1
|
Wang M, Chen H, Luo L, Huang Y, Duan S, Yuan H, Tang R, Liu C, He G. Forensic investigative genetic genealogy: expanding pedigree tracing and genetic inquiry in the genomic era. J Genet Genomics 2025; 52:460-472. [PMID: 38969261 DOI: 10.1016/j.jgg.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Genetic genealogy provides crucial insights into the complex biological relationships within contemporary and ancient human populations by analyzing shared alleles and chromosomal segments that are identical by descent to understand kinship, migration patterns, and population dynamics. Within forensic science, forensic investigative genetic genealogy (FIGG) has gained prominence by leveraging next-generation sequencing technologies and population-specific genomic resources, opening useful investigative avenues. In this review, we synthesize current knowledge, underscore recent advancements, and discuss the growing role of FIGG in forensic genomics. FIGG has been pivotal in revitalizing dormant inquiries and offering genetic leads in numerous cold cases. Its effectiveness relies on the extensive single-nucleotide polymorphism profiles contributed by individuals from diverse populations to specialized genomic databases. Advances in computational genomics and the growth of human genomic databases have spurred a profound shift in the application of genetic genealogy across forensics, anthropology, and ancient DNA studies. As the field progresses, FIGG is evolving from a nascent practice into a more sophisticated and specialized discipline, shaping the future of forensic investigations.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| | - Hongyu Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
2
|
Yu Y, Yang X, Liu D, Du P, Meng H, Huang Z, Xiong J, Ding Y, Ren X, Allen E, Wang H, Han S, Jin L, Wang CC, Wen S. Ancient genomic analysis of a Chinese hereditary elite from the Northern and Southern Dynasties. J Genet Genomics 2025; 52:473-482. [PMID: 39009302 DOI: 10.1016/j.jgg.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
China's Northern and Southern Dynasties period (3rd-6th centuries AD) marked a significant era of ethnic integration in northern China. However, previous ancient DNA studies have primarily focused on northern ethnic groups, with limited research on the genetic formation of the hereditary elite family, especially considering their abundant archaeological record and clear material identity. In this study, we obtain the ancient genome of a hereditary elite family, Gao Bin (, 503 AD-572 AD), at 0.6473-fold coverage with 475,132 single-nucleotide polymorphisms (SNPs) on the 1240k panel. His mitochondrial haplogroup belongs to Z4 and Y-haplogroup to O1a1a2b-F2444∗. The genetic profile of Gao Bin is most similar to that of the northern Han Chinese. He can be modeled as deriving all his ancestry from Late Neolithic to Iron Age Yellow River farmers without influence from Northeast Asia, Korea, or the Mongolian Plateau. Our study sheds light on the genetic formation of hereditary elite families in the context of the Southern and Northern Dynasties ethnic integration.
Collapse
Affiliation(s)
- Yao Yu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China; Department of History, Fudan University, Shanghai 200433, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China
| | - Daiyun Liu
- Shaanxi Academy of Archaeology, Xi'an, Shaanxi 710054, China
| | - Panxin Du
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Hailiang Meng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zixiao Huang
- Department of History, Fudan University, Shanghai 200433, China
| | - Jianxue Xiong
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Yi Ding
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Xiaoying Ren
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Edward Allen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Hui Wang
- Center for the Belt and Road Archaeology and Ancient Civilizations, Shanghai 200433, China
| | - Sheng Han
- Department of History, Fudan University, Shanghai 200433, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian 361005, China.
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China; Center for the Belt and Road Archaeology and Ancient Civilizations, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Wei X, Zhang M, Min R, Jiang Z, Xue J, Zhu Z, Yuan H, Li X, Zhao D, Cao P, Liu F, Dai Q, Feng X, Yang R, Wu X, Hu C, Ma M, Liu X, Wan Y, Yang F, Zhou R, Kang L, Dong G, Ping W, Wang T, Miao B, Bai F, Zheng Y, Liu Y, Yang MA, Wang W, Bennett EA, Fu Q. Neolithic to Bronze Age human maternal genetic history in Yunnan, China. J Genet Genomics 2025; 52:483-493. [PMID: 39343094 DOI: 10.1016/j.jgg.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Yunnan in southwest China is a geographically and ethnically complex region at the intersection of southern China and Southeast Asia, and a focal point for human migrations. To clarify its maternal genetic history, we generated 152 complete mitogenomes from 17 Yunnan archaeological sites. Our results reveal distinct genetic histories segregated by geographical regions. Maternal lineages of ancient populations from northwestern and northern Yunnan exhibit closer affinities with past and present-day populations from northern East Asia and Xizang, providing important genetic evidence for the migration and interaction of populations along the Tibetan-Yi corridor since the Neolithic. Between 5500 and 1800 years ago, central Yunnan populations maintained their internal genetic relationships, including a 7000-year-old basal lineage of the rare and widely dispersed haplogroup M61. At the Xingyi site, changes in mitochondrial DNA haplogroups occurred between the Late Neolithic and Bronze Age, with haplogroups shifting from those predominant in the Yellow River region to those predominant in coastal southern China. These results highlight the high diversity of Yunnan populations during the Neolithic to Bronze Age.
