, Mutarelli M, Tommasini G, Miedziak B, Palumbo G, Ambrosone A, Tino A, Tortiglione C. The Aquatic Invertebrate Hydra vulgaris Releases Molecular Messages Through Extracellular Vesicles. Front Cell Dev Biol 2022; 9:788117. [PMID: 34988080 PMCID: PMC8721104 DOI: 10.3389/fcell.2021.788117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Recent body of evidence demonstrates that extracellular vesicles (EVs) represent the first language of cell-cell communication emerged during evolution. In aquatic environments, transferring signals between cells by EVs offers protection against degradation, allowing delivering of chemical information in high local concentrations to the target cells. The packaging of multiple signals, including those of hydrophobic nature, ensures target cells to receive the same EV-conveyed messages, and the coordination of a variety of physiological processes across cells of a single organisms, or at the population level, i.e., mediating the population’s response to changing environmental conditions. Here, we purified EVs from the medium of the freshwater invertebrate Hydra vulgaris, and the molecular profiling by proteomic and transcriptomic analyses revealed multiple markers of the exosome EV subtype, from structural proteins to stress induced messages promoting cell survival. Moreover, positive and negative regulators of the Wnt/β-catenin signaling pathway, the major developmental pathway acting in body axial patterning, were identified. Functional analysis on amputated polyps revealed EV ability to modulate both head and foot regeneration, suggesting bioactivity of the EV cargo and opening new perspectives on the mechanisms of developmental signalling. Our results open the path to unravel EV biogenesis and function in all cnidarian species, tracing back the origin of the cell-cell, cross-species or cross-kingdom communication in aquatic ecosystems.
Collapse
Affiliation(s)
- Maria Moros
- Instituto de Nanociencia y Materiales de Aragón(INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain.,Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Eugenio Fergola
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Valentina Marchesano
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Margherita Mutarelli
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Giuseppina Tommasini
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Beata Miedziak
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Giuliana Palumbo
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Alfredo Ambrosone
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| |
Collapse
|
8
|
Joseph NA, Chen CF, Chen JH, Chen LY. Monitoring Telomere Maintenance During Regeneration of Annelids. Methods Mol Biol 2022; 2450:467-478. [PMID: 35359323 PMCID: PMC9761496 DOI: 10.1007/978-1-0716-2172-1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Telomere shortening is a hallmark of aging and eventually constrains the proliferative capacity of cells. The protocols discussed here are used for monitoring telomeres comprehensively in Aeolosoma viride, a model system for regeneration studies. We present methods for analyzing the activity of telomerase enzyme in regenerating tissue by telomeric repeat amplification protocol (TRAP) assay, for comparing telomere length between existing tissue and newly regenerated tissue by telomere restriction fragment (TRF) assay, as well as for visualizing telomeres by fluorescence in situ hybridization (FISH).
Collapse
Affiliation(s)
| | - Chi-Fan Chen
- Department of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Jiun-Hong Chen
- Department of Life Sciences, National Taiwan University, Taipei, Taiwan.
| | - Liuh-Yow Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
9
|
Abstract
Regeneration experiments can produce complex phenotypes including morphological outcomes and gene expression patterns that are crucial for the understanding of the mechanisms of regeneration. However, due to their inherent complexity, variability between individuals, and heterogeneous data spreading across the literature, extracting mechanistic knowledge from them is a current challenge. Toward this goal, here we present protocols to unambiguously formalize the phenotypes of regeneration and their experimental procedures using precise mathematical morphological descriptions and standardized gene expression patterns. We illustrate the application of the methodology with step-by-step protocols for planaria and limb regeneration phenotypes. The curated datasets with these methods are not only helpful for human scientists, but they represent a key formalized resource that can be easily integrated into downstream reverse engineering methodologies for the automatic extraction of mechanistic knowledge. This approach can pave the way for discovering comprehensive systems-level models of regeneration.
Collapse
Affiliation(s)
- Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
10
|
Edgar A, Mitchell DG, Martindale MQ. Whole-Body Regeneration in the Lobate Ctenophore Mnemiopsis leidyi. Genes (Basel) 2021; 12:genes12060867. [PMID: 34198839 PMCID: PMC8228598 DOI: 10.3390/genes12060867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/28/2023] Open
Abstract
Ctenophores (a.k.a. comb jellies) are one of the earliest branching extant metazoan phyla. Adult regenerative ability varies greatly within the group, with platyctenes undergoing both sexual and asexual reproduction by fission while others in the genus Beroe having completely lost the ability to replace missing body parts. We focus on the unique regenerative aspects of the lobate ctenophore, Mnemiopsis leidyi, which has become a popular model for its rapid wound healing and tissue replacement, optical clarity, and sequenced genome. M. leidyi’s highly mosaic, stereotyped development has been leveraged to reveal the polar coordinate system that directs whole-body regeneration as well as lineage restriction of replacement cells in various regenerating organs. Several cell signaling pathways known to function in regeneration in other animals are absent from the ctenophore’s genome. Further research will either reveal ancient principles of the regenerative process common to all animals or reveal novel solutions to the stability of cell fates and whole-body regeneration.
