1
|
Kobetičová K, Černý R. Waste brick dust as a prospective eco-friendly alternative component of artificial soils for ecotoxicological studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72819-72826. [PMID: 35612704 DOI: 10.1007/s11356-022-20911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Current artificial soils for ecotoxicological studies contain non-renewable materials that must be mined, and their production and processing consume a lot of energy and generate a significant amount of carbon dioxide (CO2). In this paper, waste brick dust is proposed as an alternative to calcium carbonate (CaCO3), which is used for pH adjustment of the Organization for Economic Co-operation and Development (OECD) soils. The artificial soils containing brick dust are contaminated with boric acid as a reference substance in the concentration range of 100-500 mg/kg and studied in the tests with enchytraeids (E. crypticus), springtails (F. candida), and plants (L. sativa and B. napus). Experimental results shows the suitability of replacing calcium carbonate with waste brick dust, as neither toxicity nor ability of model organisms to inhabit the analyzed soil is found. A comparison with the standard OECD soil does not reveal any substantial differences between the parameters (survival, reproduction, and root elongation) of the applied ecotoxicological tests. The brick dust as waste material is found to have a lower carbon footprint than CaCO3, while a similar amount of water is necessary for the adjustment of tests with both kinds of artificial soil. The waste brick dust can be considered as a suitable eco-friendly alternative to CaCO3 in artificial soils for ecotoxicological studies.
Collapse
Affiliation(s)
- Klára Kobetičová
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29, Prague 6, Czech Republic.
| | - Robert Černý
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29, Prague 6, Czech Republic
| |
Collapse
|
2
|
Sun Y, Lu G, Zhang P, Wang Y, Ling X, Xue Q, Yan Z, Liu J. Natural colloids at environmentally relevant concentrations affect the absorption and removal of benzophenone-3 in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119860. [PMID: 35948112 DOI: 10.1016/j.envpol.2022.119860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/04/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Aquatic natural colloids are closely related to the environmental behavior of pollutants, which may affect their bioavailability in aquatic organisms. This study explored the potential mechanisms of the natural colloids at environmentally relevant concentrations affecting the bioaccumulation process of benzophenone-3 (BP3) in zebrafish (Danio rerio). The results of kinetic model fitting showed that the natural colloids decreased the uptake and loss rate of BP3 by zebrafish but prolonged the time to reach the cumulative equilibrium, eventually resulting in a higher cumulative concentration in zebrafish. According to the tissue concentration at equilibrium and the results of toxicokinetic analysis, the presence of high molecular colloids could enhance the bioaccumulation of freely dissolved BP3 due to its high desorption rate with BP3 in the intestines of fish, increasing the freely dissolved BP3 concentrations to which zebrafish were exposed. Both natural colloids and BP3 could enhance the cell permeability of zebrafish, which allowed colloid-bound BP3 to directly enter the fish and accumulate in its muscle. Besides, although both natural colloids and BP3 could cause the metabolic disorders in adult zebrafish, they affected the physiological and biochemical activities of zebrafish through different pathways. The disturbance of glutathione metabolism in zebrafish induced by natural colloids may be the reason for the diminished ability of zebrafish to clear and transform BP3 in the mixture system. The carrier effect of natural colloids and reduced clearance ability of zebrafish eventually increased the bioaccumulation of BP3 in zebrafish. This study highlights the significance of natural colloids at environmentally relevant concentrations on the biological effects of emerging contaminants in actual waters, however, natural colloids are always ignored in most field investigation of pollutants, which would ultimately lead to an underestimation of the true ecological risk of pollutants.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Peng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ying Wang
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China
| | - Xin Ling
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qi Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
3
|
Wee J, Lee YS, Kim Y, Son J, Cho K. Temperature and Aging Affect Glyphosate Toxicity and Fatty Acid Composition in Allonychiurus kimi (Lee) (Collembola). TOXICS 2021; 9:126. [PMID: 34072838 PMCID: PMC8226473 DOI: 10.3390/toxics9060126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 12/16/2022]
Abstract
Glyphosate is the most used herbicide worldwide, but enormous use of glyphosate has raised concerned about its environmental loadings. Although glyphosate is considered non-toxic, toxicity data for soil non-target organisms according to temperature and aging are scarce. This study examined the toxicity of glyphosate with the temperature (20 °C and 25 °C) and aging times (0 day and 7 days) in soil using a collembolan species, Allonychiurus kimi (Lee). The degradation of glyphosate was investigated. Fatty acid composition of A. kimi was also investigated. The half-life of glyphosate was 2.38 days at 20 °C and 1.69 days at 25 °C. At 20 °C with 0 day of aging, the EC50 was estimated to be 93.5 mg kg-1. However, as the temperature and aging time increased, the glyphosate degradation increased, so no significant toxicity was observed on juvenile production. The proportions of the arachidonic acid and stearic acid decreased and increased with the glyphosate treatment, respectively, even at 37.1 mg kg-1, at which no significant effects on juvenile production were observed. Our results showed that the changes in the glyphosate toxicity with temperature and aging time were mostly dependent on the soil residual concentration. Furthermore, the changes in the fatty acid compositions suggest that glyphosate could have a chronic effect on soil organisms.