Collapse
Affiliation(s)
- Xinyu Wei
- China-Central Asia "the Belt and Road" Joint Laboratory on Human and Environment Research, Key Laboratory of Cultural Heritage Research and Conservation, School of Cultural Heritage, Northwest University, Xi'an, Shaanxi 710127, China; Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Ming Zhang
- China-Central Asia "the Belt and Road" Joint Laboratory on Human and Environment Research, Key Laboratory of Cultural Heritage Research and Conservation, School of Cultural Heritage, Northwest University, Xi'an, Shaanxi 710127, China; Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Rui Min
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Zhilong Jiang
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Jiayang Xue
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghua Zhu
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Haibing Yuan
- Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaorui Li
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Dongyue Zhao
- China-Central Asia "the Belt and Road" Joint Laboratory on Human and Environment Research, Key Laboratory of Cultural Heritage Research and Conservation, School of Cultural Heritage, Northwest University, Xi'an, Shaanxi 710127, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Changcheng Hu
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Minmin Ma
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xu Liu
- Yunnan Museum, Kunming, Yunnan 650206, China
| | - Yang Wan
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Fan Yang
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Ranchao Zhou
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Lihong Kang
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Miao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Fan Bai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Zheng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yuxiao Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Sino-Danish Center, University of the Chinese Academy of Sciences, Beijing 100049, China; College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Melinda A Yang
- Department of Biology, University of Richmond, Richmond, VA 23173, USA.
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Science and Technology Archaeology, National Centre for Archaeology, Beijing 100013, China.
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Wang M, Sun Q, Feng Y, Wei LH, Liu K, Luo L, Huang Y, Zhou K, Yuan H, Lv H, Lu Y, Cheng J, Wen S, Wang CC, Tang R, Bu F, Liu C, Yuan H, Wang Z, He G. Paleolithic divergence and multiple Neolithic expansions of ancestral nomadic emperor-related paternal lineages. J Genet Genomics 2025; 52:502-512. [PMID: 39608672 DOI: 10.1016/j.jgg.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
The reconstruction of demographic history using ancient and modern genomic resources reveals extensive interactions and admixture between ancient nomadic pastoralists and the social organizations of the Chinese Central Plain. However, the extent to which Y-chromosome genetic legacies from nomadic emperor-related ancestral lineages influence the Chinese paternal gene pool remains unclear. Here, we genotype 2717 ethnolinguistically diverse samples belonging to C2a lineages, perform whole-genome sequencing on 997 representative samples, and integrate these data with ancient genomic sequences. We reconstruct the evolutionary histories of Northern Zhou-, Qing emperor-, and pastoralist-related lineages to assess their genetic impact on modern Chinese populations. This reassembled fine-scale Y-chromosome phylogeny identifies deep divergence and five Neolithic expansion events contributing differently to the formation of northern Chinese populations. Phylogeographic modeling indicates that the nomadic empires of the Northern Zhou and Qing dynasties genetically originated from the Mongolian Plateau. Phylogenetic topology and shared haplotype patterns show that three upstream ancestors of Northern Zhou (C2a1a1b1a2a1b-FGC28857), Donghu tribe (C2a1a1b1-F1756), and Qing (C2a1a3a2-F10283) emperor-related lineages expanded during the middle Neolithic, contributing significantly to genetic flow between ancient northeastern Asians and modern East Asians. Notably, this study reveals limited direct contributions of Emperor Wu of Northern Zhou's lineages to modern East Asians.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510230, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China.
| | - Qiuxia Sun
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yuhang Feng
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Lan-Hai Wei
- Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot, Inner Mongolia 010022, China
| | - Kaijun Liu
- Institute of 23Mofang, Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Lintao Luo
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yuguo Huang
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Kun Zhou
- Institute of 23Mofang, Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Haibing Yuan
- Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Hongliang Lv
- Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Yu Lu
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Jing Cheng
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Shaoqing Wen
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Fengxiao Bu
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510230, China.
| | - Huijun Yuan
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| | - Zhiyong Wang
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China.
| | - Guanglin He
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510230, China.
