1
|
Ranjan A, Rajput VD, Shende S, Saxena P, Prazdnova EV, Sushkova S, Arora J, Chauhan A, Jindal T, Zargar SM, Minkina T. Eco-friendly fabrication of Zn-based nanoparticles: implications in agricultural advancement and elucidation of toxicity aspects. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4130-4167. [PMID: 40189734 DOI: 10.1002/jsfa.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 05/17/2025]
Abstract
Zinc (Zn) is a vital micronutrient required for optimal plant growth and soil fertility. Its use in the form of nanoparticles (NPs) has gained significant attention in agricultural applications. Green synthesized Zn-based NPs offer an eco-friendly solution to several conventional problems in agriculture. Several plants, bacteria, fungi and yeast have shown significant potential in fabricating Zn NPs that can provide environmentally friendly solutions in agriculture and the approach is aligned with sustainable agricultural practices, reducing the dependency on harmful agrochemicals. Zn-based NPs act as plant growth promoters, enhance crop yield, promote resilience to abiotic stressors and are efficient crop protection agents. Their role as a smart delivery system, enabling targeted and controlled release of agrochemicals, further signifies their potential use in agriculture. Because agriculture requires repeated applications hence, the toxicological aspects of Zn NPs cannot be ignored. Zn NPs are reported to cause phytotoxicity, including root damage, physiological and biochemical disturbances, and genotoxic effects. Furthermore, exposure to Zn NPs poses risks to soil microbiota, and aquatic and terrestrial organisms potentially impacting the ecosystem. The green synthesis of Zn-based NPs has a promising aspect for advancing sustainable agriculture by reducing agrochemical use and improving crop productivity. Their diverse applications as plant growth promoters, crop protectants and smart delivery systems emphasize their potential. However, the toxicological aspects are essential to ensure the standardization of doses for their safe and effective use. Further research would help address such concerns and help in developing viable and eco-friendly solutions for modern agriculture. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Sudhir Shende
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Pallavi Saxena
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
- Adjunct Faculty, Centre for Research and Outcome, Chitkara University, Rajpura, India
| | - Evgeniya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jayati Arora
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Sajad Majeed Zargar
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
2
|
Li J, Wang F, Liu J, Bashir S, Ma S, Cao M, Guo J, Gao Z, Xu Q, Liu S, Sun K. ZnO Nanofertilizer Reduced Organic Phosphorus Transformation and Altered Microbial Function in Soil for Sustainable Agriculture. ACS NANO 2025; 19:6942-6954. [PMID: 39937183 DOI: 10.1021/acsnano.4c14457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The impacts of zinc oxide nanoparticles (ZnO NPs) as nanofertilizers on the transformation of phytogenic organic phosphorus (OP), specifically phytic acid (PA) and soy lecithin (LE), as well as their effects on soil microbial functions, remain insufficiently characterized. This study employed a 60-day soil microuniverse experiment to investigate microbial responses to OP under ZnO NPs exposure, focusing on soil physicochemical properties, phosphorus (P) and Zn species transformations, bacterial community and function. At low concentrations (5 and 20 mg/kg), ZnO NPs did not significantly reduce the available P content, but they reduced the transformation of OP into other P species. Synchrotron-based X-ray absorption near-edge spectroscopy revealed that ZnO NPs increased the relative abundance of PA from 0.6 to 3.5% and LE from 58.4 to 67.1%. Bacterial community composition was influenced by P species rather than ZnO NPs concentration. A coupled biogeochemical cycle among carbon, nitrogen and P was observed, with higher total phosphorus further enhancing the abundance of genes involved in P-related processes, such as OP mineralization genes, which increased 6-, 4-, and 2-fold in PAZ5, LEZ5, and PiZ5, respectively, compared to Z5. Carbon fixation genes generally increased in the P-added groups, exemplified by atoB, which encodes acetoacetyl-CoA thiolase, showing a 3.70-, 3.05-, and 3.47-fold increase compared to Z5. In contrast, denitrification genes, nirS, decreased by 0.08-, 0.10-, and 0.33-fold. These findings shed light on the fate of ZnO nanofertilizers and P, supporting the sustainable application of nanofertilizers and the improvement of soil fertility.
