1
|
Hoogstra SJ, Hendricks KN, McMullin DR, Renaud JB, Bora J, Sumarah MW, Garnham CP. Enzymatic Hydrolysis of Resorcylic Acid Lactones by an Aeromicrobium sp. Toxins (Basel) 2024; 16:404. [PMID: 39330862 PMCID: PMC11435890 DOI: 10.3390/toxins16090404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Zearalenone and radicicol are resorcylic acid lactones produced by numerous plant pathogenic fungi. Zearalenone is a non-steroidal estrogen mimic that can cause serious reproductive issues in livestock that consume contaminated feed. Radicicol is a potent inhibitor of the molecular chaperone Hsp90, which, in plants, has an important role in coordinating the host's immune response during infection. Here, we describe the identification and characterization of a soil-borne strain of the Gram-positive bacterium Aeromicrobium sp. capable of hydrolyzing the macrolide ring of resorcylic acid lactones, including zearalenone and radicicol. Proteomic analysis of biochemically enriched fractions from the isolated and cultured bacterium identified an α/β-hydrolase responsible for this activity. A recombinantly expressed and purified form of the hydrolase (termed RALH) was active against both zearalenone and radicicol. Interpretation of high-resolution mass spectrometry and NMR data confirmed the structures of the enzymatic products as the previously reported non-toxic metabolite hydrolyzed zearalenone and hydrolyzed radicicol. Hydrolyzed radicicol was demonstrated to no longer inhibit the ATPase activity of the Saccharomyces cerevisiae Hsp90 homolog in vitro. Enzymatic degradation of resorcylic acid lactones will enable insight into their biological functions.
Collapse
Affiliation(s)
- Shawn J. Hoogstra
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (S.J.H.); (J.B.R.)
| | - Kyle N. Hendricks
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (S.J.H.); (J.B.R.)
- Department of Biology, Western University, London, ON N6A 3K7, Canada
| | - David R. McMullin
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Justin B. Renaud
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (S.J.H.); (J.B.R.)
| | - Juhi Bora
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (S.J.H.); (J.B.R.)
| | - Mark W. Sumarah
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (S.J.H.); (J.B.R.)
| | - Christopher P. Garnham
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (S.J.H.); (J.B.R.)
| |
Collapse
|
2
|
Liu C, Li H, Dong J, He X, Zhang L, Qiu B. Structure and function of rhizosphere soil microbial communities associated with root rot of Knoxia roxburghii. Front Microbiol 2024; 15:1424633. [PMID: 39091303 PMCID: PMC11291326 DOI: 10.3389/fmicb.2024.1424633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The microbial communities in rhizosphere soil play important roles in plant health and crop productivity. However, the microbial community structure of rhizosphere soil still remains unclear. In this study, the composition, diversity and function of the microbial communities in the rhizosphere soil of healthy and diseased plants were compared using Illumina MiSeq high-throughput sequencing. The Sobs (richness) and Shannon (diversity) indices of the soil microbial communities were higher in the rhizospheres of 2- and 3-year-old susceptible plants than in those of the healthy plants. With the increase in planting time, the numbers of fungi tended to decrease, while those of the bacteria tended to increase. Fungal diversity could be used as a biological indicator to measure the health of Knoxia roxburghii. The microbial composition and differential analyses revealed that the rhizosphere soil infested with fungi had a higher relative abundance at the phylum level in Ascomycota and Basidiomycota, while the bacteria had a higher relative abundance of Chloroflexi and a lower relative abundance of Actinobacteriota. At the genus level, the rhizosphere soil infested with fungi had relatively more abundant unclassified_f__Didymellaceae and Solicoccozyma and relatively less abundant Saitozyma and Penicillium. The bacterial genus norank_f__Gemmatimonadaceae was the most abundant, while Arthrobacter was less abundant. In addition, the abundance of Fusarium in the fungal community varied (p = 0.001). It tended to increase in parallel with the planting years. Therefore, it was hypothesized that the change in the community composition of Fusarium may be the primary reason for the occurrence of root rot in K. roxburghii, and the change in the abundance of Fusarium OTU1450 may be an indication of the occurrence of root rot in this species. The community function and prediction analyses showed that the pathogenic fungi increased with the increase in planting years. In general, soil fungi can be roughly divided into three types, including pathotrophs, symbiotrophs, and saprotrophs. An analysis of the differences in the prediction of different rhizosphere functions showed that D and L were significantly different in the COG enrichment pathway of the K. roxburghii rhizosphere bacteria (p < 0.05). The soil physical and chemical properties, including the pH, AK, total potassium (TK), and catalase (S_CAT), had the most significant effect on the soil fungal community, and most of the soil physical and chemical properties significantly correlated with the bacterial community. This study demonstrated that the occurrence of root rot had an important effect on the diversity, structure and composition of microbial communities. In addition, the results will provide a theoretical basis to prevent and control root rot in K. roxburghii.