Collapse
Affiliation(s)
- June Wee
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea;
| | - Yun-Sik Lee
- O-Jeong Eco-Resilience Institute, Korea University, Seoul 02841, Korea; (Y.-S.L.); (Y.K.)
| | - Yongeun Kim
- O-Jeong Eco-Resilience Institute, Korea University, Seoul 02841, Korea; (Y.-S.L.); (Y.K.)
| | - Jino Son
- Biological and Genetics Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea;
| | - Kijong Cho
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea;
| |
Collapse
|
4
|
Aparicio JD, Lacalle RG, Artetxe U, Urionabarrenetxea E, Becerril JM, Polti MA, Garbisu C, Soto M. Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies. ENVIRONMENTAL RESEARCH 2021; 194:110666. [PMID: 33359700 DOI: 10.1016/j.envres.2020.110666] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Soils contaminated by organic and inorganic pollutants like Cr(VI) and lindane, is currently a main environmental challenge. Biological strategies, such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, and nanoremediation with nanoscale zero-valent iron (nZVI) are promising approaches for polluted soil health recovery. The combination of different remediation strategies might be key to address this problem. For this reason, a greenhouse experiment was performed using soil without or with an organic amendment. Both soils were contaminated with lindane (15 mg kg-1) and Cr(VI) (100 or 300 mg kg-1). After one month of aging, the following treatments were applied: (i) combination of bioaugmentation (actinobacteria), phytoremediation (Brassica napus), and vermiremediation (Eisenia fetida), or (ii) nanoremediation with nZVI, or (iii) combination of biological treatments and nanoremediation. After 60 days, the wellness of plants and earthworms was assessed, also, soil health was evaluated through physico-chemical parameters and biological indicators. Cr(VI) was more toxic and decreased soil health, however, it was reduced to Cr(III) by the amendment and nZVI and, to a lesser extent, by the biological treatment. Lindane was more effectively degraded through bioremediation. In non-polluted soils, nZVI had strong deleterious effects on soil biota when combined with the organic matter, but this effect was reverted in soils with a high concentration of Cr(VI). Therefore, under our experimental conditions bioremediation might be the best for soils with a moderate concentration of Cr(VI) and organic matter. The application of nZVI in soils with a high content of organic matter should be avoided except for soils with very high concentrations of Cr(VI). According to our study, among the treatments tested, the combination of an organic amendment, biological treatment, and nZVI was shown to be the strategy of choice in soils with high concentrations of Cr(VI) and lindane, while for moderate levels of chromium, the organic amendment plus biological treatment is the most profitable treatment.
Collapse
Affiliation(s)
- Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, Tucumán, 4000, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, Tucumán, 4000, Argentina
| | - Rafael G Lacalle
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Erik Urionabarrenetxea
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, 48940, Spain; Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Areatza Z-G, Plentzia, E-48620, Spain
| | - José María Becerril
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, Tucumán, 4000, Argentina.
| | - Carlos Garbisu
- NEIKER, Department of Conservation of Natural Resources, C/Berreaga 1, Derio, E-48160, Spain
| | - Manuel Soto
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, 48940, Spain; Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Areatza Z-G, Plentzia, E-48620, Spain
| |
Collapse
|
5
|
Lacalle RG, Aparicio JD, Artetxe U, Urionabarrenetxea E, Polti MA, Soto M, Garbisu C, Becerril JM. Gentle remediation options for soil with mixed chromium (VI) and lindane pollution: biostimulation, bioaugmentation, phytoremediation and vermiremediation. Heliyon 2020; 6:e04550. [PMID: 32885063 PMCID: PMC7452571 DOI: 10.1016/j.heliyon.2020.e04550] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Gentle Remediation Options (GROs), such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, are cost-effective and environmentally-friendly solutions for soils simultaneously polluted with organic and inorganic compounds. This study assessed the individual and combined effectiveness of GROs in recovering the health of a soil artificially polluted with hexavalent chromium [Cr(VI)] and lindane. A greenhouse experiment was performed using organically-amended vs. non-amended mixed polluted soils. All soils received the following treatments: (i) no treatment; (ii) bioaugmentation with an actinobacteria consortium; (iii) vermiremediation with Eisenia fetida; (iv) phytoremediation with Brassica napus; (v) bioaugmentation + vermiremediation; (vi) bioaugmentation + phytoremediation; and (vii) bioaugmentation + vermiremediation + phytoremediation. Soil health recovery was determined based on Cr(VI) and lindane concentrations, microbial properties and toxicity bioassays with plants and worms. Cr(VI) pollution caused high toxicity, but some GROs were able to partly recover soil health: (i) the organic amendment decreased Cr(VI) concentrations, alleviating toxicity; (ii) the actinobacteria consortium was effective at removing both Cr(VI) and lindane; (iii) B. napus and E. fetida had a positive effect on the removal of pollutants and improved microbial properties. The combination of the organic amendment, B. napus, E. fetida and the actinobacteria consortium was the most effective strategy.
