1
|
Kamel AH, Abd-Rabboh HSM. Electrochemical sensors based on molecularly imprinted polymers for the detection of chlorophenols as emergent distributing chemicals (EDCs): a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4024-4040. [PMID: 38860820 DOI: 10.1039/d4ay00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Environmental pollutants like chlorophenol chemicals and their derivatives are commonplace. These compounds serve as building blocks in the production of medicines, biocides, dyes, and agricultural chemicals. Chlorophenols enter the environment through several different pathways, including the breakdown of complex chlorinated hydrocarbons, industrial waste, herbicides, and insecticides. Chlorophenols are destroyed thermally and chemically, creating dangerous chemicals that pose a threat to public health. Water in particular is affected, and thorough monitoring is required to find this source of pollution because it can pose a major hazard to both human and environmental health. For the detection of chlorophenols, molecularly imprinted polymers (MIPs) have been incorporated into a variety of electrochemical sensing systems and assay formats. Due to their long-term chemical and physical stability as well as their simple and affordable synthesis process, MIPs have become intriguing synthetic alternatives over the past few decades. In this review, we concentrate on the commercial potential of the MIP technology. Additionally, we want to outline the most recent advancements in their incorporation into electrochemical sensors with a high commercial potential for detecting chlorophenols.
Collapse
Affiliation(s)
- Ayman H Kamel
- Department, College of Science, University of Bahrain, Sokheer 32038, Kingdom of Bahrain.
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Hisham S M Abd-Rabboh
- Chemistry Department, College of Science, King Khalid University, PO Box 9004, Abha, 62223, Saudi Arabia
| |
Collapse
|
2
|
Kamel AH, Abd-Rabboh HSM, Hefnawy A. Molecularly imprinted polymer-based electrochemical sensors for monitoring the persistent organic pollutants chlorophenols. RSC Adv 2024; 14:20163-20181. [PMID: 38915326 PMCID: PMC11194710 DOI: 10.1039/d4ra03095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024] Open
Abstract
Because of the serious risks they pose to the environment and public health, chlorophenols (CPs), a typical class of the most persistent organic pollutants, have drawn increasing attention. Monitoring CPs effectively has become a pressing and difficult problem. The rapidly increasing need for onsite and real-time CP detection has led to the consideration of electrochemical sensing as a workable solution. Molecularly imprinted polymer (MIP)-based electrochemical sensing has emerged as a promising area for environmental monitoring in response to this analytical problem. MIPs, in conjunction with miniature electrochemical transducers, provide the opportunity to detect target analytes in situ. These devices have the advantages of great chemical and physical stability, cheap production costs, good selectivity, and quick response times. Most studies suggest that these sensors use nanoparticles to improve their analytical properties, especially sensitivity. Furthermore, these sensors have successfully used real water samples without the need for time-consuming pretreatment procedures. This article provides an overview of electrochemical MIP-based sensors reported to detect CPs in water samples. To obtain the highest sensitivity, special consideration is given to the fabrication of the sensors, which includes the use of various functional monomers, sensing platforms, and materials. Several other parameters are also discussed, including the linear concentration range, limit of detection, and the types of water samples that were examined.
Collapse
Affiliation(s)
- Ayman H Kamel
- Department, College of Science, University of Bahrain Sakhir 32038 Kingdom of Bahrain
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Hisham S M Abd-Rabboh
- Chemistry Department, College of Science, King Khalid University PO Box 9004 Abha 62223 Saudi Arabia
| | - A Hefnawy
- Department, College of Science, University of Bahrain Sakhir 32038 Kingdom of Bahrain
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University El-Shatby Alexandria 21526 Egypt
| |
Collapse
|
3
|
Sriram B, Stanley MM, Wang SF, Hsu YF, George M. Two-Dimensional CuMn-Layered Double Hydroxides: A Study of Interlayer Anion Variants on the Electrochemical Sensing of Trichlorophenol. Inorg Chem 2024; 63:2833-2843. [PMID: 38261278 PMCID: PMC10848258 DOI: 10.1021/acs.inorgchem.3c04568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Despite their diverse application profile, aromatic organochlorides such as 2,4,6-trichlorophenol (TP) are widely renowned for creating a negative toll on the balance of the ecosystem. Strict regulatory regimes are required to limit exposure to such organic pollutants. By deployment of a straightforward detection scheme, electrochemical sensing technology offers a competitive edge over the other techniques and practices available for pollutant monitoring. Here, we present a streamlined hydrothermal approach for synthesizing copper-manganese layered double hydroxide (CuMn-LDH) rods to be employed as electrocatalysts for detecting TP in various media. With a focused intention to leverage the full potential of the prepared CuMn-LDHs, the interlamellar region is configured using a series of intercalants. Further, a thorough comparative analysis of their structures, morphologies, and electrochemical performance is accomplished using various analytical techniques. The electrocatalytic oxidation ability of the CuMn-LDH toward TP molecules is markedly altered by incorporating various anions into the gallery region. The dynamic attributes of the developed sensor, such as a wide linear response (0.02-289.2 μM), a low detection limit (0.0026 μM), and good anti-interfering ability, acclaim its superior viability for real-time detection of TP with exceptional tolerance to the presence of foreign moieties. Hence, this work manifests that the nature of intercalants is a vital aspect to consider while designing LDH-based electrochemical probes to detect priority pollutants.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Megha Maria Stanley