Collapse
|
11
|
Elchaninov A, Sukhikh G, Fatkhudinov T. Evolution of Regeneration in Animals: A Tangled Story. Front Ecol Evol 2021; 9. [DOI: 10.3389/fevo.2021.621686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The evolution of regenerative capacity in multicellular animals represents one of the most complex and intriguing problems in biology. How could such a seemingly advantageous trait as self-repair become consistently attenuated by the evolution? This review article examines the concept of the origin and nature of regeneration, its connection with the processes of embryonic development and asexual reproduction, as well as with the mechanisms of tissue homeostasis. The article presents a variety of classical and modern hypotheses explaining different trends in the evolution of regenerative capacity which is not always beneficial for the individual and notably for the species. Mechanistically, these trends are driven by the evolution of signaling pathways and progressive restriction of differentiation plasticity with concomitant advances in adaptive immunity. Examples of phylogenetically enhanced regenerative capacity are considered as well, with appropriate evolutionary reasoning for the enhancement and discussion of its molecular mechanisms.
Collapse
|
12
|
She P, Zhang H, Peng X, Sun J, Gao B, Zhou Y, Zhu X, Hu X, Lai KS, Wong J, Zhou B, Wang L, Zhong TP. The Gridlock transcriptional repressor impedes vertebrate heart regeneration by restricting expression of lysine methyltransferase. Development 2020; 147:147/18/dev190678. [PMID: 32988975 PMCID: PMC7541343 DOI: 10.1242/dev.190678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Teleost zebrafish and neonatal mammalian hearts exhibit the remarkable capacity to regenerate through dedifferentiation and proliferation of pre-existing cardiomyocytes (CMs). Although many mitogenic signals that stimulate zebrafish heart regeneration have been identified, transcriptional programs that restrain injury-induced CM renewal are incompletely understood. Here, we report that mutations in gridlock (grl; also known as hey2), encoding a Hairy-related basic helix-loop-helix transcriptional repressor, enhance CM proliferation and reduce fibrosis following damage. In contrast, myocardial grl induction blunts CM dedifferentiation and regenerative responses to heart injury. RNA sequencing analyses uncover Smyd2 lysine methyltransferase (KMT) as a key transcriptional target repressed by Grl. Reduction in Grl protein levels triggered by injury induces smyd2 expression at the wound myocardium, enhancing CM proliferation. We show that Smyd2 functions as a methyltransferase and modulates the Stat3 methylation and phosphorylation activity. Inhibition of the KMT activity of Smyd2 reduces phosphorylated Stat3 at cardiac wounds, suppressing the elevated CM proliferation in injured grl mutant hearts. Our findings establish an injury-specific transcriptional repression program in governing CM renewal during heart regeneration, providing a potential strategy whereby silencing Grl repression at local regions might empower regeneration capacity to the injured mammalian heart. Highlighted Article: Novel mechanisms of the Grl-Smyd2 network govern vertebrate CM renewal and heart regeneration, which might be relevant in developing strategies for regeneration interventions in humans.
Collapse
Affiliation(s)
- Peilu She
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huifang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiangwen Peng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Jianjian Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bangjun Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yating Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xuejiao Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xueli Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kaa Seng Lai
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bin Zhou
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Linhui Wang
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
13
|
Kassmer SH, Langenbacher AD, De Tomaso AW. Integrin-alpha-6+ Candidate stem cells are responsible for whole body regeneration in the invertebrate chordate Botrylloides diegensis. Nat Commun 2020; 11:4435. [PMID: 32895385 PMCID: PMC7477574 DOI: 10.1038/s41467-020-18288-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Colonial ascidians are the only chordates able to undergo whole body regeneration (WBR), during which entire new bodies can be regenerated from small fragments of blood vessels. Here, we show that during the early stages of WBR in Botrylloides diegensis, proliferation occurs only in small, blood-borne cells that express integrin-alpha-6 (IA6), pou3 and vasa. WBR cannot proceed when proliferating IA6+ cells are ablated with Mitomycin C, and injection of a single IA6+ Candidate stem cell can rescue WBR after ablation. Lineage tracing using EdU-labeling demonstrates that donor-derived IA6+ Candidate stem cells directly give rise to regenerating tissues. Inhibitors of either Notch or canonical Wnt signaling block WBR and reduce proliferation of IA6+ Candidate stem cells, indicating that these two pathways regulate their activation. In conclusion, we show that IA6+ Candidate stem cells are responsible for whole body regeneration and give rise to regenerating tissues. Clonal ascidians are able to undergo whole body regeneration (WBR), where entire new bodies can be regenerated from blood vessel fragments. Here, the authors provide evidence in Botrylloides diegensis supporting pou3 and vasa expressing blood-borne cells isolated with anti-IA6 antibody as candidate stem cells responsible for WBR.