Collapse
Affiliation(s)
- Rafael G. Lacalle
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, E-48940, Leioa, Spain
- Corresponding author.
| | - Juan D. Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho, 491. 4000, Tucumán, Argentina
| | - Unai Artetxe
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, E-48940, Leioa, Spain
| | - Erik Urionabarrenetxea
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
- Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Areatza Z-G, E-48620, Plentzia, Spain
| | - Marta A. Polti
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho, 491. 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Manuel Soto
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
- Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Areatza Z-G, E-48620, Plentzia, Spain
| | - Carlos Garbisu
- NEIKER, Department of Conservation of Natural Resources, c/Berreaga 1, E-48160, Derio, Spain
| | - José M. Becerril
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, E-48940, Leioa, Spain
| |
Collapse
|
6
|
Sydow M, Chrzanowski Ł, Cedergreen N, Owsianiak M. Limitations of experiments performed in artificially made OECD standard soils for predicting cadmium, lead and zinc toxicity towards organisms living in natural soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 198:32-40. [PMID: 28500914 DOI: 10.1016/j.jenvman.2017.04.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Development of comparative toxicity potentials of cationic metals in soils for applications in hazard ranking and toxic impact assessment is currently jeopardized by the availability of experimental effect data. To compensate for this deficiency, data retrieved from experiments carried out in standardized artificial soils, like OECD soils, could potentially be tapped as a source of effect data. It is, however, unknown whether such data are applicable to natural soils where the variability in pore water concentrations of dissolved base cations is large, and where mass transfer limitations of metal uptake can occur. Here, free ion activity models (FIAM) and empirical regression models (ERM, with pH as a predictor) were derived from total metal EC50 values (concentration with effects in 50% of individuals) using speciation for experiments performed in artificial OECD soils measuring ecotoxicological endpoints for terrestrial earthworms, potworms, and springtails. The models were validated by predicting total metal based EC50 values using backward speciation employing an independent set of natural soils with missing information about ionic composition of pore water, as retrieved from a literature review. ERMs performed better than FIAMs. Pearson's r for log10-transformed total metal based EC50s values (ERM) ranged from 0.25 to 0.74, suggesting a general correlation between predicted and measured values. Yet, root-mean-square-error (RMSE) ranged from 0.16 to 0.87 and was either smaller or comparable with the variability of measured EC50 values, suggesting modest performance. This modest performance was mainly due to the omission of pore water concentrations of base cations during model development and their validation, as verified by comparisons with predictions of published terrestrial biotic ligand models. Thus, the usefulness of data from artificial OECD soils for global-scale assessment of terrestrial ecotoxic impacts of Cd, Pb and Zn in soils is limited due to relatively small variability of pore water concentrations of dissolved base cations in OECD soils, preventing their inclusion in development of predictive models. Our findings stress the importance of considering differences in ionic composition of soil pore water when characterizing terrestrial ecotoxicity of cationic metals in natural soils.
Collapse
Affiliation(s)
- Mateusz Sydow
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland.
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Mikołaj Owsianiak
- Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Šmídová K, Kim S, Hofman J. Bioavailability of five hydrophobic organic compounds to earthworms from sterile and non-sterile artificial soils. CHEMOSPHERE 2017; 179:222-231. [PMID: 28371706 DOI: 10.1016/j.chemosphere.2017.03.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Bioaccumulation factors (BAFs) of organic pollutants to soil biota, often required by risk assessment, are mostly obtained in non-sterile laboratory-contaminated artificial soils. However, microbial degradation has been indicated by many authors to influence the fate of hydrophobic organic compounds (HOCs) in soils. A question arises if the microbial community of peat which is used for artificial soil preparation affects the measured values of BAFs. In this study the effect of soil microorganisms on bioavailability of HOCs was studied and a portion of each soil was sterilized by gamma irradiation. Results indicated that the sterilization process significantly affected the fate of polycyclic aromatic hydrocarbons (PAHs; phenanthrene and pyrene) and increased bioavailability of these compounds to earthworms with BAFs several times higher in the sterile soils compared to their non-sterile variants. This suggests that sterilization of soils can be used as the "worst-case scenario" for laboratory tests of toxicity or bioaccumulation of biodegradable HOCs such as PAHs. It represents a situation of limited microbial degradation resulting in higher bioavailable fractions to other organisms (e.g. invertebrates). This may be the case in soils where microbial communities face stresses caused by contamination or land management. The bioavailability of chlorinated HOCs (lindane, 4,4'-DDT and PCB 153) was not affected by sterilization, as their BAFs were similar in the sterile and non-sterile soils during the experiment.