Collapse
Affiliation(s)
- Chunju Liu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Heng Li
- R&D Center of Yunnan Yuntianhua Co., Ltd., Kunming, Yunnan, China
| | - Jiahong Dong
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiahong He
- School of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming, Yunnan, China
| | - Lei Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bin Qiu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
3
|
Liu C, Zhang L, Li H, He X, Dong J, Qiu B. Assessing the biodiversity of rhizosphere and endophytic fungi in Knoxia valerianoides under continuous cropping conditions. BMC Microbiol 2024; 24:195. [PMID: 38849736 PMCID: PMC11157913 DOI: 10.1186/s12866-024-03357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Rhizosphere and endophytic fungi play important roles in plant health and crop productivity. However, their community dynamics during the continuous cropping of Knoxia valerianoides have rarely been reported. K. valerianoides is a perennial herb of the family Rubiaceae and has been used in herbal medicines for ages. Here, we used high-throughput sequencing technology Illumina MiSeq to study the structural and functional dynamics of the rhizosphere and endophytic fungi of K. valerianoides. RESULTS The findings indicate that continuous planting has led to an increase in the richness and diversity of rhizosphere fungi, while concomitantly resulting in a decrease in the richness and diversity of root fungi. The diversity of endophytic fungal communities in roots was lower than that of the rhizosphere fungi. Ascomycota and Basidiomycota were the dominant phyla detected during the continuous cropping of K. valerianoides. In addition, we found that root rot directly affected the structure and diversity of fungal communities in the rhizosphere and the roots of K. valerianoides. Consequently, both the rhizosphere and endophyte fungal communities of root rot-infected plants showed higher richness than the healthy plants. The relative abundance of Fusarium in two and three years old root rot-infected plants was significantly higher than the control, indicating that continuous planting negatively affected the health of K. valerianoides plants. Decision Curve Analysis showed that soil pH, organic matter (OM), available K, total K, soil sucrase (S_SC), soil catalase (S_CAT), and soil cellulase (S_CL) were significantly related (p < 0.05) to the fungal community dynamics. CONCLUSIONS The diversity of fungal species in the rhizosphere and root of K. valerianoides was reported for the first time. The fungal diversity of rhizosphere soil was higher than that of root endophytic fungi. The fungal diversity of root rot plants was higher than that of healthy plants. Soil pH, OM, available K, total K, S_CAT, S_SC, and S_CL were significantly related to the fungal diversity. The occurrence of root rot had an effect on the community structure and diversity of rhizosphere and root endophytic fungi.
Collapse
Affiliation(s)
- Chunju Liu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Lei Zhang
- Institute of Medicinal Plant Cultivation, School of Chinese Materia Medica, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Heng Li
- R&D center of Yunnan Yuntianhua Co., Ltd, Kunming, 650228, China
| | - Xiahong He
- Southwest Forestry University, Kunming, 650244, China.
| | - Jiahong Dong
- Institute of Medicinal Plant Cultivation, School of Chinese Materia Medica, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Bin Qiu
- Institute of Medicinal Plant Cultivation, School of Chinese Materia Medica, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
4
|
Bischoff Nunes I, Goodwin PH. Interaction of Ginseng with Ilyonectria Root Rot Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:2152. [PMID: 36015455 PMCID: PMC9416147 DOI: 10.3390/plants11162152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
The Ilyonectria radicicola species complex (A.A. Hildebr.) A. Cabral and Crous 2011 contains species of soilborne necrotrophic plant pathogens. The most aggressive to ginseng roots is I. mors-panacis, whereas I. robusta, I. crassa, I. panacis and I. radicicola are less aggressive. Infected ginseng roots show orange-red to black-brown lesions that can expand into a severe root rot, known as disappearing root rot, where only epidermal root tissue remains. Leaves become red-brown with wilting, and stems can have vascular discoloration with black-brown lesions at the base. Less aggressive Ilyonectria species trigger jasmonic acid (JA)-related defenses inducing host ginsenosides, pathogenesis-related (PR) proteins, wound periderm, and cell wall thickening. In contrast, I. mors-panacis triggers reactive oxygen species (ROS) and salicylic acid (SA) production but suppresses JA-related defenses and ginsenoside accumulation. It is also able to suppress SA-related PR protein production. Virulence factors include potential effectors that may suppress PAMP (Pathogen Associated Molecular Patterns) triggered immunity (PTI), polyphenoloxidases, Hsp90 inhibitors, siderophores and cell-wall-degrading enzymes, such as pectinases. Overall, I. mors-panacis appears to be more aggressive because it can suppress JA and SA-related PTI allowing for more extensive colonization of ginseng roots. While many possible mechanisms of host resistance and pathogen virulence mechanisms have been examined, there is a need for using genetic approaches, such as RNAi silencing of genes of Panax or Ilyonectria, to determine their importance in the interaction.