Collapse
Affiliation(s)
- Susannah H Kassmer
- Molecular, Cellular and Developmental Biology, University of California, UCEN Rd, 93106, Santa Barbara, CA, USA.
| | - Adam D Langenbacher
- Molecular, Cell, and Developmental Biology, University of California, 610 Charles E Young Dr S, Los Angeles, CA, 90095, Los Angeles, CA, USA
| | - Anthony W De Tomaso
- Molecular, Cellular and Developmental Biology, University of California, UCEN Rd, 93106, Santa Barbara, CA, USA
| |
Collapse
|
14
|
Zullo L, Bozzo M, Daya A, Di Clemente A, Mancini FP, Megighian A, Nesher N, Röttinger E, Shomrat T, Tiozzo S, Zullo A, Candiani S. The Diversity of Muscles and Their Regenerative Potential across Animals. Cells 2020; 9:cells9091925. [PMID: 32825163 PMCID: PMC7563492 DOI: 10.3390/cells9091925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently. By comparing the mechanisms of muscle homeostasis and regeneration throughout the diversity of animal body-plans and life cycles, it is possible to identify conserved and divergent cellular and molecular mechanisms underlying muscle plasticity. In this review we aim at providing an overview of muscle regeneration studies in metazoans, highlighting the major regenerative strategies and molecular pathways involved. By gathering these findings, we wish to advocate a comparative and evolutionary approach to prompt a wider use of “non-canonical” animal models for molecular and even pharmacological studies in the field of muscle regeneration.
Collapse
Affiliation(s)
- Letizia Zullo
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (L.Z.); (A.Z.)
| | - Matteo Bozzo
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| | - Alon Daya
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Alessio Di Clemente
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | | | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS, INSERM, 06107 Nice, France;
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Stefano Tiozzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Paris, France;
| | - Alberto Zullo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy;
- Correspondence: (L.Z.); (A.Z.)
| | - Simona Candiani
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| |
Collapse
|
15
|
Fang Y, Lai KS, She P, Sun J, Tao W, Zhong TP. Tbx20 Induction Promotes Zebrafish Heart Regeneration by Inducing Cardiomyocyte Dedifferentiation and Endocardial Expansion. Front Cell Dev Biol 2020; 8:738. [PMID: 32850848 PMCID: PMC7417483 DOI: 10.3389/fcell.2020.00738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Heart regeneration requires replenishment of lost cardiomyocytes (CMs) and cells of the endocardial lining. However, the signaling regulation and transcriptional control of myocardial dedifferentiation and endocardial activation are incompletely understood during cardiac regeneration. Here, we report that T-Box Transcription Factor 20 (Tbx20) is induced rapidly in the myocardial wound edge in response to various sources of cardiac damages in zebrafish. Inducing Tbx20 specifically in the adult myocardium promotes injury-induced CM proliferation through CM dedifferentiation, leading to loss of CM cellular contacts and re-expression of cardiac embryonic or fetal gene programs. Unexpectedly, we identify that myocardial Tbx20 induction activates the endocardium at the injury site with enhanced endocardial cell extension and proliferation, where it induces the endocardial Bone morphogenetic protein 6 (Bmp6) signaling. Pharmacologically inactivating endocardial Bmp6 signaling reduces expression of its targets, Id1 and Id2b, attenuating the increased endocardial regeneration in tbx20-overexpressing hearts. Altogether, our study demonstrates that Tbx20 induction promotes adult heart regeneration by inducing cardiomyocyte dedifferentiation as well as non-cell-autonomously enhancing endocardial cell regeneration.
Collapse
Affiliation(s)
- Yabo Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaa Seng Lai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Peilu She
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jianjian Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
16
|
Live cell imaging of cell movement and transdifferentiation during regeneration of an amputated multicellular body of the social amoeba Dictyostelium discoideum. Dev Biol 2019; 457:140-149. [PMID: 31563450 DOI: 10.1016/j.ydbio.2019.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 12/28/2022]
Abstract
The regeneration of lost body parts is a fascinating phenomenon exhibited by some multicellular organisms. In social amoebae, such as Dictyostelium discoideum, the pseudoplasmodium is a temporary migratory multicellular structure with high regeneration ability. It consists of future stalk cells (prestalk cells) at the anterior end and future spore cells (prespore cells) at the posterior end, and if amputated, the remaining cells can rapidly regenerate the lost portion within several hours. Details of this regeneration event have been extensively documented; however, little is known about the behavior of individual cells involved in this process. In this study, we performed live cell imaging of cell behavior during regeneration of the excised anterior prestalk region. We used cells that specifically express GFP in the prestalk cell lineage to examine how the prestalk region is regenerated after this region is excised. The current model of prestalk regeneration suggests that the progenitors of prestalk cells, known as anterior-like cells (ALCs), which are sparsely distributed in the prespore region, are redistributed to form the new prestalk region. However, we found that the regenerated prestalk region was formed mainly by the transdifferentiation of prespore cells surrounding the excised anterior end, with little clustering of pre-existing ALCs. Furthermore, the movement of randomly distributed labeled cells during regeneration revealed that although the posterior end was deformed and rounded in shape, the relative position of cells along the anterior-posterior axis remained largely unchanged. These results suggest that the original anterior-posterior axis is maintained in posterior bodies and that prespore cells at the anterior side transdifferentiate and regenerate the prestalk region.
