1
|
Wang M, Song G, Zheng Z, Mi X, Song Z. Exploring the impact of fulvic acid and humic acid on heavy metal availability to alfalfa in molybdenum contaminated soil. Sci Rep 2024; 14:32037. [PMID: 39738773 PMCID: PMC11686242 DOI: 10.1038/s41598-024-83813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Humic substances, such as Fulvic acid (FA) and humic acid (HA), are widely used for the remediation of heavy metal-contaminated soils due to their ability to enhance metal mobility and facilitate plant uptake. In this study, we conducted a pot experiment with alfalfa to investigate the effects of FA and HA amendments on the mobility of molybdenum (Mo) in the soil, its uptake by alfalfa plants, and subsequent changes in the microbial community. The results demonstrated that both FA and HA influence Mo accumulation in the soil and plants. Specifically, HA treatment increased Mo concentrations in alfalfa shoots and roots by 1.08-1.19 times and 1.19-2.43 times, respectively, compared to the control. In contrast, FA enhanced Mo concentrations in alfalfa roots (1.05-1.58 times) but reduced Mo levels in the shoots (0.78-0.85 times). Furthermore, the addition of FA and HA altered the chemical speciation of Mo in the soil, promoting the conversion of reducible and oxidizable fraction to more exchangeable and residual fraction. As a result, the proportion of non-residual Mo fractions (exchangeable, reducible, and oxidizable) decreased from 87.48% to 80.30-87.35%, while residual fractions increased from 12.52% to 12.65-19.70%. Additionally, the structure of the soil bacterial community was primarily influenced by changes in soil properties such as cation exchange capacity, available phosphorus, and ammonium nitrogen levels. This finding highlight the potential of FA and HA to enhance Mo availability, uptake, and translocation in alfalfa, suggesting that their application could be an effective strategy for phytoremediation of Mo-contaminated soils, particularly when alfalfa is used as a hyperaccumulator.
Collapse
Affiliation(s)
- Mengmeng Wang
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, PR China
| | - Gangfu Song
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, PR China.
| | - Zhihong Zheng
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, PR China
| | - Xiao Mi
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, PR China.
| | - Zhixin Song
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, PR China
| |
Collapse
|
2
|
Zhu X, Beiyuan J, Ju W, Qiu T, Cui Q, Chen L, Chao H, Shen Y, Fang L. Inoculation with Bacillus thuringiensis reduces uptake and translocation of Pb/Cd in soil-wheat system: A life cycle study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174032. [PMID: 38885714 DOI: 10.1016/j.scitotenv.2024.174032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Microbial inoculation is an important strategy to reduce the supply of heavy metals (HMs) in soil-crop systems. However, the mechanisms of microbial inoculation for the availability of HMs in soil and their accumulation/transfer in crops remain unclear. Here, the inhibitory effect of inoculation with Bacillus thuringiensis on the migration and accumulation of Pb/Cd in the soil-wheat system during the whole growth period was investigated by pot experiments. The results showed that inoculation with Bacillus thuringiensis increased soil pH and available nutrients (including carbon, nitrogen, and phosphorus), and enhanced the activities of nutrient-acquiring enzymes. Dominance analysis showed that dissolved organic matter (DOM) is the key factor affecting the availability of HMs. The content of colored spectral clusters and humification characteristics of DOM were significantly improved by inoculation, which is conducive to reducing the availability of Pb/Cd, especially during the flowering stage, the decrease was 12.8 %. Inoculation decreased Pb/Cd accumulation in the shoot and the transfer from root to shoot, with the greatest decreases at the jointing and seedling stages (27.0-34.1 % and 6.9-11.8 %), respectively. At the maturity stage, inoculation reduced the Pb/Cd accumulation in grain (12.9-14.7 %) and human health risk (4.1-13.2 %). The results of Pearson correlation analysis showed that the availability of Pb/Cd was positively correlated with the humification of DOM. Least square path model analysis showed that Bacillus thuringiensis could significantly reduce Pb/Cd accumulation in the grain and human health risks by regulating DOM spectral characteristics, the availability of HMs in soil and metals accumulation/transport in wheat at different growth stages. This study revealed the inhibition mechanism of Bacillus thuringiensis on migration of Pb/Cd in a soil-wheat system from a viewpoint of a full life cycle, which offers a valuable reference for the in-situ remediation of HM-contaminated soil and the safe production of food crops in field.