- Department
of Chemistry, Stella Maris College, Affiliated
to the University of Madras, Chennai, Tamil Nadu 600086, India
| | - Sea-Fue Wang
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Yung-Fu Hsu
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Mary George
- Department
of Chemistry, Stella Maris College, Affiliated
to the University of Madras, Chennai, Tamil Nadu 600086, India
| |
Collapse
|
4
|
Selvi SV, Krishnapandi A, Damastuti R, Prasannan A, Liang ST, Hong PD, Kim SC. Effectively Reinforced α-Bi 2O 3 MPs/PDA-RGO Sensor for Selective Modality Sensing of a Hazardous Phenolic Compound. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20563-20574. [PMID: 38109259 DOI: 10.1021/acs.jafc.3c03488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The phenolic compound trichlorophenol (TCP) is an ingredient in fungicides and herbicides. This compound's high stability, bioaccumulation, toxicity, and poor biodegradability result in severe environmental and biological health issues. Consequently, it is crucial to have an affordable and sensitive method for detecting TCP in environmental samples. In this study, α-phase bismuth oxide microplates and polydopamine-functionalized reduced graphene oxide (α-Bi2O3 MPs/PDA-RGO) were synthesized using a simple ultrasonic method and characterized with various analytical and physical characterizations. The conversion of the catechol moieties present in the resulting PDA-RGO material into quinones facilitates productive interactions with diverse functional groups, such as hydroxyl, amine, and imine. Consequently, the compounds 2,4,6-trichlorophenol (TCP) engages in electrochemical interactions with the aforementioned functional groups. As a result, TCP shows more excellent selectivity on the designed α-Bi2O3 MPs/PDA-RGO/SPCE sensor. Under the optimized conditions, the sensor demonstrated a lower detection limit (0.0042 μM), a limit of quantification (0.0078 μM), good sensitivity (2.24 μA μM-1 cm2), a wide linear range (0.019-190.7 and 212.7-1649 μM), and pinpoint specificity. The efficacy of the sensor is additionally validated through the accurate identification of TCP residues in water, soil, and food samples.
Collapse
Affiliation(s)
- Subash Vetri Selvi
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | | | - Retno Damastuti
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Adhimoorthi Prasannan
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Shu-Ting Liang
- Green Energy Nano Technology Co., Ltd., Taipei 104079, Taiwan
| | - Po-Da Hong
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsang 38541, Republic of Korea
| |
Collapse
|
5
|
Veerapandi G, Govindan R, Sekar C. Quick and accurate determination of hazardous phenolic compounds using CaCu 2O 3 nanorods based electrochemical sensor. CHEMOSPHERE 2023; 313:137370. [PMID: 36435324 DOI: 10.1016/j.chemosphere.2022.137370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
In the present work, we report the fabrication of a novel electrochemical sensor based on nanostructured CaCu2O3 as electrode material for the simultaneous determination of 2-Aminophenol (o-AP), 2-Chlorophenol (o-CP) and 2-Nitrophenol (o-NP). Nanorods-shaped CaCu2O3 have been synthesized by chemical precipitation method and characterized by powder X-ray diffraction (XRD), X-ray photo-electron microscopy (XPS), field emission electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Glassy carbon electrodes (3 mm diameter) have been modified using CaCu2O3 nanorods by drop-casting method. Cyclic voltammetry (CV) studies at CaCu2O3/GCE exhibited excellent electrochemical behaviours towards the oxidation of 2-AP, 2-CP and 2-NP at different potentials well separated from each other. The CaCu2O3/GCE displayed the lowest detection limits of 5.74 nM (0.626 ppb), 1.38 nM (0.177 ppb) and 1.03 nM (0.143 ppb) for 2-AP, 2-CP and 2-NP respectively over wide measurable linear ranges of 175 nM-68 μM (2-AP), 50 nM-90 μM (2-CP) and 25 nM-32 μM (2-NP). Cyclic stability studies showed a loss of 7%, 13% and 14% from initial current responses after conducting 100 cycles of CV for 2-AP, 2-CP and 2-NP in PBS (pH 7.0) which indicated the excellent stability of the fabricated electrode. Reproducibility studies of six different CaCu2O3/GCEs exhibited good recoveries in the order of 3.23% (2-AP), 3.54% (2-CP) and 2.46% (2-NP) respectively. The fabricated electrode with excellent sensitivity, stability and reproducibility has been successfully applied for the determination of 2-AP, 2-CP and 2-NP simultaneously in tap water and agricultural water samples. Selectivity studies carried out on CaCu2O3/GCE revealed its ability to detect 4-aminophenol and 4-nitorphenol at different oxidation potentials. High performance liquid chromatography (HPLC) studies have been carried out to validate the practical utility of the fabricated sensor.