| |
Collapse
|
5
|
Bai F, Liu Y, Wangdue S, Wang T, He W, Xi L, Tsho Y, Tsering T, Cao P, Dai Q, Liu F, Feng X, Zhang M, Ran J, Ping W, Payon D, Mao X, Tong Y, Tsring T, Chen Z, Fu Q. Ancient genomes revealed the complex human interactions of the ancient western Tibetans. Curr Biol 2024; 34:2594-2605.e7. [PMID: 38781957 DOI: 10.1016/j.cub.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The western Tibetan Plateau is the crossroad between the Tibetan Plateau, Central Asia, and South Asia, and it is a potential human migration pathway connecting these regions. However, the population history of the western Tibetan Plateau remains largely unexplored due to the lack of ancient genomes covering a long-time interval from this area. Here, we reported genome-wide data of 65 individuals dated to 3,500-300 years before present (BP) in the Ngari prefecture. The ancient western Tibetan Plateau populations share the majority of their genetic components with the southern Tibetan Plateau populations and have maintained genetic continuity since 3,500 BP while maintaining interactions with populations within and outside the Tibetan Plateau. Within the Tibetan Plateau, the ancient western Tibetan Plateau populations were influenced by the additional expansion from the south to the southwest plateau before 1,800 BP. Outside the Tibetan Plateau, the western Tibetan Plateau populations interacted with both South and Central Asian populations at least 2,000 years ago, and the South Asian-related genetic influence, despite being very limited, was from the Indus Valley Civilization (IVC) migrants in Central Asia instead of the IVC populations from the Indus Valley. In light of the new genetic data, our study revealed the complex population interconnections across and within the Tibetan Plateau.
Collapse
Affiliation(s)
- Fan Bai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shargan Wangdue
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei He
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Lin Xi
- Shaanxi Academy of Archaeology, Xi'an 710054, China
| | - Yang Tsho
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tashi Tsering
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Jingkun Ran
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Danzin Payon
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Yan Tong
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tinley Tsring
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Zehui Chen
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Sun Y, Wang M, Sun Q, Liu Y, Duan S, Wang Z, Zhou Y, Zhong J, Huang Y, Huang X, Yang Q, Li X, Su H, Cai Y, Jiang X, Chen J, Yan J, Nie S, Hu L, Yang J, Tang R, Wang CC, Liu C, Deng X, Yun L, He G. Distinguished biological adaptation architecture aggravated population differentiation of Tibeto-Burman-speaking people. J Genet Genomics 2024; 51:517-530. [PMID: 37827489 DOI: 10.1016/j.jgg.2023.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Tibeto-Burman (TB) people have endeavored to adapt to the hypoxic, cold, and high-UV high-altitude environments in the Tibetan Plateau and complex disease exposures in lowland rainforests since the late Paleolithic period. However, the full landscape of genetic history and biological adaptation of geographically diverse TB-speaking people, as well as their interaction mechanism, remain unknown. Here, we generate a whole-genome meta-database of 500 individuals from 39 TB-speaking populations and present a comprehensive landscape of genetic diversity, admixture history, and differentiated adaptative features of geographically different TB-speaking people. We identify genetic differentiation related to geography and language among TB-speaking people, consistent with their differentiated admixture process with incoming or indigenous ancestral source populations. A robust genetic connection between the Tibetan-Yi corridor and the ancient Yellow River people supports their Northern China origin hypothesis. We finally report substructure-related differentiated biological adaptative signatures between highland Tibetans and Loloish speakers. Adaptative signatures associated with the physical pigmentation (EDAR and SLC24A5) and metabolism (ALDH9A1) are identified in Loloish people, which differed from the high-altitude adaptative genetic architecture in Tibetan. TB-related genomic resources provide new insights into the genetic basis of biological adaptation and better reference for the anthropologically informed sampling design in biomedical and genomic cohort research.
Collapse
Affiliation(s)
- Yuntao Sun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangzhou Forensic Science Institute, Guangzhou, Guangdong 510055, China.