Collapse
|
17
|
Turwankar A, Ghaskadbi S. VEGF and FGF signaling during head regeneration in hydra. Gene 2019; 717:144047. [PMID: 31421190 DOI: 10.1016/j.gene.2019.144047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) signaling pathways play important roles in the formation of the blood vascular system and nervous system across animal phyla. We have earlier reported VEGF and FGF from Hydra vulgaris Ind-Pune, a cnidarian with a defined body axis, an organized nervous system and a remarkable ability of regeneration. We have now identified three more components of VEGF and FGF signaling pathways from hydra. These include FGF-1, FGF receptor 1 (FGFR-1) and VEGF receptor 2 (VEGFR-2) with a view to deciphering their possible roles in regeneration. METHODS In silico analysis of proteins was performed using Clustal omega, Swiss model, MEGA 7.0, etc. Gene expression was studied by whole mount in situ hybridization. VEGF and FGF signaling was inhibited using specific pharmacological inhibitors and their effects on head regeneration were studied. RESULTS Expression patterns of the genes indicate a possible interaction between FGF-1 and FGFR-1 and also VEGF and VEGFR-2. Upon treatment of decapitated hydra with pharmacological inhibitor of FGFR-1 or VEGFR-2 for 48 h, head regeneration was delayed in treated as compared to untreated, control regenerates. When we studied the expression of head specific genes HyBra1 and HyKs1 and tentacle specific gene HyAlx in control and treated regenerates using whole mount in situ hybridization, expression of all the three genes was found to be adversely affected in treated regenerates. CONCLUSIONS The results suggest that VEGF and FGF signaling play important roles in regeneration of hypostome and tentacles in hydra.
Collapse
Affiliation(s)
- Anuprita Turwankar
- Developmental Biology Group, MACS-Agharkar Research Institute, Savitribai Phule Pune University, G.G. Agarkar Road, Pune 411004, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Savitribai Phule Pune University, G.G. Agarkar Road, Pune 411004, India.
| |
Collapse
|
18
|
Azlan A, Halim MA, Azzam G. Genome-wide identification and characterization of long intergenic noncoding RNAs in the regenerative flatworm Macrostomum lignano. Genomics 2019; 112:1273-1281. [PMID: 31381967 DOI: 10.1016/j.ygeno.2019.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023]
Abstract
The free-living flatworm Macrostoma lignano (M. lignano) is an emerging model organism for aging and regeneration research. Long intergenic non-coding RNAs (lincRNAs) have important roles in many biological processes such as aging, stem cell maintenance and differentiation. However, to date, there is no systematic identification of lincRNAs in M. lignano. By using public RNA-seq data, we identified a total of 2547 lincRNA transcripts in M. lignano genome. We discovered that M. lignano lincRNAs shared many characteristics with other species such as shorter in length, lower GC content, and lower in expression compared to protein-coding genes. Unlike protein-coding genes, M. lignano lincRNAs showed higher tendency to be expressed in temporal and region-specific fashion. Additionally, co-expression network analysis and functional enrichment suggest that M. lignano lincRNAs have potential roles in regeneration. This study will provide important resources and pave the way for investigations on non-coding genes involved in aging and regeneration.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Mardani Abdul Halim
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
19
|
Mouton S, Wudarski J, Grudniewska M, Berezikov E. The regenerative flatworm Macrostomum lignano, a model organism with high experimental potential. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 62:551-558. [PMID: 29938766 DOI: 10.1387/ijdb.180077eb] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Understanding the process of regeneration has been one of the longstanding scientific aims, from a fundamental biological perspective, as well as within the applied context of regenerative medicine. Because regeneration competence varies greatly between organisms, it is essential to investigate different experimental animals. The free-living marine flatworm Macrostomum lignano is a rising model organism for this type of research, and its power stems from a unique set of biological properties combined with amenability to experimental manipulation. The biological properties of interest include production of single-cell fertilized eggs, a transparent body, small size, short generation time, ease of culture, the presence of a pluripotent stem cell population, and a large regeneration competence. These features sparked the development of molecular tools and resources for this animal, including high-quality genome and transcriptome assemblies, gene knockdown, in situ hybridization, and transgenesis. Importantly, M. lignano is currently the only flatworm species for which transgenesis methods are established. This review summarizes biological features of M. lignano and recent technological advances towards experimentation with this animal. In addition, we discuss the experimental potential of this model organism for different research questions related to regeneration and stem cell biology.