Collapse
Affiliation(s)
- G Veerapandi
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630 004, Tamilnadu, India
| | - R Govindan
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630 004, Tamilnadu, India; Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamilnadu, India
| | - C Sekar
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630 004, Tamilnadu, India.
| |
Collapse
|
6
|
Yang Y, Zhou X, Dong R, Wang Y, Li Z, Xue Y, Li Q. A Highly Selective and Sensitive Nano-Silver sol Sensor for Hg2+ and Fe3+: Green Preparation and Mechanism. Polymers (Basel) 2022; 14:polym14183745. [PMID: 36145888 PMCID: PMC9504428 DOI: 10.3390/polym14183745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The development of highly selective and highly sensitive nanometer colorimetric chemical sensors is an urgent requirement in the immediate detection of heavy metal ions. In this work, silver-nanoparticle (Ag NPs)-based chemosensors were prepared by a simple and green method, in which the silver nitrate, carboxymethyl cellulose sodium (CMS) and Polyvinylpyrrolidone (PVP), and glucose are used as the silver source, double stabilizer and green reductant, respectively. The obtained colloidal CMS/PVP-Ag NPs showed a high dispersibility and stability, and creating a high selectivity and sensitivity to detect Hg2+ and Fe3+ with remarkable and rapid color variation. Low limits of detection (LOD) of 7.1 nM (0–20 μM) and 15.2 nM (20–100 μM) for Hg2+ and 3.6 nM for Fe3+ were achieved. More importantly, the CMS/PVP-Ag NPs has a high sensitivity even in a complex system with multiple heavy ions, the result of the practical ability to detect Hg2+ and Fe3+ in tap water and seawater reached a rational range of 98.33~104.2% (Hg2+) and 98.85~104.80% (Fe3+), indicating the great potential of the as-prepared nanocomposites colorimetric chemosensor for practical applications.
Collapse
Affiliation(s)
- Yining Yang
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Xiaodong Zhou
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Ruitao Dong
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Yanwei Wang
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Zichao Li
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yun Xue
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
- Correspondence:
| | - Qun Li
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Milikić J, Knežević S, Stojadinović S, Alsaiari M, Harraz FA, Santos DMF, Šljukić B. Facile Synthesis of Low-Cost Copper-Silver and Cobalt-Silver Alloy Nanoparticles on Reduced Graphene Oxide as Efficient Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. NANOMATERIALS 2022; 12:nano12152657. [PMID: 35957088 PMCID: PMC9370632 DOI: 10.3390/nano12152657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023]
Abstract
Copper-silver and cobalt-silver alloy nanoparticles deposited on reduced graphene oxide (CuAg/rGO and CoAg/rGO) were synthesized and examined as electrocatalysts for oxygen reduction reaction (ORR) and hydrogen peroxide reduction reaction (HPRR) in alkaline media. Characterization of the prepared samples was done by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction analysis (XRD), and scanning electron microscopy with integrated energy-dispersive X-ray spectroscopy (SEM-EDS). CuAg/rGO and CoAg/rGO nanoparticles diameter ranged from 0.4 to 9.2 nm. The Ag loading was ca. 40 wt.% for both electrocatalysts, with that for Cu and Co being 35 and 17 wt.%, respectively. CoAg/rGO electrocatalyst showed a Tafel slope of 109 mV dec−1, significantly lower than that for CuAg/rGO (184 mV dec−1), suggesting faster ORR kinetics. Additionally, a higher diffusion current density was obtained for CoAg/rGO (−2.63 mA cm−2) than for CuAg/rGO (−1.74 mA cm−2). The average value of the number of electrons transferred during ORR was 2.8 for CuAg/rGO and 3.3 for CoAg/rGO electrocatalyst, further confirming the higher ORR activity of the latter. On the other hand, CuAg/rGO showed higher peak current densities (−3.96 mA cm−2) for HPRR compared to those recorded for CoAg/rGO electrocatalyst (−1.96 mA cm−2).