Collapse
Affiliation(s)
- Xiaozhen Zhu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Jingzi Beiyuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Wenliang Ju
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tianyi Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Qingliang Cui
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Li Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Herong Chao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Yufang Shen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Wang S, Lv X, Fu M, Wang Z, Zhang D, Sun Q. Risk assessment of Artemia egg shell-Mg-P composites as a slow-release phosphorus fertilizer during its formation and application in typical heavy metals contaminated environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117092. [PMID: 36571950 DOI: 10.1016/j.jenvman.2022.117092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Artemia egg shell loaded with nano-magnesium (shell-Mg) can be used to recover phosphorus from wastewater. The exhausted Artemia egg shell-Mg (denoted as shell-Mg-P) can be used as a slow-release fertilizer for phosphorus reuse. However, due to the coexistence of heavy metal ions in the environment, the application of slow-release fertilizer for phosphorus removal and reuse may have potential risks. In this paper, the potential risks of Pb2+, Cd2+, Zn2+ and Cu2+ in phosphorus wastewater and soil were studied from the formation and application process of shell-Mg-P. The result showed that shell-Mg adsorbed Pb2+, Cd2+, Zn2+ and Cu2+ in phosphate wastewater during the formation of shell-Mg-P and became shell-Mg-P-metal hybrid biomaterial. Although the experiment proved that the existence of heavy metal ions did not affect the phosphorus slow-release behavior of slow-release fertilizer, but the heavy metal ions in the shell-Mg-P-metal were also slow released. The pot experiment results confirmed that the slow-release phosphorus fertilizers (shell-Mg-P and shell-Mg-P-metal) in the soil polluted in low concentration of heavy metals can reduce the amount of heavy metals in whole wheat seedlings and promote wheat seedling growth. However, the application of slow-release fertilizers increased the translocation efficiency (TFR to SL) of metal from root (R) to aboveground part (stem and leaves, SL), promoted the transportation of heavy metals from roots to the stems and leaves, and increased the safety risk of the wheat seedling edible. Therefore, besides the positive role of slow-release fertilizers in retaining heavy metals and reducing the amount of heavy metals in whole seedlings, the risk that it may aggravate the translocation of heavy metals to stems and leaves should be paid more attention, so as to ensure the safe and reliable application of slow-release fertilizers.
Collapse
Affiliation(s)
- Sufeng Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Xiaojuan Lv
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Mingwei Fu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Zijing Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Dan Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Qina Sun
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| |
Collapse
|
4
|
Dogan M, Bolat I, Karakas S, Dikilitas M, Gutiérrez-Gamboa G, Kaya O. Remediation of Cadmium Stress in Strawberry Plants Using Humic Acid and Silicon Applications. Life (Basel) 2022; 12:1962. [PMID: 36556327 PMCID: PMC9781489 DOI: 10.3390/life12121962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
(1) Background: Strawberry plants are strongly affected by heavy-metal-contaminated soils, which affects plant growth, yield and fruit quality. The aim of this work was to study the effects of a combination and individual application of silicon (Si) and humic acid (HA) on growth and development of Rubygem strawberries exposed to cadmium (Cd) in greenhouse conditions. (2) Methods: Morphological, physiological and biochemical parameters, including minerals in roots and leaves were determined. (3) Results: Cd stress in strawberry plants decreased plant fresh and dry weight; leaf stomatal conductance; leaf relative water content and chlorophyll content; number of leaves; leaf area; leaf N, P and K levels; and root P, N, Mg, K and Ca contents. Cd increased membrane permeability, leaf temperature, proline levels and lipid peroxidation. Si and HA individual applications to strawberries mitigated the negative effect of Cd stress on biochemical, physiological, morphological and minerals parameters by decreasing membrane permeability, leaf temperature, proline levels and lipid peroxidation. (4) Conclusions: Our findings highlighted that applications of Si, HA and Si + HA were effective in conferring Cd tolerance in strawberry plants by upregulating their many morphological, physiological and biochemical properties and reducing Cd stress.