Collapse
Affiliation(s)
- Stijn Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
20
|
Kassmer SH, Nourizadeh S, De Tomaso AW. Cellular and molecular mechanisms of regeneration in colonial and solitary Ascidians. Dev Biol 2019; 448:271-278. [PMID: 30521811 DOI: 10.1016/j.ydbio.2018.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 11/27/2022]
Abstract
Regenerative ability is highly variable among the metazoans. While many invertebrate organisms are capable of complete regeneration of entire bodies and organs, whole-organ regeneration is limited to very few species in the vertebrate lineages. Tunicates, which are invertebrate chordates and the closest extant relatives of the vertebrates, show robust regenerative ability. Colonial ascidians of the family of the Styelidae, such as several species of Botrylloides, are able to regenerate entire new bodies from nothing but fragments of vasculature, and they are the only chordates that are capable of whole body regeneration. The cell types and signaling pathways involved in whole body regeneration are not well understood, but some evidence suggests that blood borne cells may play a role. Solitary ascidians such as Ciona can regenerate the oral siphon and their central nervous system, and stem cells located in the branchial sac are required for this regeneration. Here, we summarize the cellular and molecular mechanisms of tunicate regeneration that have been identified so far and discuss differences and similarities between these mechanisms in regenerating tunicate species.
Collapse
Affiliation(s)
- Susannah H Kassmer
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.
| | - Shane Nourizadeh
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Anthony W De Tomaso
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
21
|
Cary GA, Wolff A, Zueva O, Pattinato J, Hinman VF. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa. BMC Biol 2019; 17:16. [PMID: 30795750 PMCID: PMC6385403 DOI: 10.1186/s12915-019-0633-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Background Metazoan lineages exhibit a wide range of regenerative capabilities that vary among developmental stage and tissue type. The most robust regenerative abilities are apparent in the phyla Cnidaria, Platyhelminthes, and Echinodermata, whose members are capable of whole-body regeneration (WBR). This phenomenon has been well characterized in planarian and hydra models, but the molecular mechanisms of WBR are less established within echinoderms, or any other deuterostome system. Thus, it is not clear to what degree aspects of this regenerative ability are shared among metazoa. Results We characterize regeneration in the larval stage of the Bat Star (Patiria miniata). Following bisection along the anterior-posterior axis, larvae progress through phases of wound healing and re-proportioning of larval tissues. The overall number of proliferating cells is reduced following bisection, and we find evidence for a re-deployment of genes with known roles in embryonic axial patterning. Following axial respecification, we observe a significant localization of proliferating cells to the wound region. Analyses of transcriptome data highlight the molecular signatures of functions that are common to regeneration, including specific signaling pathways and cell cycle controls. Notably, we find evidence for temporal similarities among orthologous genes involved in regeneration from published Platyhelminth and Cnidarian regeneration datasets. Conclusions These analyses show that sea star larval regeneration includes phases of wound response, axis respecification, and wound-proximal proliferation. Commonalities of the overall process of regeneration, as well as gene usage between this deuterostome and other species with divergent evolutionary origins reveal a deep similarity of whole-body regeneration among the metazoa. Electronic supplementary material The online version of this article (10.1186/s12915-019-0633-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gregory A Cary
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Andrew Wolff
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Olga Zueva
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Joseph Pattinato
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
22
|
Liang Y, Rathnayake D, Huang S, Pathirana A, Xu Q, Zhang S. BMP signaling is required for amphioxus tail regeneration. Development 2019; 146:dev.166017. [PMID: 30696711 DOI: 10.1242/dev.166017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
Amphioxus, a cephalochordate, is an ideal animal in which to address questions about the evolution of regenerative ability and the mechanisms behind the invertebrate to vertebrate transition in chordates. However, the cellular and molecular basis of tail regeneration in amphioxus remains largely ill-defined. We confirmed that the tail regeneration of amphioxus Branchiostoma japonicum is a vertebrate-like epimorphosis process. We performed transcriptome analysis of tail regenerates, which provided many clues for exploring the mechanism of tail regeneration. Importantly, we showed that BMP2/4 and its related signaling pathway components are essential for the process of tail regeneration, revealing an evolutionarily conserved genetic regulatory system involved in regeneration in many metazoans. We serendipitously discovered that bmp2/4 expression is immediately inducible by general wounds and that expression of bmp2/4 can be regarded as a biomarker of wounds in amphioxus. Collectively, our results provide a framework for understanding the evolution and diversity of cellular and molecular events of tail regeneration in vertebrates.