Collapse
Affiliation(s)
- Jadranka Milikić
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia;
- Correspondence: (J.M.); (D.M.F.S.)
| | - Sara Knežević
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Stevan Stojadinović
- University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia; (M.A.); (F.A.H.)
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia; (M.A.); (F.A.H.)
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan 11421, Cairo, Egypt
| | - Diogo M. F. Santos
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Correspondence: (J.M.); (D.M.F.S.)
| | - Biljana Šljukić
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia;
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
8
|
Sun J, Liu X, Chen L, Peng L, Peng X, Gan T. Engineering of core−shell Au nanorods@ZIF−8 electrocatalyst for sensitive voltammetric determination of 2−chlorophenol in aquaculture. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herein, polyvinylpyrrolidone−stabilized Au nanorods were controllably implanted into ZIF−8 to form well−uniformed AuNRs@ZIF−8 electrocatalyst with multicore−shell structure. After characterizing the chemical and physical properties, a novel electrochemical sensing platform was fabricated for 2−chlorophenol (2−CP) monitoring based on the AuNRs@ZIF−8 modified glassy carbon electrode. Due to the unique electrochemical property of AuNRs cores and ultra−porous architecture of ZIF−8 shell, the electrocatalyst would effectively accelerate the electron transfer and greatly improve the electrochemical response of 2−CP. Under the optimized experimental conditions, the oxidation peak current of 2−CP enhanced linearly with the increase of its concentration between 0.010 and 40 μM, and the limit of detection was 3.6 nM based on S/N = 3. Meanwhile, the prepared AuNRs@ZIF−8 electrode showed favorable stability, reproducibility, and selectivity, which could be applied to the accurate analysis of 2−CP in aquaculture with standard addition recovery ranging from 96.67% to 104.0%.
Collapse
Affiliation(s)
- Junyong Sun
- Xinyang Normal University, 118397, Xingxiang, Henan, China
| | - Xian Liu
- Xinyang Normal University, 118397, Xingxiang, Henan, China
| | - Like Chen
- Xinyang Normal University, 118397, Xingxiang, Henan, China
| | - Lijun Peng
- Hubei Academy of Agricultural Science, Wuhan, China
| | - Xitian Peng
- Hubei Academy of Agricultural Science, Wuhan, China
| | - Tian Gan
- Xinyang Normal University, 118397, Xingxiang, Henan, China
| |
Collapse
|
9
|
Sawut N, Jamal R, Abdiryim T, Ali A, Kadir A, Helil Z, Niyaz M, Liu Y. Enhanced electrocatalytic performance of hydroxyl‑grafted PProDOT:PSS/YRFC/Pt composites for direct alcohol fuel cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106776] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Sensing Methods for Hazardous Phenolic Compounds Based on Graphene and Conducting Polymers-Based Materials. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been known for years that the phenolic compounds are able to exert harmful effects toward living organisms including humans due to their high toxicity. Living organisms were exposed to these phenolic compounds as they were released into the environment as waste products from several fast-growing industries. In this regard, tremendous efforts have been made by researchers to develop sensing methods for the detection of these phenolic compounds. Graphene and conducting polymers-based materials have arisen as a high potential sensing layer to improve the performance of the developed sensors. Henceforth, this paper reviews the existing investigations on graphene and conducting polymer-based materials incorporated with various sensors that aimed to detect hazardous phenolic compounds, i.e., phenol, 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, pentachlorophenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, and 2,4-dimethylphenol. The whole picture and up-to-date information on the graphene and conducting polymers-based sensors are arranged in systematic chronological order to provide a clearer insight in this research area. The future perspectives of this study are also included, and the development of sensing methods for hazardous phenolic compounds using graphene and conducting polymers-based materials is expected to grow more in the future.
Collapse
|
12
|
Voltammetric determination of lactic acid in milk samples using carbon paste electrode modified with chitosan-based magnetic molecularly imprinted polymer. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Gopi PK, Ravikumar CH, Chen SM, Chen TW, Ali MA, Al-Hemaid FMA, El-Shikh MS, Alnakhli AK. Tailoring of bismuth vanadate impregnated on molybdenum/graphene oxide sheets for sensitive detection of environmental pollutants 2, 4, 6 trichlorophenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111934. [PMID: 33472109 DOI: 10.1016/j.ecoenv.2021.111934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/31/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
In the present work, we reported a one pot simple colloidal-gel synthesis of molybdenum bismuth vanadate (MoBiVO4). The charge transfer property of MoBiVO4 was improved by developing a composite with graphene oxide (GO) through sonochemical technique. The optical and morphological analysis revealed that successful formation of GO-MoBiVO4 composite without any other filth. As prepared composite was used to modify the superficial surface of glassy carbon electrode (GO-MoBiVO4/GCE) and applied for the selective detection of environmental pollutant 2, 4, 6 trichrlorophenol (TCP). The electron channeling capability of GO with molybdenum bismuth vanadate possessed a superior electrochemical response in cyclic voltammetry (CV), whereas bare GCE and other modified electrodes provided an inferior response with lower current response. The differential pulse voltammetry (DPV) response of TCP at GO-MoBiVO4/GCE outcomes with low level detection of 0.4 nM and higher sensitivity of 2.49 μA μM-1 cm-2 with wider linear response 0.199-17.83 μM. Furthermore, the proposed sensor applied in practicability analysis and the results indicates GO-MoBiVO4/GCE prominent towards electrochemical detection of TCP.