Collapse
Affiliation(s)
- Meral Dogan
- Department of Horticulture, Graduate School of Natural and Applied Sciences, Harran University, 63050 Sanliurfa, Türkiye
| | - Ibrahim Bolat
- Department of Horticulture, Faculty of Agriculture, Harran University, 63050 Sanlıurfa, Türkiye
| | - Sema Karakas
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Harran University, 63050 Sanlıurfa, Türkiye
| | - Murat Dikilitas
- Department of Plant Protection, Faculty of Agriculture, Harran University, 63050 Sanlıurfa, Türkiye
| | - Gastón Gutiérrez-Gamboa
- Escuela de Agronomía, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Temuco 4780000, Chile
| | - Ozkan Kaya
- Erzincan Horticultural Research Institute, Republic of Turkey Ministry of Agriculture and Forestry, 24060 Erzincan, Türkiye
| |
Collapse
|
5
|
Li B, Zhang X, Tefsen B, Wells M. From speciation to toxicity: Using a "Two-in-One" whole-cell bioreporter approach to assess harmful effects of Cd and Pb. WATER RESEARCH 2022; 217:118384. [PMID: 35427828 DOI: 10.1016/j.watres.2022.118384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Due to the sheer number of contaminated sites, bioavailability-based measurement and modeling of toxicity is used to triage response; despite advances, both remain relatively cumbersome. Cadmium (Cd) and lead (Pb) are two of the most toxic and globally prevalent pollutants, disproportionately impacting disadvantaged communities. Here we demonstrate the use of high throughput lights-on bioreporter technology to measure both speciation and toxicity. The organism's response is fit-for-purpose to parameterize the Biotic Ligand Model used in risk assessment of aquatic ecotoxicity and setting environmental Water Quality Criteria. Toxicity endpoints for analogous Cd and Pb models reported in literature average 71st and 44th rank-percentile sensitivity of Genus Mean Acute Values for acute toxicity (i.e., insensitive) in comparison to the bioreporter, the unique dual-mode measurement ability of which can predict toxicity endpoints from below the 5th percentile up to the 50th rank-percentile. These results are extensible to other reporters, paving the way to cost-efficient environmental risk assessment of aquatic ecotoxicity for a wide range of priority toxic pollutants.
Collapse
Affiliation(s)
- Boling Li
- Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, UK; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Boris Tefsen
- Ronin Institute, 127 Haddon Place, Montclair, NJ 07043, United States.
| | - Mona Wells
- Ronin Institute, 127 Haddon Place, Montclair, NJ 07043, United States.
| |
Collapse
|
6
|
Liu H, Wang L, Zhong R, Bao M, Guo H, Xie Z. Binding characteristics of humic substances with Cu and Zn in response to inorganic mineral additives during swine manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114387. [PMID: 34968940 DOI: 10.1016/j.jenvman.2021.114387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 05/16/2023]
Abstract
Composting is suitable for recycling livestock manure into valuable organic fertilizer, which can improve soil quality while mitigating potential risk of heavy metal pollution. Humic substances (HS) in compost have been demonstrated to play a key role in regulating the redistribution of heavy metal fractions. However, limited direct information have been reported on how different components of HS complexes with heavy metals to affect their bioavailability during composting. In this study, sequential extraction procedures (H2O, KCl, Na4P2O7, NaOH and HNO3) were used to assess the characteristics that HS bound with Cu and Zn during composting of swine manure and straw added either 5% boron waste (BW) or 5% phosphate rock (PR). Organically complexed fraction extracted by Na4P2O7 contained only 33-41% of the Cu but most of the Zn (81-87%). During composting, initially mobile fractions of Cu and Zn (extracted by H2O or KCl) changed into more stable fractions (extracted by NaOH and HNO3), and both organic matter and fulvic acids (FA) were identified as critical factors to explain this redistribution based on redundancy analysis. Over 80% of Cu and Zn were complexed with FA of HS. However, exogenous additives (phosphate rock and boron waste) enhanced Cu conversion by promoting humification (Humic acid/Fulvic acids, HA/FA) whereas they had limited influence on Zn, due to the relatively weak binding relationship between Zn and HA.
