1
|
Soil Microbial Communities and Enzyme Activities after Long-Term Application of Inorganic and Organic Fertilizers at Different Depths of the Soil Profile. SUSTAINABILITY 2019. [DOI: 10.3390/su11123251] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fertilization is a key factor for sustaining productivity in agroecosystems. A long-term experiment in cambisol following periodical application of several types of fertilization has been running at the experimental site since 1954. In this study, we determined the impact of applied inorganic and/or organic fertilizers on the activity of soil enzymes and on the structure of microorganisms at depths of 0–30 cm and 30–60 cm. Single-factor comparison showed that use of inorganic and/or organic fertilizer had an insignificant effect on the activities of soil enzymes (at depths 0–30 cm and 30–60 cm) and also on the structure of microbial communities at both depths studied. Only soil respirations exhibited stimulation by combined fertilization. The results, irrespective of sampling depth (0–60 cm), showed that application of combined organic and inorganic fertilization stimulated the activity of glucosidases and use of inorganic fertilizer inhibited the activity of arylsulphatases. Respirations were stimulated by application of organic fertilizer and combined fertilization. Nevertheless, principal component analyses, which calculate with multidimensional data, revealed differences in samples treated by sole mineral fertilizer compared to other variants, especially in the lower layer. In general, our results indicate that use of combined fertilization may improve biological characteristics in deeper parts of soil profile and possibly increase biological activity in agroecosystems.
Collapse
|
2
|
Tourist Traffic Significantly Affects Microbial Communities of Sandstone Cave Sediments in the Protected Landscape Area “Labské Pískovce” (Czech Republic): Implications for Regulatory Measures. SUSTAINABILITY 2018. [DOI: 10.3390/su10020396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Asemoloye MD, Jonathan SG, Jayeola AA, Ahmad R. Mediational influence of spent mushroom compost on phytoremediation of black-oil hydrocarbon polluted soil and response of Megathyrsus maximus Jacq. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 200:253-262. [PMID: 28582748 DOI: 10.1016/j.jenvman.2017.05.090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 05/28/2017] [Indexed: 05/04/2023]
Abstract
Ability of a plant to develop different adaptive strategies can also determine its capability for effective soil remediation. In this study, influence of spent mushroom compost (SMC) was tested on the phytoremediation of black oil hydrocarbon polluted soil and the response of Megathyrsus maximus (guinea grass). Studies were carried out in microcosm conditions by mixing different concentration of SMC viz., 10, 20, 30 and 40% in a 5 kg of contaminated soil along with control. Seeds of M. maximus was sown in tray for two weeks and allowed to grow for height of 10 cm and transplanted in to the different experimental pots. Soil nutrient, heavy metal and PAH contents were analyzed before and after the experiment. Ecophysiological and anatomical responses due to the contaminants in the soil by M. Maximus were analyzed after 120 days. Phytomass efficiency, potential photosynthesis (Amax) and contents of chlorophylls (a and b) as well as the total chlorophyll along with anatomical evaluations were recorded. Plant alone (control) reduced the soil heavy metal and PAH contents but further improvements were observed in SMC treatments, similar results were also observed as regards to the plant's phytoremediation efficiency (PE), phytomass and potential photosynthetic rates (m mol O2 M-2S-1). The plant's root and shoot anatomical responses were enhanced in treatments compared to control, study infers that the treatment enhances the biostimulation and development of adaptive characteristics for M. maximus survival in contaminated soils and promotes its co-degradation of hydrocarbon. SMC supports remediation and as well enhances the anatomical evaluations, we therefore recommend the use of SMC on response of Megathyrsus maximus Jacq for remediation of petrochemical based phytoremediation.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- Food and Environmental Mycology/Biotechnology Unit, Department of Botany, University of Ibadan, Ibadan, Nigeria; Department of Environmental Sciences, COMSATS Institute of Information Technology, 22060, Abbottabad, Pakistan.