Collapse
Affiliation(s)
- Praveen Kumar Gopi
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Chandan Hunsur Ravikumar
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkhuntien-Chaitalay Road, Thakam, Bangkok 10150, Thailand; Centre for Nano and Materials Sciences, Jain global campus, Jain University, Jakkasandra post, Ramanagaram 52110, India
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad M A Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Suliman El-Shikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - A K Alnakhli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Akilarasan M, Tamilalagan E, Chen SM, Maheshwaran S, Chen TW, Al-Mohaimeed AM, Al-Onazi WA, Elshikh MS. An eco-friendly low-temperature synthetic approach towards micro-pebble-structured GO@SrTiO 3 nanocomposites for the detection of 2,4,6-trichlorophenol in environmental samples. Mikrochim Acta 2021; 188:72. [PMID: 33550432 DOI: 10.1007/s00604-021-04729-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/22/2021] [Indexed: 01/10/2023]
Abstract
The low-temperature synthesis of the graphene oxide-wrapped perovskite-type strontium titanate nanocomposites (GO@SrTiO3-NC) is reported for the electrochemical sensing of organochlorine pesticide 2,4,6-trichlorophenol (TCP) detection. The as-prepared GO@SrTiO3 nanocomposites provide a large surface area, excellent conductivity, and active sites, which are more favorable to the catalysis of TCP. The synergistic effect between the GO and the perovskite SrTiO3 results in the extended working range of 0.01 to 1.47 and 1.47 to 434.4 μM with a very low detection limit of 3.21 nM towards TCP detection. Moreover, the prepared sensor possessed good selectivity and long-term stability. Finally, the practical applicability of the sensor was tested in environmental samples of river water and soil, exhibiting adequate recovery values.
Collapse
Affiliation(s)
- Muthumariappan Akilarasan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Elayappan Tamilalagan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Selvarasu Maheshwaran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.,Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.,Department of Materials, Imperial College London, London, SW72AZ, UK
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Wedad A Al-Onazi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
15
|
Wang L, Liu Y, Yang R, Li J, Qu L. AgNPs–PDA–GR nanocomposites-based molecularly imprinted electrochemical sensor for highly recognition of 2,4,6-trichlorophenol. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Stoytcheva M, Zlatev R, Velkova Z, Gochev V, Ayala A, Montero G, Valdez B. Adsorptive Stripping Voltammetric Determination of 2,4‐Dichlorophenol by Laponite Modified Carbon Paste Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.202060444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Roumen Zlatev
- Universidad Autónoma de Baja California Instituto de Ingeniería Mexicali México
| | - Zdravka Velkova
- Medical University of Plovdiv Faculty of Pharmacy Dep. Chemical Sciences Plovdiv Bulgaria
| | - Velizar Gochev
- Plovdiv University “P. Hilendarski” Faculty of Biology Dep. Biochemistry and Microbiology Plovdiv Bulgaria
| | - Alan Ayala
- Universidad Autónoma de Baja California Instituto de Ingeniería Mexicali México
| | - Gisela Montero
- Universidad Autónoma de Baja California Instituto de Ingeniería Mexicali México
| | - Benjamín Valdez
- Universidad Autónoma de Baja California Instituto de Ingeniería Mexicali México
| |
Collapse
|
17
|
Determination of 2,4,6-TRICHLOROPHENOL in Beverages Using Voltammetry: Optimization and Validation Studies. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01716-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Xue Y, Ma L, Zhang L, Zhao W, Li Z, Li Q. A Green, Rapid and Efficient Dual-Sensors for Highly Selective and Sensitive Detection of Cation (Hg 2+) and Anion (S 2-) Ions Based on CMS/AgNPs Composites. Polymers (Basel) 2020; 12:polym12010113. [PMID: 31948031 PMCID: PMC7023171 DOI: 10.3390/polym12010113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Detection of mercury (Hg2+) and sulfide (S2−), universal and well-known toxic ions, is crucial in monitoring several diseases. How to design and fabricate the high-performance sensor for simultaneously and accurately detecting the Hg2+ and S2− is critical. Herein, we proposed a novel and convenient strategy for optical detection of Hg2+ and S2− by employing a carboxymethyl cellulose sodium/silver nanoparticle (CMS/AgNPs) colloidal solution, in which AgNPs were used as monitor for Hg2+ and S2−, and the CMS was utilized as both the stabilizer and the hydrophilic substrate for AgNPs. Well-identifiable peaks for Hg2+ and S2– were obtained in water based on UV–VIS absorption spectra, the absorbance intensity and/or position of nano-silver vary with the addition of Hg2+ cation and S2– anion, accompanying with color change. Impressively, the optimal AgNPs anchored CMS exhibited a high sensitivity and selectivity toward Hg2+ and S2−, the change in absorbance was linear with the concentration of Hg2+ (0–50 μM) and S2− (15–70 μM), and the lowest limits of detection (LOD) were 1.8 × 10−8 M and 2.4 × 10−7 M, respectively. More importantly, owing to the superior properties in testing Hg2+ and S2−, the fabricated sensor was successfully applied for detection of target ions in lake and tap water samples. All these good results implied that the designed strategy and as-designed samples is promising in detecting cation (Hg2+) and anion (S2−) ions and open up new opportunities for selecting other kinds of ions.