Collapse
Affiliation(s)
- Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Rongzhen Zhong
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Meiwen Bao
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100109, China
| | - Haonan Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100109, China
| | - Zhonglei Xie
- College of Plant Science, Jilin University, Changchun, 130062, China
| |
Collapse
|
7
|
An J, Jeong B, Nam K. Extension of biotic ligand model to account for the effects of pH and phosphate in accurate prediction of arsenate toxicity. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121619. [PMID: 31757723 DOI: 10.1016/j.jhazmat.2019.121619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Biotic ligand model (BLM) was extended to predict the toxicity of inorganic arsenate (iAs(V)) to the luminescent bacteria, Aliivibrio fischeri. As the pH increased from 5 to 9, the HAsO42- form predominated more than the H2AsO4- form did, and the EC50[As]T (50% effective iAs(V) concentration) decreased drastically from 3554 ± 393 to 39 ± 6 μM; thus, the HAsO42- form was more toxic to A. fischeri than H2AsO4-. As the HPO42- activity increased from 0 to 0.44 mM, the EC50{HAsO42-} values (50% effective HAsO42- activity) increased from 31 ± 6 to 859 ± 128 μM, indicating that the toxicity of iAs(V) decreased, owing to the competition caused by the structural similarity between iAs(V) and phosphate ions. However, activities of Ca2+, Mg2+, K+, SO42-, NO3-, and HCO3- did not significantly affect the EC50{HAsO42-} values. The BLM was reconstructed to take into account the effects of pH and phosphate, and the conditional binding constants for H2PO4-, HPO42-, H2AsO4-, and HAsO42- to the active binding sites of A. fischeri were obtained; 3.424 for logKXH2PO4, 4.588 for logKXHPO4, 3.067 for logKXH2AsO4, and 4.802 for logKXHAsO4. The fraction of active binding sites occupied by iAs(V) to induce 50% toxicity (fmix50%) was found to be 0.616.
Collapse
Affiliation(s)
- Jinsung An
- Department of Biological & Environmental Engineering, Semyung University, 65 Semyung-ro, Jecheon-si, Chungcheongbuk-do 27136, Republic of Korea
| | - Buyun Jeong
- Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyoungphile Nam
- Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Li J, Liu Y, Zuo R, Teng Y, Ai Y, Yang J. Influences of dissolved humic acid on Zn bioavailability and its consequences for thyroid toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:132-137. [PMID: 30265876 DOI: 10.1016/j.ecoenv.2018.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to investigate the effect of dissolved humic acid (dHA) on Zn bioavailability and the subsequent influence on the Zn-induced thyroid toxicity. Zn toxicity was assessed using a yeast bioassay in the presence and absence of dHA. With increasing concentration of dHA, the toxic effects decreased, and the free Zn concentrations detected by the anodic stripping voltammetry (ASV) method also decreased. The high correlation (R = 0.92, p < 0.001) between toxic effects and free Zn concentrations indicated that Zn thyroid toxicity largely comes from the free Zn fraction. Water samples from the Qing River in Beijing were also assayed for thyroid toxicity. The results revealed that the metals might contribute to the toxicity. The known thyroid hormone-disrupting metals, namely, Zn, Cd and Hg, were analyzed. The cause-effect relationship between the observed thyroid toxicity and free Zn concentrations as well as their dose-effect relationships were examined. Our results showed that Zn might be the major contributor to the observed thyroid toxicity caused by metals. These results suggest that the ASV method and the identified major contributor (Zn) may be used in lieu of conventional environmental analyses to follow the progression of a risk assessment or remediation strategy.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yun Liu
- South China Institute of Environmental Science, Ministry of Environmental Protection, No.7 West Street, Yuancun, Guangzhou 510655, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yang Ai
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jie Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
9
|
