1
|
Feng H, Xu L, Chen R, Ma X, Qiao H, Zhao N, Ding Y, Wu D. Detoxification mechanisms of electroactive microorganisms under toxicity stress: A review. Front Microbiol 2022; 13:1084530. [DOI: 10.3389/fmicb.2022.1084530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Remediation of environmental toxic pollutants has attracted extensive attention in recent years. Microbial bioremediation has been an important technology for removing toxic pollutants. However, microbial activity is also susceptible to toxicity stress in the process of intracellular detoxification, which significantly reduces microbial activity. Electroactive microorganisms (EAMs) can detoxify toxic pollutants extracellularly to a certain extent, which is related to their unique extracellular electron transfer (EET) function. In this review, the extracellular and intracellular aspects of the EAMs’ detoxification mechanisms are explored separately. Additionally, various strategies for enhancing the effect of extracellular detoxification are discussed. Finally, future research directions are proposed based on the bottlenecks encountered in the current studies. This review can contribute to the development of toxic pollutants remediation technologies based on EAMs, and provide theoretical and technical support for future practical engineering applications.
Collapse
|
2
|
Wang Y, Zhang X, Feng H, Liang Y, Shen D, Long Y, Zhou Y, Dai Q. Biocatalysis mechanism for p-fluoronitrobenzene degradation in the thermophilic bioelectrocatalysis system: Sequential combination of reduction and oxidation. CHEMOSPHERE 2016; 159:44-49. [PMID: 27268793 DOI: 10.1016/j.chemosphere.2016.05.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/21/2016] [Accepted: 05/26/2016] [Indexed: 06/06/2023]
Abstract
To verify the potentially synthetic anodic and cathodic biocatalysis mechanism in bioelectrocatalysis systems (BECSs), a single-chamber thermophilic bioelectrocatalysis system (R3) was operated under strictly anaerobic conditions using the biocathode donated dual-chamber (R1) and bioanode donated dual-chamber (R2) BECSs as controls. Direct bioelectrocatalytic oxidation was found to be infeasible while bioelectrocatalytic reduction was the dominant process for p-Fluoronitrobenzene (p-FNB) removal, with p-FNB removal of 0.188 mM d(-1) in R1 and 0.182 mM d(-1) in R3. Cyclic voltammetry experiments confirmed that defluorination in the BECSs was an oxidative metabolic process catalyzed by bioanodes following the reductive reaction, which explained the 0.034 mM d(-1) defluorination in R3, but negligible defluorination in controls. Taken together, these results revealed a sequentially combined reduction and oxidation mechanism in the thermophilic BECS for p-FNB removal. Moreover, the enrichment of Betaproteobacteria and uniquely selected Bacilli in R3 were probably functional populations for p-FNB degradation.
Collapse
Affiliation(s)
- Yanfeng Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Xueqin Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
| | - Yuxiang Liang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yuyang Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|