| | - Segun Gbolagade Jonathan
- Food and Environmental Mycology/Biotechnology Unit, Department of Botany, University of Ibadan, Ibadan, Nigeria
| | - Adeniyi A Jayeola
- Plant Anatomy/Biosystematics Unit, Department of Botany, University of Ibadan, Ibadan, Nigeria
| | - Rafiq Ahmad
- Department of Environmental Sciences, COMSATS Institute of Information Technology, 22060, Abbottabad, Pakistan
| |
Collapse
|
4
|
Indication of Importance of Including Soil Microbial Characteristics into Biotope Valuation Method. SUSTAINABILITY 2016. [DOI: 10.3390/su8030253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Wang C, Yu D, Shi W, Jiao K, Wu B, Xu H. Application of spent mushroom (Lentinula edodes) substrate and acclimated sewage sludge on the bioremediation of polycyclic aromatic hydrocarbon polluted soil. RSC Adv 2016. [DOI: 10.1039/c6ra05457a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel technology for remediation and improvement of soil was provided along with a new approach for waste recycling.
Collapse
Affiliation(s)
- Can Wang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education)
- College of Life Sciences
- Sichuan University
- Chengdu
- China
| | - Dong Yu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education)
- College of Life Sciences
- Sichuan University
- Chengdu
- China
| | - Wenjin Shi
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education)
- College of Life Sciences
- Sichuan University
- Chengdu
- China
| | - Kai Jiao
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education)
- College of Life Sciences
- Sichuan University
- Chengdu
- China
| | - Bin Wu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education)
- College of Life Sciences
- Sichuan University
- Chengdu
- China
| | - Heng Xu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education)
- College of Life Sciences
- Sichuan University
- Chengdu
- China
| |
Collapse
|
6
|
García-Delgado C, Yunta F, Eymar E. Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:281-288. [PMID: 26188871 DOI: 10.1016/j.jhazmat.2015.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/23/2015] [Accepted: 07/04/2015] [Indexed: 06/04/2023]
Abstract
This study investigates the effect of three spent Agaricus bisporus substrate (SAS) application methods on bioremediation of soil multi-polluted with Pb and PAH from close to a shooting range with respect natural attenuation (SM). The remediation treatments involve (i) use of sterilized SAS to biostimulate the inherent soil microbiota (SSAS) and two bioaugmentation possibilities (ii) its use without previous treatment to inoculate A. bisporus and inherent microbiota (SAS) or (iii) SAS sterilization and further A. bisporus re-inoculation (Abisp). The efficiency of each bioremediation microcosm was evaluated by: fungal activity, heterotrophic and PAH-degrading bacterial population, PAH removal, Pb mobility and soil eco-toxicity. Biostimulation of the native soil microbiology (SSAS) achieved similar levels of PAH biodegradation as SM and poor soil detoxification. Bioaugmented microcosms produced higher PAH removal and eco-toxicity reduction via different routes. SAS increased the PAH-degrading bacterial population, but lowered fungal activity. Abisp was a good inoculum carrier for A. bisporus exhibiting high levels of ligninolytic activity, the total and PAH-degrading bacteria population increased with incubation time. The three SAS applications produced slight Pb mobilization (<0.3%). SAS sterilization and further A. bisporus re-inoculation (Abisp) proved the best application method to remove PAH, mainly BaP, and detoxify the multi-polluted soil.
Collapse
Affiliation(s)
- Carlos García-Delgado
- Department of Agricultural Chemistry and Food Sciences, University Autónoma of Madrid, 28049 Madrid, Spain.
| | - Felipe Yunta
- Department of Agricultural Chemistry and Food Sciences, University Autónoma of Madrid, 28049 Madrid, Spain.
| | - Enrique Eymar
- Department of Agricultural Chemistry and Food Sciences, University Autónoma of Madrid, 28049 Madrid, Spain.