Collapse
Affiliation(s)
- Klára Šmídová
- Masaryk University, Faculty of Science, RECETOX, 62500 Brno, Czech Republic
| | - Sooyeon Kim
- Masaryk University, Faculty of Science, RECETOX, 62500 Brno, Czech Republic
| | - Jakub Hofman
- Masaryk University, Faculty of Science, RECETOX, 62500 Brno, Czech Republic.
| |
Collapse
|
8
|
Bielská L, Hovorková I, Kuta J, Machát J, Hofman J. The variability of standard artificial soils: cadmium and phenanthrene sorption measured by a batch equilibrium method. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:17-23. [PMID: 27668322 DOI: 10.1016/j.ecoenv.2016.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Artificial soil (AS) is used in soil ecotoxicology as a test medium or reference matrix. AS is prepared according to standard OECD/ISO protocols and components of local sources are usually used by laboratories. This may result in significant inter-laboratory variations in AS properties and, consequently, in the fate and bioavailability of tested chemicals. In order to reveal the extent and sources of variations, the batch equilibrium method was applied to measure the sorption of 2 model compounds (phenanthrene and cadmium) to 21 artificial soils from different laboratories. The distribution coefficients (Kd) of phenanthrene and cadmium varied over one order of magnitude: from 5.3 to 61.5L/kg for phenanthrene and from 17.9 to 190L/kg for cadmium. Variations in phenanthrene sorption could not be reliably explained by measured soil properties; not even by the total organic carbon (TOC) content which was expected. Cadmium logKd values significantly correlated with cation exchange capacity (CEC), pHH2O and pHKCl, with Pearson correlation coefficients of 0.62, 0.80, and 0.79, respectively. CEC and pHH2O together were able to explain 72% of cadmium logKd variability in the following model: logKd=0.29pHH2O+0.0032 CEC -0.53. Similarly, 66% of cadmium logKd variability could be explained by CEC and pHKCl in the model: logKd=0.27pHKCl+0.0028 CEC -0.23. Variable cadmium sorption in differing ASs could be partially treated with these models. However, considering the unpredictable variability of phenanthrene sorption, a more reliable solution for reducing the variability of ASs from different laboratories would be better harmonization of AS preparation and composition.
Collapse
Affiliation(s)
- Lucie Bielská
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic
| | - Ivana Hovorková
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic
| | - Jan Kuta
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic
| | - Jiří Machát
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic
| | - Jakub Hofman
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic.
| |
Collapse
|
9
|
Vašíčková J, Váňa M, Komprdová K, Hofman J. The variability of standard artificial soils: effects on the survival and reproduction of springtail (Folsomia candida) and potworm (Enchytraeus crypticus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:38-43. [PMID: 25600713 DOI: 10.1016/j.ecoenv.2015.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
Recent studies have documented significant variability in the basic properties of artificial soil which is used as a standard medium in soil bioassays. Variability in key soil properties could confound the interpretation of toxicity data and bias the output of bioassays. The main aims of this study were (i) to identify the variability in the endpoints survival and reproduction of Folsomia candida and Enchytraeus crypticus related to the artificials soils prepared in different laboratories and (ii) to identify the specific physico-chemical properties of the artificial soils which influence the bioassays results. The results of reproduction tests showed that nearly all tested artificial soils were suitable for the survival and reproduction of both organisms as the validity criteria from the test standards were fulfilled. However, numbers of juveniles varied significantly among soils. The most important factor for F. candida performance was a coarser soil structure. C:N ratio (<22.6) were important for the reproduction of E. crypticus. Both species tolerated a pH (KCl) of artificial soils in the range of 4.27-6.8 and even low TOC (1.5%). Thus, it is possible to reduce peat content in artificial soils, which may increase the comparability of results to those for natural soils.
Collapse
Affiliation(s)
- Jana Vašíčková
- Research Centre for Toxic Compounds in the Environment (Recetox), Faculty of science, Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic
| | - Martin Váňa
- Central Institute for Supervising and Testing in Agriculture, Hroznová 2, Brno CZ-65606, Czech Republic
| | - Klára Komprdová
- Research Centre for Toxic Compounds in the Environment (Recetox), Faculty of science, Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic
| | - Jakub Hofman
- Research Centre for Toxic Compounds in the Environment (Recetox), Faculty of science, Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic.
| |
Collapse
|