Collapse
Affiliation(s)
- Yujun Liang
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity and College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Delima Rathnayake
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity and College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Shibo Huang
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity and College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Anjalika Pathirana
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity and College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Qiyu Xu
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity and College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity and College of Marine Life Science, Ocean University of China, Qingdao 266003, China .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
23
|
Telomere maintenance during anterior regeneration and aging in the freshwater annelid Aeolosoma viride. Sci Rep 2018; 8:18078. [PMID: 30584242 PMCID: PMC6305377 DOI: 10.1038/s41598-018-36396-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022] Open
Abstract
Aging is a complex process involving declines in various cellular and physical functionalities, including regenerative ability. Telomere maintenance is thought to be necessary for regeneration, and telomere attrition is one mechanism that contributes to aging. However, it is unclear if aging affects regeneration owing to deterioration of telomeric maintenance. We introduce Aeolosoma viride—a freshwater annelid with strong regenerative abilities—as a new model for studying the effects of aging on telomere functions and regeneration. We show that the anterior regenerative ability of A. viride declines with age. We characterized the A. viride telomere sequence as being composed of TTAGGG repeats and identifyied the telomerase gene Avi-tert. In adult A. viride, telomerase was constantly active and telomere lengths were similar among different body sections and stably maintained with age. Notably, we found that regeneration did not result in telomere shortening at regenerating sites. Moreover, transient up-regulation of Avi-tert expression and telomerase activity was observed at regenerating sites, which might promote telomere lengthening to counteract telomere erosion resulting from cell proliferation. Our study suggests that although aging affects A. viride regeneration independent of steady-state telomere length, timely regulation of telomerase functions is critical for the regeneration process in A. viride.
Collapse
|
24
|
Dong WF, Zhang H, Wang RM, Pan HC. Molecular cloning, antiserum preparation and expression analysis during head regeneration of
$$\upalpha $$
α
-crystallin type heat shock protein in Hydra vulgaris. J Genet 2018. [DOI: 10.1007/s12041-018-0982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Rossi L, Salvetti A. Planarian stem cell niche, the challenge for understanding tissue regeneration. Semin Cell Dev Biol 2018. [PMID: 29534938 DOI: 10.1016/j.semcdb.2018.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stem cell fate depends on surrounding microenvironment, the so called niche. For this reason, understanding stem cell niche is one of the most challenging target in cell biology field and need to be unraveled with in vivo studies. Planarians offer this unique opportunity, as their stem cells, the neoblasts, are abundant, highly characterized and genetically modifiable by RNA interference in alive animals. However, despite impressive advances have been done in the understanding planarian stem cells and regeneration, only a few information is available in defining signals from differentiated tissues, which affect neoblast stemness and fate. Here, we review on molecular factors that have been found activated in differentiated tissues and directly or indirectly affect neoblast behavior, and we suggest future directions for unravelling this challenge in understanding planarian stem cells.
Collapse
Affiliation(s)
- Leonardo Rossi
- Departement of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Via Volta 4 Pisa, Italy
| | - Alessandra Salvetti
- Departement of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Via Volta 4 Pisa, Italy.
| |
Collapse
|
26
|
Enhanced cartilage repair in 'healer' mice-New leads in the search for better clinical options for cartilage repair. Semin Cell Dev Biol 2016; 62:78-85. [PMID: 27130635 DOI: 10.1016/j.semcdb.2016.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Adult articular cartilage has a poor capacity to undergo intrinsic repair. Current strategies for the repair of large cartilage defects are generally unsatisfactory because the restored cartilage does not have the same resistance to biomechanical loading as authentic articular cartilage and degrades over time. Recently, an exciting new research direction, focused on intrinsic cartilage regeneration rather than fibrous repair by external means, has emerged. This review explores the new findings in this rapidly moving field as they relate to the clinical goal of restoration of structurally robust, stable and non-fibrous articular cartilage following injury.
Collapse
|
27
|
Zhao M, Rotgans B, Wang T, Cummins SF. REGene: a literature-based knowledgebase of animal regeneration that bridge tissue regeneration and cancer. Sci Rep 2016; 6:23167. [PMID: 26975833 PMCID: PMC4791596 DOI: 10.1038/srep23167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Abstract
Regeneration is a common phenomenon across multiple animal phyla. Regeneration-related genes (REGs) are critical for fundamental cellular processes such as proliferation and differentiation. Identification of REGs and elucidating their functions may help to further develop effective treatment strategies in regenerative medicine. So far, REGs have been largely identified by small-scale experimental studies and a comprehensive characterization of the diverse biological processes regulated by REGs is lacking. Therefore, there is an ever-growing need to integrate REGs at the genomics, epigenetics, and transcriptome level to provide a reference list of REGs for regeneration and regenerative medicine research. Towards achieving this, we developed the first literature-based database called REGene (REgeneration Gene database). In the current release, REGene contains 948 human (929 protein-coding and 19 non-coding genes) and 8445 homologous genes curated from gene ontology and extensive literature examination. Additionally, the REGene database provides detailed annotations for each REG, including: gene expression, methylation sites, upstream transcription factors, and protein-protein interactions. An analysis of the collected REGs reveals strong links to a variety of cancers in terms of genetic mutation, protein domains, and cellular pathways. We have prepared a web interface to share these regeneration genes, supported by refined browsing and searching functions at http://REGene.bioinfo-minzhao.org/.