Collapse
Affiliation(s)
- Yun Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.X.); (L.M.); (L.Z.); (W.Z.)
| | - Lina Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.X.); (L.M.); (L.Z.); (W.Z.)
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.X.); (L.M.); (L.Z.); (W.Z.)
| | - Wanting Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.X.); (L.M.); (L.Z.); (W.Z.)
| | - Zichao Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Qun Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (Y.X.); (L.M.); (L.Z.); (W.Z.)
- Correspondence: ; Tel.: +86-532-8595-0705
| |
Collapse
|
19
|
Zhang C, Miao P, Sun M, Yan M, Liu H. Progress in miRNA Detection Using Graphene Material-Based Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901867. [PMID: 31379135 DOI: 10.1002/smll.201901867] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/20/2019] [Indexed: 05/16/2023]
Abstract
MicroRNAs (miRNAs) are short, endogenous, noncoding RNAs that play critical roles in physiologic and pathologic processes and are vital biomarkers for several disease diagnostics and therapeutics. Therefore, rapid, low-cost, sensitive, and selective detection of miRNAs is of paramount importance and has aroused increasing attention in the field of medical research. Among the various reported miRNA sensors, devices based on graphene and its derivatives, which form functional supramolecular nanoassemblies of π-conjugated molecules, have been revealed to have great potential due to their extraordinary electrical, chemical, optical, mechanical, and structural properties. This Review critically and comprehensively summarizes the recent progress in miRNA detection based on graphene and its derivative materials, with an emphasis on i) the underlying working principles of these types of sensors, and the unique roles and advantages of graphene materials; ii) state-of-the-art protocols recently developed for high-performance miRNA sensing, including representative examples; and iii) perspectives and current challenges for graphene sensors. This Review intends to provide readers with a deep understanding of the design and future of miRNA detection devices.
Collapse
Affiliation(s)
- Congcong Zhang
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
| | - Pei Miao
- Department of Chemistry, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250011, China
| | - Mingyuan Sun
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
| | - Mei Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250011, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
20
|
Gan T, Li J, Li H, Liu Y, Xu Z. Synthesis of Au nanorod-embedded and graphene oxide-wrapped microporous ZIF-8 with high electrocatalytic activity for the sensing of pesticides. NANOSCALE 2019; 11:7839-7849. [PMID: 30951076 DOI: 10.1039/c9nr01101c] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multifunctional metal-organic framework-based composites display great potentials as electrode materials. Herein, highly dispersed Au nanorods were successfully encapsulated inside the zeolitic imidazolate framework ZIF-8 (AuNRs@ZIF-8) by epitaxial growth or nucleus coalescence. The microporous ZIF-8 shell functions as a protective coating to effectively prevent AuNRs from dissolution, aggregation, and migration during the electrochemical testing, while it provides numerous channels for the mass transfer of reactants to the AuNR surface. The as-synthesized AuNRs@ZIF-8 was then encapsulated in graphene oxide (GO) nanosheets to enhance the chemical resistance of the multicore-shell support, which possesses permanent porosity as well as high specific surface area and hydrophilicity. The excellent electrocatalytic performance of the resulting ternary AuNRs@ZIF-8@GO was demonstrated by the highly sensitive sensing of niclosamide, dichlorophen, carbendazim, and diuron, which outperformed the reported electrocatalysts for these four pesticides. This nanocomposite thus holds great promise as a catalyst for electrochemical sensor fabrication due to its abundant multiple active sites, enhanced catalytic activity, and remarkable stability.