| |
Collapse
|
7
|
García-Delgado C, D'Annibale A, Pesciaroli L, Yunta F, Crognale S, Petruccioli M, Eymar E. Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 508:20-28. [PMID: 25437949 DOI: 10.1016/j.scitotenv.2014.11.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Different applications of spent Agaricus bisporus substrate (SAS), a widespread agro-industrial waste, were investigated with respect to the remediation of a historically polluted soil with Polycyclic Aromatic Hydrocarbons (PAH). In one treatment, the waste was sterilized (SSAS) prior to its application in order to assess its ability to biostimulate, as an organic amendment, the resident soil microbiota and ensuing contaminant degradation. For the other treatments, two bioaugmentation approaches were investigated; the first involved the use of the waste itself and thus implied the application of A. bisporus and the inherent microbiota of the waste. In the second treatment, SAS was sterilized and inoculated again with the fungus to assess its ability to act as a fungal carrier. All these treatments were compared with natural attenuation in terms of their impact on soil heterotrophic and PAH-degrading bacteria, fungal growth, biodiversity of soil microbiota and ability to affect PAH bioavailability and ensuing degradation and detoxification. Results clearly showed that historically PAH contaminated soil was not amenable to natural attenuation. Conversely, the addition of sterilized spent A. bisporus substrate to the soil stimulated resident soil bacteria with ensuing high removals of 3-ring PAH. Both augmentation treatments were more effective in removing highly condensed PAH, some of which known to possess a significant carcinogenic activity. Regardless of the mode of application, the present results strongly support the adequacy of SAS for environmental remediation purposes and open the way to an attractive recycling option of this waste.
Collapse
Affiliation(s)
- Carlos García-Delgado
- Department of Agricultural Chemistry and Food Sciences, University Autónoma of Madrid, 28049 Madrid, Spain.
| | - Alessandro D'Annibale
- Department for Innovation in Biological, Agro-Food and Forest systems [DIBAF], University of Tuscia, 01100 Viterbo, Italy.
| | - Lorena Pesciaroli
- Department for Innovation in Biological, Agro-Food and Forest systems [DIBAF], University of Tuscia, 01100 Viterbo, Italy.
| | - Felipe Yunta
- Department of Geology and Geochemistry, University Autónoma of Madrid, 28049 Madrid, Spain.
| | - Silvia Crognale
- Department for Innovation in Biological, Agro-Food and Forest systems [DIBAF], University of Tuscia, 01100 Viterbo, Italy.
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agro-Food and Forest systems [DIBAF], University of Tuscia, 01100 Viterbo, Italy.
| | - Enrique Eymar
- Department of Agricultural Chemistry and Food Sciences, University Autónoma of Madrid, 28049 Madrid, Spain.
| |
Collapse
|
8
|
Addition of maize stalks and soybean oil to a historically PCB-contaminated soil: effect on degradation performance and indigenous microbiota. N Biotechnol 2012; 30:69-79. [DOI: 10.1016/j.nbt.2012.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 11/21/2022]
|
9
|
Tocchi C, Federici E, Fidati L, Manzi R, Vinciguerra V, Petruccioli M. Aerobic treatment of dairy wastewater in an industrial three-reactor plant: effect of aeration regime on performances and on protozoan and bacterial communities. WATER RESEARCH 2012; 46:3334-3344. [PMID: 22503428 DOI: 10.1016/j.watres.2012.03.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/17/2012] [Accepted: 03/19/2012] [Indexed: 05/31/2023]
Abstract
An industrial three-reactor plant treating 45 m(3) d(-1) of dairy wastewater was monitored to investigate the effect of different aeration regimes on performance efficiency and to find relationships with bacterial and protozoan communities in the activated sludge. During the study, the plant was maintained at six different "on/off" cycles of the blower (45/15, 15/15, 15/45, 30/30, 30/45 and 30/60 min), providing between 30.2 and 90.6 kg O(2) d(-1), and the main chemical/biochemical parameters (COD, BOD, NH(4)(+), NO(2)(-), NO(3)(-), PO(4)(3-), etc.) were determined. When at least 45.4 kg O(2) d(-1) (30/45) were provided, COD removal efficiencies were always in the range 88-94% but decreased to about 70% under aeration regimes 15/45 and 30/60. Ammonium ion degradation performance was