Collapse
Affiliation(s)
- Min Zhao
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Bronwyn Rotgans
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Tianfang Wang
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - S F Cummins
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| |
Collapse
|
28
|
Matias Santos D, Rita AM, Casanellas I, Brito Ova A, Araújo IM, Power D, Tiscornia G. Ear wound regeneration in the African spiny mouse Acomys cahirinus. ACTA ACUST UNITED AC 2016; 3:52-61. [PMID: 27499879 PMCID: PMC4857749 DOI: 10.1002/reg2.50] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 01/09/2023]
Abstract
While regeneration occurs in a number of taxonomic groups across the Metazoa, there are very few reports of regeneration in mammals, which generally respond to wounding with fibrotic scarring rather than regeneration. A recent report described skin shedding, skin regeneration and extensive ear punch closure in two rodent species, Acomys kempi and Acomys percivali. We examined these striking results by testing the capacity for regeneration of a third species, Acomys cahirinus, and found a remarkable capacity to repair full thickness circular punches in the ear pinna. Four‐millimeter‐diameter wounds closed completely in 2 months in 100% of ear punches tested. Histology showed extensive formation of elastic cartilage, adipose tissue, dermis, epidermis and abundant hair follicles in the repaired region. Furthermore, we demonstrated abundant angiogenesis and unequivocal presence of both muscle and nerve fibers in the reconstituted region; in contrast, similar wounds in C57BL/6 mice simply healed the borders of the cut by fibrotic scarring. Our results confirm the regenerative capabilities of Acomys, and suggest this model merits further attention.
Collapse
Affiliation(s)
- Dino Matias Santos
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine University of Algarve 8005-139 Faro Portugal; Center for Biomedical Research, CBMR University of Algarve 8005-139 Faro Portugal
| | - Ana Martins Rita
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine University of Algarve 8005-139 Faro Portugal; Center for Biomedical Research, CBMR University of Algarve 8005-139 Faro Portugal
| | - Ignasi Casanellas
- Center for Biomedical Research, CBMR University of Algarve 8005-139 Faro Portugal
| | - Adélia Brito Ova
- Center for Biomedical Research, CBMR University of Algarve 8005-139 Faro Portugal
| | - Inês Maria Araújo
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine University of Algarve 8005-139 Faro Portugal; Center for Biomedical Research, CBMR University of Algarve 8005-139 Faro Portugal
| | - Deborah Power
- Centro de Ciências do Mar (CCMAR) University of Algarve 8005-139 Faro Portugal
| | - Gustavo Tiscornia
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine University of Algarve 8005-139 Faro Portugal; Center for Biomedical Research, CBMR University of Algarve 8005-139 Faro Portugal
| |
Collapse
|
29
|
Zondag LE, Rutherford K, Gemmell NJ, Wilson MJ. Uncovering the pathways underlying whole body regeneration in a chordate model, Botrylloides leachi using de novo transcriptome analysis. BMC Genomics 2016; 17:114. [PMID: 26879048 PMCID: PMC4755014 DOI: 10.1186/s12864-016-2435-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/05/2016] [Indexed: 01/16/2023] Open
Abstract
Background Regenerative capacity differs greatly between animals. In vertebrates regenerative abilities are highly limited and tissue or organ specific. However the closest related chordate to the vertebrate clade, Botrylloides leachi, can undergo whole body regeneration (WBR). Therefore, research on WBR in B. leachi has focused on pathways known to be important for regeneration in vertebrates. To obtain a comprehensive vision of this unique process we have carried out the first de novo transcriptome sequencing for multiple stages of WBR occurring in B. leachi. The identified changes in gene expression during B. leachi WBR offer novel insights into this remarkable ability to regenerate. Results The transcriptome of B. leachi tissue undergoing WBR were analysed using differential gene expression, gene ontology and pathway analyses. We observed up-regulation in the expression of genes involved in wound healing and known developmental pathways including WNT, TGF-β and Notch, during the earliest stages of WBR. Later in WBR, the expression patterns in several pathways required for protein synthesis, biogenesis and the organisation of cellular components were up-regulated. Conclusions While the genes expressed early on are characteristic of a necessary wound healing response to an otherwise lethal injury, the subsequent vast increase in protein synthesis conceivably sustains the reestablishment of the tissue complexity and body axis polarity within the regenerating zooid. We have, for the first time, provided a global overview of the genes and their corresponding pathways that are modulated during WBR in B. leachi. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2435-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lisa E Zondag
- Department of Anatomy, Otago School of Medical Sciences, Developmental Biology and Genomics Laboratory, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| | - Kim Rutherford
- Department of Anatomy, Centre for Reproduction and Genomics and Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand.
| | - Neil J Gemmell
- Department of Anatomy, Centre for Reproduction and Genomics and Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand.