Collapse
Affiliation(s)
- Tian Gan
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China.
| | | | | | | | | |
Collapse
|
21
|
Elaiyappillai E, Kogularasu S, Chen SM, Akilarasan M, Joshua CE, Johnson PM, Ali MA, Al-Hemaid FMA, Elshikh MS. Sonochemically recovered silver oxide nanoparticles from the wastewater of photo film processing units as an electrode material for supercapacitor and sensing of 2, 4, 6-trichlorophenol in agricultural soil samples. ULTRASONICS SONOCHEMISTRY 2019; 50:255-264. [PMID: 30274888 DOI: 10.1016/j.ultsonch.2018.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/09/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
The present work describes the sensing application and supercapacitive behavior of silver oxide nanoparticles recovered from wastewater of photo film processing units via one-pot green sonochemical recovery process. The recovered silver oxide nanoparticles (Ag2O NPs) were characterized by spectral techniques such as FT-IR, Raman, UV-Vis and analytical tools such as XRD, FE-SEM, TEM, EDX, XPS and BET. In view of Ag2O NPs as electrode material with wide technological applications, the recovered Ag2O NPs were examined for their sensing and supercapacitive behavior. The developed sensor was explored to detect 2, 4, 6-trichlorophenol, and as expected it shows moral parameters which are required of an effective sensor. Therefore, it was exploited for the quantification of 2, 4, 6-trichlorophenol in soil samples from the agricultural area. Cyclic voltammetric (CV), Galvanostatic Charge-Discharge (GCD) and Electrochemical Impedance Spectroscopic (EIS) studies on the recovered Ag2O NPs coated Ni foam electrode depicted the pronounced capacitive behavior. The GCD studies revealed an enhanced electrochemical performance, particularly with the large specific capacitance of 530 F/g at a current density of 1 A/g. The cyclic stability of the electrode material was identified with 88% retention in specific capacitance even after 5000 GCD cycles. These results strongly proved that the recovered Ag2O NPs are potential candidates for sensing and supercapacitor applications.
Collapse
Affiliation(s)
| | - Sakthivel Kogularasu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - Muthumariappan Akilarasan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | | | | | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad M A Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Zhang T, Wang L, Gao C, Zhao C, Wang Y, Wang J. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2,4,6-trichlorophenol. NANOTECHNOLOGY 2018; 29:074003. [PMID: 29251262 DOI: 10.1088/1361-6528/aaa26e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hemin immobilized into copper-based metal-organic frameworks was successfully prepared and used as a new electrode material for sensitive electrochemical biosensing. X-ray diffraction patterns, Fourier transform infrared spectra, scanning electron microscopy, UV-vis absorption spectroscopy, and cyclic voltammetry were used to characterize the resultant composites. Due to the interaction between the copper atom groups and hemin, the constrained environment in Cu-MOF-74 acts as a matrix to avoid the dimerization of enzyme molecules and retain its biological activity. The hemin/Cu-MOF composites demonstrated enhanced electrocatalytical activity and high stability towards the oxidation of 2,4,6-trichlorophenol. Under optimum experimental conditions, the sensor showed a wide linear relationship over the range of 0.01-9 μmol L-1 with a detection limit (3σ) of 0.005 μmol L-1. The relative standard deviations were 4.6% and 3.5% for five repeated measurements of 0.5 and 5 μmol L-1 2,4,6-trichlorophenol, respectively. The detection platforms for 2,4,6-trichlorophenol developed here not only indicate that hemin/Cu-MOF-74 possesses intrinsic biological reactivity, but also enable further work to be conducted towards the application of enzyme-containing metal-organic frameworks in electrochemical biosensors.
Collapse
Affiliation(s)
- Ting Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China. State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Gan T, Wang Z, Wang Y, Li X, Sun J, Liu Y. Flexible graphene oxide−wrapped SnO2 hollow spheres with high electrochemical sensing performance in simultaneous determination of 4−aminophenol and 4−chlorophenol. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Adhikari S, Sarkar D, Madras G. Hierarchical Design of CuS Architectures for Visible Light Photocatalysis of 4-Chlorophenol. ACS OMEGA 2017; 2:4009-4021. [PMID: 31457704 PMCID: PMC6641585 DOI: 10.1021/acsomega.7b00669] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/18/2017] [Indexed: 05/26/2023]
Abstract
Hydrothermal-assisted CuS hierarchical architectures were grown in the presence of anionic sulfur sources, and the investigation of their degradation efficiency for a pesticide 4-chlorophenol (4-CP) under visible light irradiation was carried out. The dissociation of S2- from the sulfur compound governs the nucleation of CuS followed by a specific pattern of growth to produce different morphologies. The self-assembled covellite spherical CuS flower architecture assembles in the presence of thiourea and exhibits the highest photodegradation activity. The open architecture of ∼2.3 μm spherical CuS flowers consisting of a ∼100 nm thick sheet encompasses a comparatively high surface area and particle growth along the (110) plane that facilitates more active sites for catalytic activity enhancement. The catalyst loading for 4-CP degradation has been optimized, and a detailed trapping mechanism has been explored.