compromised only in the lowest aeration regime (15/45). Total number of protozoa and their species richness, and bacterial viable counts and denaturing gradient gel electrophoresis (DGGE) profiles were used to characterize the microbiota of the activated sludge. Cell abundances and community structures of protozoa and bacteria were very similar in the three aerated reactors but changed with the aeration regimes. In particular, the 15/45 and 30/60 regimes led to low protozoan diversity with prevalence of flagellates of the genus Trepomonas at the expense of the mobile and sessile forms and, thus, to a less efficient activated sludge as indicated by Sludge Biotic Index values (3 and 4.5 for the two regimes, respectively). The structure of the bacterial community strongly changed when the aeration regimes varied, as indicated by the low similarity values between the DGGE profiles. On the contrary, number of viable bacteria and values of the biodiversity index remained stable throughout the whole experimentation. Taken together, the results of the present study clearly indicate that aeration regime variations strongly influence the structure of both protozoan and bacterial communities and, above all, that a high biodiversity among protozoan populations in the activated sludge is prerequisite for high performances in dairy wastewater treatment.
Collapse
Affiliation(s)
- Carlo Tocchi
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Federici E, Giubilei M, Santi G, Zanaroli G, Negroni A, Fava F, Petruccioli M, D'Annibale A. Bioaugmentation of a historically contaminated soil by polychlorinated biphenyls with Lentinus tigrinus. Microb Cell Fact 2012; 11:35. [PMID: 22443185 PMCID: PMC3331830 DOI: 10.1186/1475-2859-11-35] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/23/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several species belonging to the ecological group of white-rot basidiomycetes are able to bring about the remediation of matrices contaminated by a large variety of anthropic organic pollutants. Among them, polychlorobiphenyls (PCBs) are characterized by a high recalcitrance due to both their low bioavailability and the inability of natural microbial communities to degrade them at significant rates and extents. Objective of this study was to assess the impact of a maize stalk-immobilized Lentinus tigrinus CBS 577.79 inoculant combined with soybean oil (SO), as a possible PCB-mobilizing agent, on the bioremediation and resident microbiota of an actual Aroclor 1260 historically contaminated soil under unsaturated solid-phase conditions. RESULTS Best overall PCB depletions (33.6 ± 0.3%) and dechlorination (23.2 ± 1.3%) were found after 60 d incubation in the absence of SO where, however, the fungus appeared to exert adverse effects on both the growth of biphenyl- and chlorobenzoate-degrading bacteria and the abundance of genes coding for both biphenyl dioxygenase (bph) and catechol-2,3-dioxygenase. A significant (P < 0.001) linear inverse relationship between depletion yields and degree of chlorination was observed in both augmented and control microcosms in the absence of SO; conversely, this negative correlation was not evident in SO-amended microcosms where the additive inhibited the biodegradation of low chlorinated congeners. The presence of SO, in fact, resulted in lower abundances of both biphenyl-degrading bacteria and bph. CONCLUSIONS The PCB depletion extents obtained in the presence of L. tigrinus are by far higher than those reported in other remediation studies conducted under unsaturated solid phase conditions on actual site soils historically contaminated by Aroclor 1260. These results suggest that the bioaugmentation strategy with the maize stalk-immobilized mycelium of this species might be promising in the reclamation of PCB-contaminated soils. The addition of SO to matrices contaminated by technical PCB mixtures, such as Aroclor 1242 and Delor 103 and characterized by a large preponderance of low chlorinated congeners, might not be advisable.
Collapse
Affiliation(s)
- Ermanno Federici
- Department of Cellular and Environmental Biology, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yang F, Liu L, Liu C. Screening, Characterization, and Application of Shigella flexneri FB5 in Fomesafen-Contaminated Soil. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.proeng.2011.11.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|