1
|
Huang J, Zhang P, An Q, He L, Wang L. New insights into the treatment mechanisms of Vitamin D on PM2.5-induced toxicity and inflammation in mouse renal tubular epithelial cells. Int Immunopharmacol 2022; 108:108747. [DOI: 10.1016/j.intimp.2022.108747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/21/2022]
|
2
|
Machado TS, Decesaro A, Cappellaro ÂC, Machado BS, van Schaik Reginato K, Reinehr CO, Thomé A, Colla LM. Effects of homemade biosurfactant from Bacillus methylotrophicus on bioremediation efficiency of a clay soil contaminated with diesel oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110798. [PMID: 32526591 DOI: 10.1016/j.ecoenv.2020.110798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Despite constant progress in the understanding of the mechanisms related to the effects of biosurfactants in the bioremediation processes of oily residues, the possibility of antagonist effects on microbial growth and the production in situ of these compounds must be elucidated. The aims of this work were a) to evaluate the effects of the addition of a homemade biosurfactant of Bacillus methylotrophicus on the microbial count in soil in order to determine the possibility of inhibitory effects, and b) to accomplish biostimulation using media prepared with whey and bioaugmentation with B. methylotrophicus, analyzing the effects on the bioremediation of diesel oil and evidencing the in situ production of biosurfactants through effects on surface tension. The homemade bacterial biosurfactant did not present inhibitory effects acting as a biostimulant until 4000 mg biosurfactant/kg of soil. The biostimulation and bioaugmentation presented similar better results (p > 0.05) with the degradation of oil (~60%) than natural attenuation due to the low quantities of biostimulants added. For bioaugmentated and biostimulated soils, a decrease of surface tension between 30 and 60 days was observed, indicating the production of tensoactives in the soil, which was not observed in natural attenuation or a control treatment.
Collapse
Affiliation(s)
- Thaís Strieder Machado
- Graduate Program in Civil and Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| | - Andressa Decesaro
- Graduate Program in Civil and Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| | - Ângela Carolina Cappellaro
- Undergraduate Program in Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| | - Bruna Strieder Machado
- Undergraduate Program in Chemical Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| | - Kimberly van Schaik Reginato
- Undergraduate Program in Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| | - Christian Oliveira Reinehr
- Graduate Program in Food Science and Technology, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| | - Antônio Thomé
- Graduate Program in Civil and Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil.
| |
Collapse
|
3
|
Lu H, Guan X, Wang J, Zhou J, Zhang H. Enhanced bio-decolorization of 1-amino-4-bromoanthraquinone-2-sulfonic acid by Sphingomonas xenophaga with nutrient amendment. J Environ Sci (China) 2015; 27:124-130. [PMID: 25597670 DOI: 10.1016/j.jes.2014.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/11/2014] [Accepted: 05/11/2014] [Indexed: 06/04/2023]
Abstract
Bacterial decolorization of anthraquinone dye intermediates is a slow process under aerobic conditions. To speed up the process, in the present study, effects of various nutrients on 1-amino-4-bromoanthraquinone-2-sulfonic acid (ABAS) decolorization by Sphingomonas xenophaga QYY were investigated. The results showed that peptone, yeast extract and casamino acid amendments promoted ABAS bio-decolorization. In particular, the addition of peptone and casamino acids could improve the decolorization activity of strain QYY. Further experiments showed that l-proline had a more significant accelerating effect on ABAS decolorization compared with other amino acids. l-Proline not only supported cell growth, but also significantly increased the decolorization activity of strain QYY. Membrane proteins of strain QYY exhibited ABAS decolorization activities in the presence of l-proline or reduced nicotinamide adenine dinucleotide, while this behavior was not observed in the presence of other amino acids. Moreover, the positive correlation between l-proline concentration and the decolorization activity of membrane proteins was observed, indicating that l-proline plays an important role in ABAS decolorization. The above findings provide us not only a novel insight into bacterial ABAS decolorization, but also an l-proline-supplemented bioaugmentation strategy for enhancing ABAS bio-decolorization.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiaofan Guan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haikun Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Zhi H, Zhao Z, Zhang L. The fate of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in water from Poyang Lake, the largest freshwater lake in China. CHEMOSPHERE 2015; 119:1134-1140. [PMID: 25460753 DOI: 10.1016/j.chemosphere.2014.09.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 06/04/2023]