An J, Choi K, Yang S, Nam K. Estimation of human-origin estrone and 17β-estradiol concentrations in the Han River, Seoul, South Korea and its uncertainty-based ecological risk characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:1148-1155. [PMID: 29758866 DOI: 10.1016/j.scitotenv.2018.03.248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Estrogens originated from humans can reach ambient water and possibly cause significant ecological risks. In this study, the quantities of human-origin estrone (E1) and 17β-estradiol (E2) in the influent and effluent of four sewer treatment plants (STPs) in Seoul, South Korea were estimated using a demographic model. A Monte Carlo simulation was used to assess the quantitative uncertainty of estimated E1 and E2 concentrations. Mean concentrations of E1 and E2 estimated for STP influents ranged from 29.5 to 38.4 and 7.5 to 9.7ng/L, respectively. Meanwhile, mean concentrations of E1 and E2 estimated for STP effluents were 4.9 to 6.6 and 0.28 to 0.36ng/L, respectively. These estimated values are similar to measured data as reported in the literatures within the range of uncertainty based on the Monte Carlo simulation. The hazard quotient (HQ) value in the main stem of the Han River was calculated to be far less than 1 because of the dilution effect of the Han River's abundant flow, indicating that most of the Han River ecosystem will not be influenced by these endogenous estrogens. With a 95% cumulative probability, HQ values in the main stem of the Han River for the Jungrang, Nanji, Tanchun, and Seonam STPs were less than 0.18, 0.07, 0.08, and 0.15, respectively. Nevertheless, HQ values >1 were observed in the vicinity of the STP outlets when using the numerical modeling. Our results show that the endocrine disruption potential of E1 and E2 around STP outlets in the main stem of the Han River must be monitored carefully.
Collapse
Affiliation(s)
- Jinsung An
- Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seungho Yang
- Department of Urban & Environmental Research, Goyang Research Institute, 60 Taegeuk-ro, Ilsandong-gu, Goyang-si 10393, Republic of Korea
| | - Kyoungphile Nam
- Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Cipullo S, Prpich G, Campo P, Coulon F. Assessing bioavailability of complex chemical mixtures in contaminated soils: Progress made and research needs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:708-723. [PMID: 28992498 DOI: 10.1016/j.scitotenv.2017.09.321] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 05/13/2023]
Abstract
Understanding the distribution, behaviour and interactions of complex chemical mixtures is key for providing the evidence necessary to make informed decisions and implement robust remediation strategies. Much of the current risk assessment frameworks applied to manage land contamination are based on total contaminant concentrations and the exposure assessments embedded within them do not explicitly address the partitioning and bioavailability of chemical mixtures. These oversights may contribute to an overestimation of both the eco-toxicological effects of the fractions and the mobility of contaminants. In turn, this may limit the efficacy of risk frameworks to inform targeted and proportionate remediation strategies. In this review we analyse the science surrounding bioavailability, its regulatory inclusion and the challenges of incorporating bioavailability in decision making process. While a number of physical and chemical techniques have proven to be valuable tools for estimating bioavailability of organic and inorganic contaminants in soils, doubts have been cast on its implementation into risk management soil frameworks mainly due to a general disagreement on the interchangeable use of bioavailability and bioaccessibility, and the associated methods which are still not standardised. This review focuses on the role of biotic and abiotic factors affecting bioavailability along with soil physicochemical properties and contaminant composition. We also included advantages and disadvantages of different extraction techniques and their implications for bioavailability quantitative estimation. In order to move forward the integration of bioavailability into site-specific risk assessments we should (1) account for soil and contaminant physicochemical characteristics and their effect on bioavailability; (2) evaluate receptor's potential exposure and uptake based on mild-extraction; (3) adopt a combined approach where chemical-techniques are used along with biological methods; (4) consider a simplified and cost-effective methodology to apply at regulatory and industry setting; (5) use single-contaminant exposure assessments to inform and predict complex chemical mixture behaviour and bioavailability.