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yunyu Zhou
- School of Stomatology, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Jun Zhong
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China
| | - Xinyu Huang
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingxin Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Haoran Su
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Yan Cai
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China; Department of Medical Laboratory, North Sichuan Medical College, Nanchong, Sichuan 637007, China
| | - Xiucheng Jiang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Junbao Yang
- School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Chuan-Chao Wang
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510230, China
| | - Xiaohui Deng
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Libing Yun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| |
Collapse
|
7
|
Peng MS, Zhang YP. Sex-biased adaptation shapes uniparental gene pools in Tibetans. SCIENCE CHINA. LIFE SCIENCES 2024; 67:611-613. [PMID: 38324127 DOI: 10.1007/s11427-023-2506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/08/2023] [Indexed: 02/08/2024]
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
8
|
Kumar L, Rajpal R, Ahlawat B, Sehrawat JS, Spalzin S, Fonia RS, Thangaraj K, Rai N. The maternal genetic origin and diversity of the extant populations of the Ladakh region in India. Mitochondrion 2024; 75:101828. [PMID: 38128747 DOI: 10.1016/j.mito.2023.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Ladakh lies at a strategic location between the Indus River valley and the Hindu Khush Mountains, which makes the "Land of high passes" one of the major routes of movement. Through the years the region has faced multi-layered cultural movements, genetic assimilation and demographic changes. The initial settlement in the years goes back to the early Neolithic age and still continues despite its harsh, unhospitable and cold climate. Previous studies mostly covered the patrilineal markers of the region and an in-depth study lacked to represent the matrilineal ancestry and possible genetic inflow in the region. Hence, our current study first time generated complete mitogenomes of 108 unrelated individuals from Ladakh belonging to three population groups namely, Changpa (n = 38), Brokpa (n = 32) and Monpa (n = 38). In the in-depth analysis, we found that the mitogenome of the three Ladakhi groups are highly diverse in terms of maternal haplogroup distribution carrying lineages specific to East Asia (M9a), Tibbet (A21) and South Asia (M3, M30, U2). In our analysis we found that Changpa and Monpa probably have shared maternal ancestry compared to Brokpa, which is very distinct and also later suffered possible historical Bottleneck. Bayesian evolutionary and Network analysis indicates more ancient maternal lineage of Changpa and Monpa in terms of M9a haplotypes, but they also share some genetic history with Tibeto-Burman speakers in past. These findings conclusively indicate possible matrilineal genetic inflow in Ladakh from three directions, primarily from East Asia or South East Asia during post-glacial, West Eurasia and also from South Asia.
Collapse
Affiliation(s)
- Lomous Kumar
- Birbal Sahni Institute of Palaeosciences, Lucknow 226007, India
| | - Richa Rajpal
- Birbal Sahni Institute of Palaeosciences, Lucknow 226007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavna Ahlawat
- Birbal Sahni Institute of Palaeosciences, Lucknow 226007, India; Department of Anthropology, Panjab University, Chandigarh 160014, India
| | | | - Sonam Spalzin
- Archaeological Survey of India, Mini Circle Leh, UT Ladakh, 180004, India
| | - Ramnath Singh Fonia
- Archaeological Survey of India, 144/1Kalidas Road, Dehradun, Uttrakhand, 248001, India
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | - Niraj Rai
- Birbal Sahni Institute of Palaeosciences, Lucknow 226007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Li X, Zhang X, Yu T, Ye L, Huang T, Chen Y, Liu S, Wen Y. Whole mitochondrial genome analysis in highland Tibetans: further matrilineal genetic structure exploration. Front Genet 2023; 14:1221388. [PMID: 38034496 PMCID: PMC10682103 DOI: 10.3389/fgene.2023.1221388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/21/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: The Qinghai-Tibet Plateau is one of the last terrestrial environments conquered by modern humans. Tibetans are among the few high-altitude settlers in the world, and understanding the genetic profile of Tibetans plays a pivotal role in studies of anthropology, genetics, and archaeology. Methods: In this study, we investigated the maternal genetic landscape of Tibetans based on the whole mitochondrial genome collected from 145 unrelated native Lhasa Tibetans. Molecular diversity indices, haplotype diversity (HD), Tajima's D and Fu's Fs were calculated and the Bayesian Skyline Plot was obtained to determining the genetic profile and population fluctuation of Lhasa Tibetans. To further explore the genetic structure of Lhasa Tibetans, we collected 107 East Asian reference populations to perform principal component analysis (PCA), multidimensional scaling (MDS), calculated Fst values and constructed phylogenetic tree. Results: The maternal genetic landscape of Tibetans showed obvious East Asian characteristics, M9a (28.28%), R (11.03%), F1 (12.41%), D4 (9.66%), N (6.21%), and M62 (4.14%) were the dominant haplogroups. The results of PCA, MDS, Fst and phylogenetic tree were consistent: Lhasa Tibetans clustered with other highland Tibeto-Burman speakers, there was obvious genetic homogeneity of Tibetans in Xizang, and genetic similarity between Tibetans and northern Han people and geographically adjacent populations was found. In addition, specific maternal lineages of Tibetans also be determined in this study. Discussion: In general, this study further shed light on long-time matrilineal continuity on the Tibetan Plateau and the genetic connection between Tibetans and millet famers in the Yellow River Basin, and further revealed that multiple waves of population interaction and admixture during different historical periods between lowland and highland populations shaped the maternal genetic profile of Tibetans.
Collapse
Affiliation(s)
- Xin Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Xianpeng Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ting Yu
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Liping Ye
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, China
| | - Ting Huang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ying Chen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Shuhan Liu
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Youfeng Wen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|