Collapse
Affiliation(s)
- Isadora Bischoff Nunes
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
5
|
Yang S, Zhang X, Zhang X, Bi Y, Gao W. A bZIP transcription factor, PqbZIP1, is involved in the plant defense response of American ginseng. PeerJ 2022; 10:e12939. [PMID: 35282281 PMCID: PMC8916028 DOI: 10.7717/peerj.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
American ginseng (Panax quinquefolius L.) is a perennial medicinal plant that has a long usage history in China. However, root rot, which is mainly caused by Fusarium solani can severely reduce the yield and quality of American ginseng, but no disease-resistant variety of American ginseng exists, and the resistance against this disease is not yet well understood. Thus, it is very urgent to analyze the interaction mechanism regulating the interactions between American ginseng and F. solani to mine disease resistance genes. Using transcriptome data and quantitative polymerase chain reaction (qPCR), we screened the transcription factor PqbZIP1 in response to induction by chitin. Yeast self-activation and subcellular localization experiments proved that PqbZIP1 showed transcriptional activity and was localized in the plant nucleus. In addition, qPCR showed that the highest relative expression level was in the roots, wherein chitin and F. solani inhibited and activated the expression of PqbZIP1, respectively, in American ginseng. Additionally, PqbZIP1 significantly inhibited the growth of the Pseudomonas syringae pv. tomato D36E strain in Nicotiana benthamiana, where expressing PqbZIP1 in N. benthamiana increased the jasmonic acid, salicylic acid, and abscisic acid content. Furthermore, PqbZIP1 expression was continually increased upon inoculation with F. solani. Hence, this study revealed that the PqbZIP1 transcription factor might mediate multiple hormonal signaling pathway to modulate root rot disease resistance in American ginseng, and provided important information to breed disease-resistant American ginseng.
Collapse
Affiliation(s)
- Shanshan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoxiao Zhang
- College of Agriculture, Guangxi University, Nanning, China,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ximei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanmeng Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
DesRochers N, Walsh JP, Renaud JB, Seifert KA, Yeung KKC, Sumarah MW. Metabolomic Profiling of Fungal Pathogens Responsible for Root Rot in American Ginseng. Metabolites 2020; 10:E35. [PMID: 31947697 PMCID: PMC7023087 DOI: 10.3390/metabo10010035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 01/04/2023] Open
Abstract
Ginseng root is an economically valuable crop in Canada at high risk of yield loss caused by the pathogenic fungus Ilyonectria mors-panacis, formerly known as Cylindrocarpon destructans. While this pathogen has been well-characterized from morphological and genetic perspectives, little is known about the secondary metabolites it produces and their role in pathogenicity. We used an untargeted tandem liquid chromatography-mass spectrometry (LC-MS)-based approach paired with global natural products social molecular networking (GNPS) to compare the metabolite profiles of virulent and avirulent Ilyonectria strains. The ethyl acetate extracts of 22 I. mors-panacis strains and closely related species were analyzed by LC-MS/MS. Principal component analysis of LC-MS features resulted in two distinct groups, which corresponded to virulent and avirulent Ilyonectria strains. Virulent strains produced more types of compounds than the avirulent strains. The previously reported I. mors-panacis antifungal compound radicicol was present. Additionally, a number of related resorcyclic acid lactones (RALs) were putatively identified, namely pochonins and several additional derivatives of radicicol. Pochonins have not been previously reported in Ilyonectria spp. and have documented antimicrobial activity. This research contributes to our understanding of I. mors-panacis natural products and its pathogenic relationship with ginseng.
Collapse
Affiliation(s)
- Natasha DesRochers
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada; (N.D.); (J.P.W.); (J.B.R.)
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, ON N6A 3K7, Canada;
| | - Jacob P. Walsh
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada; (N.D.); (J.P.W.); (J.B.R.)
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, ON N6A 3K7, Canada;
| | - Justin B. Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada; (N.D.); (J.P.W.); (J.B.R.)
| | - Keith A. Seifert
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada;
| | - Ken K.-C. Yeung
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, ON N6A 3K7, Canada;
- Department of Biochemistry, University of Western Ontario, 1151 Richmond St., London, ON N6A 3K7, Canada
| | - Mark W. Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada; (N.D.); (J.P.W.); (J.B.R.)
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, ON N6A 3K7, Canada;
| |
Collapse
|