Collapse
Affiliation(s)
- S Cipullo
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - G Prpich
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - P Campo
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - F Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK.
| |
Collapse
|
11
|
Schneider AR, Gommeaux M, Duclercq J, Fanin N, Conreux A, Alahmad A, Lacoux J, Roger D, Spicher F, Ponthieu M, Cancès B, Morvan X, Marin B. Response of bacterial communities to Pb smelter pollution in contrasting soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:436-444. [PMID: 28672232 DOI: 10.1016/j.scitotenv.2017.06.159] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 05/20/2023]
Abstract
Anthropogenic inputs of trace elements (TE) into soils constitute a major public and environmental health problem. Bioavailability of TE is strongly related to the soil physicochemical parameters and thus to the ecosystem type. In order to test whether soil parameters influence the response of the bacterial community to TE pollution, we collected soil samples across contrasting ecosystems (hardwood, coniferous and hydromorphic soils), which have been contaminated in TE and especially lead (Pb) over several decades due to nearby industrial smelting activities. Bacterial community composition was analysed using high throughput amplicon sequencing and compared to the soil physicochemical parameters. Multivariate analyses of the pedological and biological data revealed that the bacterial community composition was affected by ecosystem type in the first place. An influence of the contamination level was also evidenced within each ecosystem. Despite the important variability in bacterial community structure, we found that specific bacterial groups such as γ-Proteobacteria, Verrucomicrobia and Chlamydiae showed a consistent response to Pb content across contrasting ecosystems. Verrucomicrobia were less abundant at high contamination level whereas Chlamydiae and γ-Proteobacteria were more abundant. We conclude that such groups and ratio's thereof can be considered as relevant bioindicators of Pb contamination.
Collapse
Affiliation(s)
- Arnaud R Schneider
- GEGENAA EA3795, SFR Condorcet FR CNRS3417, URCA, Université de Champagne, 2 Esplanade Roland Garros, 51100 Reims, France
| | - Maxime Gommeaux
- GEGENAA EA3795, SFR Condorcet FR CNRS3417, URCA, Université de Champagne, 2 Esplanade Roland Garros, 51100 Reims, France.
| | - Jérôme Duclercq
- CNRS FRE 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), UPJV, 33 rue St-Leu, 80039 Amiens, France
| | - Nicolas Fanin
- INRA, UMR 1391 ISPA, 71 avenue Edouard Bourlaux, CS 20032, F33882 Villenave-d'Ornon cedex, France
| | - Alexandra Conreux
- GEGENAA EA3795, SFR Condorcet FR CNRS3417, URCA, Université de Champagne, 2 Esplanade Roland Garros, 51100 Reims, France
| | - Abdelrahman Alahmad
- CNRS FRE 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), UPJV, 33 rue St-Leu, 80039 Amiens, France
| | - Jérôme Lacoux
- CNRS FRE 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), UPJV, 33 rue St-Leu, 80039 Amiens, France
| | - David Roger
- CNRS FRE 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), UPJV, 33 rue St-Leu, 80039 Amiens, France
| | - Fabien Spicher
- CNRS FRE 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), UPJV, 33 rue St-Leu, 80039 Amiens, France
| | - Marie Ponthieu
- GEGENAA EA3795, SFR Condorcet FR CNRS3417, URCA, Université de Champagne, 2 Esplanade Roland Garros, 51100 Reims, France
| | - Benjamin Cancès
- GEGENAA EA3795, SFR Condorcet FR CNRS3417, URCA, Université de Champagne, 2 Esplanade Roland Garros, 51100 Reims, France
| | - Xavier Morvan
- GEGENAA EA3795, SFR Condorcet FR CNRS3417, URCA, Université de Champagne, 2 Esplanade Roland Garros, 51100 Reims, France
| | - Béatrice Marin
- GEGENAA EA3795, SFR Condorcet FR CNRS3417, URCA, Université de Champagne, 2 Esplanade Roland Garros, 51100 Reims, France
| |
Collapse
|
12
|
Garrido AE, Strosnider WHJ, Wilson RT, Condori J, Nairn RW. Metal-contaminated potato crops and potential human health risk in Bolivian mining highlands. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:681-700. [PMID: 28337621 DOI: 10.1007/s10653-017-9943-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