Collapse
Affiliation(s)
- Sangeeta Adhikari
- Department
of Chemical Engineering, Indian Institute
of Science, Bangalore 560012, Karnataka, India
| | - Debasish Sarkar
- Department
of Ceramic Engineering, National Institute
of Technology, Rourkela 769008, Odisha, India
| | - Giridhar Madras
- Department
of Chemical Engineering, Indian Institute
of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
25
|
Yuan H, Zhang S, Zhao B, Weng Y, Zhu X, Li S, Zhang L, Zhang Y. Enzymatic Reactor with Trypsin Immobilized on Graphene Oxide Modified Polymer Microspheres To Achieve Automated Proteome Quantification. Anal Chem 2017; 89:6324-6329. [DOI: 10.1021/acs.analchem.7b00682] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huiming Yuan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shen Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yejing Weng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xudong Zhu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Senwu Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
26
|
Monodisperse raspberry-like multihollow polymer/Ag nanocomposite microspheres for rapid catalytic degradation of methylene blue. J Colloid Interface Sci 2017; 491:294-304. [DOI: 10.1016/j.jcis.2016.12.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
|
27
|
Peleyeju MG, Idris AO, Umukoro EH, Babalola JO, Arotiba OA. Electrochemical Detection of 2,4-Dichlorophenol on a Ternary Composite Electrode of Diamond, Graphene, and Polyaniline. ChemElectroChem 2017. [DOI: 10.1002/celc.201600621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Moses G. Peleyeju
- Department of Applied Chemistry; University of Johannesburg; Doornfontein South Africa
- DST/Mintek Nanotechnology Innovation Centre; University of Johannesburg; Johannesburg South Africa
| | - Azeez O. Idris
- Department of Applied Chemistry; University of Johannesburg; Doornfontein South Africa
| | - Eseoghene H. Umukoro
- Department of Applied Chemistry; University of Johannesburg; Doornfontein South Africa
| | | | - Omotayo A. Arotiba
- Department of Applied Chemistry; University of Johannesburg; Doornfontein South Africa
- DST/Mintek Nanotechnology Innovation Centre; University of Johannesburg; Johannesburg South Africa
- Centre for Nanomaterials Science Research; University of Johannesburg; Johannesburg South Africa
| |
Collapse
|
28
|
Sharma S, Prakash V, Mehta S. Graphene/silver nanocomposites-potential electron mediators for proliferation in electrochemical sensing and SERS activity. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Gan T, Sun J, Yu M, Wang K, Lv Z, Liu Y. Amplified electrochemical determination of maltol in food based on graphene oxide-wrapped tin oxide@carbon nanospheres. Food Chem 2017; 214:82-89. [DOI: 10.1016/j.foodchem.2016.07.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 06/25/2016] [Accepted: 07/09/2016] [Indexed: 11/29/2022]
|
30
|
Zu Y, Zhang Y, Xu K, Zhao F. A graphene oxide–MgWO4 nanocomposite as an efficient catalyst for the thermal decomposition of RDX, HMX. RSC Adv 2016. [DOI: 10.1039/c6ra05101d] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A GO–MgWO4 nanocomposite was prepared by a facile chemical method and characterized by XRD, IR, SEM, TEM, EDS and XPS.
Collapse
Affiliation(s)
- Yanqing Zu
- School of Chemical Engineering
- Northwest University
- Xi'an
- China
| | - Yu Zhang
- School of Chemical Engineering
- Northwest University
- Xi'an
- China
| | - Kangzhen Xu
- School of Chemical Engineering
- Northwest University
- Xi'an
- China
| | - Fengqi Zhao
- Xi'an Modern Chemistry Research Institute
- Xi'an
- China
| |
Collapse
|
31
|
Balkhoyor HB, Rahman MM, Asiri AM. Effect of Ce doping into ZnO nanostructures to enhance the phenolic sensor performance. RSC Adv 2016. [DOI: 10.1039/c6ra10863f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Various Ce-doped ZnO nanostructures (Ce/ZnO NSs) were prepared by a facile wet chemical method using reducing agents in alkaline medium.
Collapse
Affiliation(s)
| | - Mohammed M. Rahman
- Chemistry Department
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)
| | - Abdullah M. Asiri
- Chemistry Department
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)
| |
Collapse
|