Abstract
The fate of polycyclic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in the water columns from Poyang Lake was studied. The total concentrations of OCPs and PAHs were 19.10-111.78 ng L(-1) and 5.56-266.1 ng L(-1), respectively. Among OCPs, endosulfans, chlordanes, and HCHs accounted for 21.96%, 24.6% and 24.65%, and were the predominant pollutants. Results suggested that the main sources of DDTs were residue from technical DDTs and dicofol, as well as antifouling paints for ships, while for HCHs, the main sources included long-distance transmission, agriculture activities and the combination of industrial products with separate lindane in use. As for PAHs, the predominance of lower molecular weight congeners demonstrated that petroleum and the combustion products of fuel oil, as well as other pyrogenic sources, contributed to the main input of PAHs in the Poyang region. The vehicle emissions were mostly from diesel engines. Moreover, HCH, DDT and BaP concentrations in water of Poyang Lake were all below the threshold values.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Civil and Environmental Engineering, School of Engineering, Hollister Hall, 527 College Ave, Cornell University, Ithaca, NY 14853, United States
| | - Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| |
Collapse
|
5
|
Kaczyńska G, Borowik A, Wyszkowska J. Soil Dehydrogenases as an Indicator of Contamination of the Environment with Petroleum Products. WATER, AIR, AND SOIL POLLUTION 2015; 226:372. [PMID: 26478635 PMCID: PMC4600725 DOI: 10.1007/s11270-015-2642-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/03/2015] [Indexed: 05/10/2023]
Abstract
The aim of the research was to compare the effects of various petroleum products, biodiesel, diesel oil, fuel oil and unleaded petrol on soil dehydrogenases, and to evaluate biostimulation with compost and urea in the restoration of homeostasis of the soil contaminated with these products. The obtained results allowed for defining the weight of dehydrogenases in monitoring of the environment subjected to pressure from petroleum hydrocarbons. The studies were carried out under laboratory conditions for 180 days, and loamy sand was the soil formation used in the experiment. The petroleum products were used in the following amounts: 0, 2, 4, 8 and 16 g kg-1 DM of soil. Indices of the influence of the petroleum product and the stimulating substance on the activity of dehydrogenases were calculated. It was proved that the petroleum products affect soil dehydrogenases in various ways. Biodiesel, diesel oil and fuel oil stimulate these enzymes, while petrol acts as an inhibitor. Among the substances tested regarding biostimulation of soils contaminated with petroleum products, compost is definitely more useful than urea, and therefore, the former should be used for the remediation of such soils. Stimulation of dehydrogenases by compost, both in contaminated and non-contaminated soils, proves that it may accelerate microbiological degradation of petroleum-derived contaminants.
Collapse
Affiliation(s)
- Grażyna Kaczyńska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
| | - Agata Borowik
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
6
|
Lojková L, Vranová V, Rejšek K, Formánek P. Natural Occurrence of Enantiomers of Organic Compounds Versus Phytoremediations: Should Research on Phytoremediations Be Revisited? A Mini-review. Chirality 2013; 26:1-20. [DOI: 10.1002/chir.22255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/19/2013] [Accepted: 08/28/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Lea Lojková
- Mendel University in Brno; Faculty of Agriculture, Department of Chemistry and Biochemistry; Brno Czech Republic
| | - Valerie Vranová
- Mendel University in Brno; Faculty of Forestry and Wood Technology, Department of Geology and Soil Science, Brno; Czech Republic
| | - Klement Rejšek
- Mendel University in Brno; Faculty of Forestry and Wood Technology, Department of Geology and Soil Science, Brno; Czech Republic
| | - Pavel Formánek
- Mendel University in Brno; Faculty of Forestry and Wood Technology, Department of Geology and Soil Science, Brno; Czech Republic
| |
Collapse
|
7
|
Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review. ScientificWorldJournal 2013; 2013:524239. [PMID: 24319374 PMCID: PMC3844170 DOI: 10.1155/2013/524239] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/15/2013] [Indexed: 11/18/2022] Open
Abstract
Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.
Collapse
|
8
|
Potential applications of bioprocess technology in petroleum industry. Biodegradation 2012; 23:865-80. [DOI: 10.1007/s10532-012-9577-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/17/2012] [Indexed: 11/25/2022]
|