This study assessed metals in irrigation water, soil and potato crops impacted by mining discharges, as well as potential human health risk in the high desert near the historic mining center of Potosí, Bolivia. Metal concentrations were compared with international concentration limit guidelines. In addition, an ingested average daily dose and minimum risk level were used to determine the hazard quotient from potato consumption for adults and children. Irrigation water maximum concentrations of Cd, Pb and Zn in mining-impacted sites were elevated 20- to 1100-fold above international concentration limit guidelines. Agricultural soils contained total metal concentrations of As, Cd, Pb and Zn that exceeded concentration limits in agricultural soil guidelines by 22-, 9-, 3- and 12-fold, respectively. Potato tubers in mining-impacted sites had maximum concentrations of As, Cd, Pb and Zn that exceeded concentration limits in commercially sold vegetables by 9-, 10-, 16- and fourfold, respectively. Using conservative assumptions, hazard quotients (HQ) for potatoes alone were elevated for As, Cd and Pb among children (range 1.1-71.8), in nearly all of the mining-impacted areas; and for As and Cd among adults (range 1.2-34.2) in nearly all of the mining-impacted areas. Only one mining-impacted area had a Pb adult HQ for potatoes above 1 for adults. Toxic trace elements in a major regional dietary staple may be a greater concern than previously appreciated. Considering the multitude of other metal exposure routes in this region, it is likely that total HQ values for these metals may be substantially higher than our estimates.
Collapse
Affiliation(s)
- Alan E Garrido
- Centro de Investigación en Ciencias y Recursos GeoAgroAmbientales (CENIGAA), Cra 5 No. 10-38 Oficina 203, Neiva, Huila, Colombia.
| | - William H J Strosnider
- Saint Francis University Environmental Engineering Program, Center for Watershed Research & Service, 117 Evergreen Drive, Loretto, PA, 15940, USA
| | - Robin Taylor Wilson
- Epidemiology Division, Department of Public Health Sciences, Penn State Cancer Institute, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code CH69, Hershey, PA, 17033, USA
| | - Janette Condori
- Gobierno Autónomo del Departamento de Potosí, Secretaría de Minería y Metalurgia, Plaza Simón Bolívar Edificio IV, Centenario Piso II, Potosí, Bolivia
| | - Robert W Nairn
- Center for Restoration of Ecosystems and Watersheds, School of Civil Engineering and Environmental Science, University of Oklahoma, 202 W. Boyd St., Norman, OK, 73019, USA
| |
Collapse
|
13
|
Wei L, Wang K, Noguera DR, Jiang J, Oyserman B, Zhao N, Zhao Q, Cui F. Transformation and speciation of typical heavy metals in soil aquifer treatment system during long time recharging with secondary effluent: Depth distribution and combination. CHEMOSPHERE 2016; 165:100-109. [PMID: 27639465 DOI: 10.1016/j.chemosphere.2016.09.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/29/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
Soil aquifer treatment (SAT) systems rely on extensive physical and biogeochemical processes in the vadose zone and aquifer for water quality improvement. In this study, the distribution, quantitative changes, as well as the speciation characteristics of heavy metals in different depth of soils of a two-year operated lab-scale SAT was explored. A majority of the heavy metals in the recharged secondary effluent were efficiently trapped by the steady-state operated SAT (removal efficiency ranged from 74.7% to 98.2%). Thus, significant accumulations of 31.7% for Cd, 15.9% for Cu, 15.3% for Zn and 8.6% for Cr were observed for the top soil after 730 d operation, leading to the concentration (in μg g-1) of those four heavy metals of the packed soil increased from 0.51, 46.7, 61.0 and 35.7 to 0.66, 54.2, 70.4 and 38.8, respectively. By contrast, the accumulation of Mn and Pb were quite low. The residual species were the predominant fraction of the six