| | - Megan J Wilson
- Department of Anatomy, Otago School of Medical Sciences, Developmental Biology and Genomics Laboratory, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
30
|
Harris RE, Setiawan L, Saul J, Hariharan IK. Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs. eLife 2016; 5. [PMID: 26840050 PMCID: PMC4786413 DOI: 10.7554/elife.11588] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/02/2016] [Indexed: 12/16/2022] Open
Abstract
Many organisms lose the capacity to regenerate damaged tissues as they mature. Damaged Drosophila imaginal discs regenerate efficiently early in the third larval instar (L3) but progressively lose this ability. This correlates with reduced damage-responsive expression of multiple genes, including the WNT genes wingless (wg) and Wnt6. We demonstrate that damage-responsive expression of both genes requires a bipartite enhancer whose activity declines during L3. Within this enhancer, a damage-responsive module stays active throughout L3, while an adjacent silencing element nucleates increasing levels of epigenetic silencing restricted to this enhancer. Cas9-mediated deletion of the silencing element alleviates WNT repression, but is, in itself, insufficient to promote regeneration. However, directing Myc expression to the blastema overcomes repression of multiple genes, including wg, and restores cellular responses necessary for regeneration. Localized epigenetic silencing of damage-responsive enhancers can therefore restrict regenerative capacity in maturing organisms without compromising gene functions regulated by developmental signals.
Collapse
Affiliation(s)
- Robin E Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Linda Setiawan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Josh Saul
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
31
|
Sprecher SG, Bernardo-Garcia FJ, van Giesen L, Hartenstein V, Reichert H, Neves R, Bailly X, Martinez P, Brauchle M. Functional brain regeneration in the acoel worm Symsagittifera roscoffensis. Biol Open 2015; 4:1688-95. [PMID: 26581588 PMCID: PMC4736034 DOI: 10.1242/bio.014266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability of some animals to regrow their head and brain after decapitation provides a striking example of the regenerative capacity within the animal kingdom. The acoel worm Symsagittifera roscoffensis can regrow its head, brain and sensory head organs within only a few weeks after decapitation. How rapidly and to what degree it also reacquires its functionality to control behavior however remains unknown. We provide here a neuroanatomical map of the brain neuropils of the adult S. roscoffensis and show that after decapitation a normal neuroanatomical organization of the brain is restored in the majority of animals. By testing different behaviors we further show that functionality of both sensory perception and the underlying brain architecture are restored within weeks after decapitation. Interestingly not all behaviors are restored at the same speed and to the same extent. While we find that phototaxis recovered rapidly, geotaxis is not restored within 7 weeks. Our findings show that regeneration of the head, sensory organs and brain result in the restoration of directed navigation behavior, suggesting a tight coordination in the regeneration of certain sensory organs with that of their underlying neural circuits. Thus, at least in S. roscoffensis, the regenerative capacity of different sensory modalities follows distinct paths. Summary: Brain and head regeneration in the acoel Symsagittifera roscoffensis is coordinated with restoration of directed navigation behavior, suggesting that the regenerative capacity of different sensory modalities follows distinct paths.
Collapse
Affiliation(s)
- Simon G Sprecher
- Institute of Developmental and Cell Biology, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - F Javier Bernardo-Garcia
- Institute of Developmental and Cell Biology, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Lena van Giesen
- Institute of Developmental and Cell Biology, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 621 Charles E. Young Drive, East Boyer Hall 559, Los Angeles, CA 90095-1606, USA
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | - Ricardo Neves
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 621 Charles E. Young Drive, East Boyer Hall 559, Los Angeles, CA 90095-1606, USA
| | - Xavier Bailly
- UPMC-CNRS, FR2424, Station Biologique de Roscoff, Roscoff 29680, France
| | - Pedro Martinez
- Departament de Genètica, Universitat de Barcelona, A v. Diagonal, 643, Barcelona, Catalonia 08028, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, Barcelona, Catalonia 23 08010, Spain
| | - Michael Brauchle
- Institute of Developmental and Cell Biology, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| |
Collapse
|
32
|
Pirotte N, Leynen N, Artois T, Smeets K. Do you have the nerves to regenerate? The importance of neural signalling in the regeneration process. Dev Biol 2015; 409:4-15. [PMID: 26586202 DOI: 10.1016/j.ydbio.2015.09.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/26/2015] [Accepted: 09/07/2015] [Indexed: 02/06/2023]
Abstract
The importance of nerve-derived signalling for correct regeneration has been the topic of research for more than a hundred years, but we are just beginning to identify the underlying molecular pathways of this process. Within the current review, we attempt to provide an extensive overview of the neural influences during early and late phases of both vertebrate and invertebrate regeneration. In general, denervation impairs limb regeneration, but the presence of nerves is not essential for the regeneration of aneurogenic extremities. This observation led to the "neurotrophic factor(s) hypothesis", which states that certain trophic factors produced by the nerves are necessary for proper regeneration. Possible neuron-derived factors which regulate regeneration as well as the denervation-affected processes are discussed.
Collapse
Affiliation(s)
- Nicky Pirotte
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, BE 3590 Diepenbeek, Belgium
| | - Nathalie Leynen
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, BE 3590 Diepenbeek, Belgium
| | - Tom Artois
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, BE 3590 Diepenbeek, Belgium
| | - Karen Smeets
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, BE 3590 Diepenbeek, Belgium.
| |
Collapse
|