Collapse
Affiliation(s)
- Junhong Li
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources of China, National Research Center for Geo-analysis (NRCGA), Beijing 100037, China
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China
| | - Jiuchen Liu
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources of China, National Research Center for Geo-analysis (NRCGA), Beijing 100037, China
| | - Safdar Bashir
- Department of Soil and Water Systems, University of Idaho, Moscow 83843, Idaho, United States
| | - Shuai Ma
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China
| | - Manman Cao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China
| | - Jing Guo
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Ziqi Gao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China
| | - Qing Xu
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China
| | - Shuhu Liu
- Laboratory of Synchrotron Radiation, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100039, China
| | - Ke Sun
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China
| |
Collapse
|
3
|
Haider FU, Virk AL, Zhou S, Ul Ain N, Aguila LCR, Siddique KHM, Farooq M, Li Y. Impact of silicon nitride nanoparticles on soil organic carbon dynamics in subtropical evergreen forest ecosystems of China: An incubation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178682. [PMID: 39892230 DOI: 10.1016/j.scitotenv.2025.178682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Ensuring the stability of soil organic carbon (SOC) is vital for effective long-term carbon storage in forest ecosystems. While nanoparticles (NPs) have shown the potential to enhance SOC stability and reduce cumulative carbon mineralization rates (CCMR) in agricultural soils, their effects on forest soils remain largely unexplored. This study addresses this gap through an incubation experiment that evaluated the impact of silicon nitride nanoparticles (Si3N4-NPs) at varying concentrations [control, 0 mg kg-1 (NP0); 50 mg kg-1 (NP1); 100 mg kg-1 (NP2)] on SOC stability, CCMR, enzymatic activities, and microbial diversity across three forest ecosystems in the Dinghushan region of Guangdong, China: coniferous forest (CF), mixed conifer-broadleaf forest (MCBF), and monsoon evergreen broadleaf forest (MEF). The results revealed that Si3N4-NP application at the NP2 concentration significantly reduced CCMR by 40.82 % compared to the control (NP0). Moreover, NP2 substantially decreased the activities of key soil enzymes: β-glucosidase by 13.81 %, N-acetylglucosaminidase by 32.62 %, cellobiohydrolase by 59.12 %, and phenol oxidase by 26.40 %, relative to NP0. The NP2 treatment also enhanced total SOC retention by 24.62 % compared to NP0. Within SOC fractions, NP2 significantly impacted the less labile (C3) and non-labile (C4) fractions, which increased by 46.83 % and 57.84 %, respectively, compared to NP0. Meanwhile, the very labile C (C1) and labile C (C2) fractions showed non-significant changes. Furthermore, the Si3N4-NP applications induced distinct shifts in bacterial (Actinobacteriota) and fungal (Ascomycota) microbiomes, which correlated significantly with CCMR and total SOC. These findings indicate that Si3N4-NPs improve SOC stability and reduce mineralization in forest soils. However, field-scale validation is essential to assess the long-term impacts of Si3N4-NPs on microbial communities and overall ecosystem functioning. This study highlights the significance of NP concentration and forest type in developing effective strategies for SOC management to mitigate climate change.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ahmad Latif Virk
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Shuyidan Zhou
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Luis Carlos Ramos Aguila
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman.
| | - Yuelin Li
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
4
|
Shah GM, Shabbir Z, Rabbani F, Rashid MI, Bakhat HF, Naeem MA, Abbas G, Shah GA, Shahid N. Soil Texture Mediates the Toxicity of ZnO and Fe 3O 4 Nanoparticles to Microbial Activity. TOXICS 2025; 13:84. [PMID: 39997900 PMCID: PMC11860673 DOI: 10.3390/toxics13020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025]
Abstract
The widespread use of metal oxide nanoparticles (NPs) in industrial and household products has raised concerns about their potential soil contamination and its ecological consequences. The purpose of this study was to examine and compare the effects of iron oxide nanoparticles (FeONPs) and zinc oxide nanoparticles (ZnONPs) on the microbial activity and biochemical properties of differently textured soils. A mesocosm experiment was conducted using three soil types-clay loam (CL), sandy clay loam (SCL), and sandy loam (SL) amended with farmyard manure (FYM), ZnONPs and/or FeONPs. The results revealed significant differences in microbial colony-forming units (CFUs) and carbon dioxide (CO2) emissions in the order of SL > SCL > CL. Compared with those from the unfertilized control, the CO2 emissions from the FYM increased by 112%, 184% and 221% for CL, SCL and SL, respectively. The addition of ZnONPs and FeONPs notably increased the microbial biomass Zn/Fe, which reflected their consumption by the soil microbes. As a result, microbial CFUs were considerably reduced, which led to a 24%, 8% and 12% reduction in cumulative CO2 emissions after the addition of ZnONPs to the CL, SCL and SL soils, respectively. The respective decrements in the case of FeONPs were 19%, 2% and 12%. The temporal dynamics of CO2 emissions revealed that the CO2 emissions from CL with or without FYM/NPs did not differ much during the first few days and later became pronounced with time. Almost all the studied chemical characteristics of the soils were not strongly affected by the ZnONPs/FeONPs, except EC, which decreased with the addition of these nanomaterials to the manure-amended soils. Principal component analysis revealed that the ZnONPs and FeONPs are negatively corelated with microbial CFUs, and CO2 emission, with ZnONPs being more toxic to soil microbes than FeONPs, though their toxicity is strongly influenced by soil texture. Hence, these findings suggest that while both these NPs have the potential to impair microbial activity, their effects are mediated by soil texture.