heavy metals (ranged for 59.8-82.4%), followed by oxidisable species. Although the Zn, Cr, Cd, Cu and Mn were efficiently bounded onto the oxide components within the soil, the percentage of the labile metal fractions (water-, acid-exchangeable and reducible metal fractions) exhibited a slight increasing after 2 Y operation. Significantly heavy metals accumulation and slightly decreasing of the proportion of the stable fractions indicated a potentially higher environmental hazard for those six heavy metals after long-term SAT operation (especially for Cu, Zn and Cd). Finally, a linear relationship between the accumulation rate of metal species and the variation of soil organic carbon concentration and water extractable organic carbon was demonstrated.
Collapse
Affiliation(s)
- Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China; Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| | - Daniel R Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Ben Oyserman
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ningbo Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Fuyi Cui
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
14
|
Enhanced removal for humic-acid (HA) and coagulation process using carbon nanotubes (CNTs)/polyalumium chloride (PACl) composites coagulants. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.11.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Wang T, Qu G, Ren J, Yan Q, Sun Q, Liang D, Hu S. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma. WATER RESEARCH 2016; 89:28-38. [PMID: 26624519 DOI: 10.1016/j.watres.2015.11.039] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/07/2015] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment.
Collapse
Affiliation(s)
- Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jingyu Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qiuhe Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qiuhong Sun
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Shibin Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
16
|
Zhou F, Wang H, Fang S, Zhang W, Qiu R. Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: role of humic acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16031-16039. [PMID: 26062468 DOI: 10.1007/s11356-015-4818-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Pyrolyzing municipal wastewater treatment sludge into biochar can be a promising sludge disposal approach, especially as the produced sludge-derived biochar (SDBC) is found to be an excellent sorbent for heavy metals and atrazine. The aim of this study was to investigate how and why the coexisting humic acids influence the sorption capacity, kinetic, and binding of these contaminants on SDBC surface. Results showed humic acids enhanced Pb(II)/Cr(VI) sorption binding, and increased the corresponding Pb(II) Langmuir sorption capacity at pH 5.0 from 197 to 233 μmol g(-1), and from 688 to 738 μmol g(-1) for Cr(VI) at pH 2.0. It can be mainly attributed to the sorbed humic acids, whose active functional groups can offer the additional sites to form stronger inner-sphere complexes with Pb(2+), and supply more reducing agent to facilitate the transformation of Cr(VI) to Cr(III). However, humic acids reduced the atrazine adsorption Freundlich constant from 1.085 to 0.616 μmol g(-1). The pore blockage, confirmed by the decreased BET-specific surface area, as well as the more hydrophilic surface with more sorbed water molecules may be the main reasons for that suppression. Therefore, the coexisting humic acids may affect heavy metal stabilization or pesticide immobilization during SDBC application to contaminated water or soils, and its role thus should be considered especially when organic residues are also added significantly to increase the humic acid content there.
Collapse
Affiliation(s)
- Fengsa Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hong Wang
- China Energy Conservation DADI Environmental Remediation Co. Ltd, Beijing, 100082, China
| | - Sheng'en Fang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weihua Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| |
Collapse
|