Collapse
Affiliation(s)
- Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari 61100, Pakistan; (Z.S.); (F.R.); (H.F.B.); (M.A.N.)
| | - Zunaira Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari 61100, Pakistan; (Z.S.); (F.R.); (H.F.B.); (M.A.N.)
| | - Faiz Rabbani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari 61100, Pakistan; (Z.S.); (F.R.); (H.F.B.); (M.A.N.)
| | - Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia;
| | - Hafiz Faiq Bakhat
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari 61100, Pakistan; (Z.S.); (F.R.); (H.F.B.); (M.A.N.)
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari 61100, Pakistan; (Z.S.); (F.R.); (H.F.B.); (M.A.N.)
| | - Ghulam Abbas
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan;
| | - Ghulam Abbas Shah
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Naeem Shahid
- System-Ecotoxicology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
5
|
Zhang J, Yang B, Wang H, Dong J, Zhao X, Gao Y, Jiang H. Integrated microbial activities and isotope analysis unveil the effects of zinc oxide nanoparticles on straw decomposition in agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177460. [PMID: 39542265 DOI: 10.1016/j.scitotenv.2024.177460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely applied across multiple industries and ultimately accumulate in water and soil environments, raising significant concern about their toxicity to organisms in various ecosystems. While the effects of ZnONPs on microflora have been reported, their ecotoxicity to specific biogeochemical process and microbial activities and metabolic functions remains relatively unclear. In this study, a 56-day microcosmic experiment was conducted to explore the toxicity mechanism of ZnONPs (1000 mg kg-1 soil) on straw decomposition, soil organic carbon (SOC) mineralization, and changes in microbial activities and functions in agricultural soil with general wheat straw incorporation using the 13C isotope tracer technique. The results demonstrated that straw incorporation increased the rate of CO2 emission and promoted the straw decomposition. However, the presence of ZnONPs reduced the CO2 release rates during incubation period although the rates were still higher than those under the control due to straw incorporation. CO2 emissions from straw decomposition were dominant before the 7th day of incubation. After day 7, CO2 emissions from the mineralization of original SOC became dominant with their contribution increasing from 17.52 % on day 7 to 60.20 % on day 56 under straw incorporation. ZnONPs affected soil carbon composition and straw decomposition by inhibiting enzyme activity and reducing the abundance of functional genes, indirectly impacting CO2 release. Community Level Physiological Profiles (CLPP) showed ZnONPs reduced functional richness indices, including Shannon-Weiner index (H) and McIntosh index (U), and altered C substrate utilization patterns. This may be due to the direct toxicity of zinc ion (Zn2+) released by ZnONPs to the soil bacterial community. The findings provide insights into the toxicity effects of emerging contaminants on carbon transformation from straw and SOC. Further investigations involving metabolomics are required to reveal the essential effects of ZnONPs on biogeochemical cycle of elements in agricultural soil.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Jinhao Dong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaoxia Zhao
- Jinan Environmental Research Academy, Jinan 250098, China
| | - Yongchao Gao
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, China
| | - Hao Jiang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
6
|
Ouyang S, Bi Z, Zhou Q. Nanocolloids in the soil environment: Transformation, transport and ecological effects. ENVIRONMENTAL RESEARCH 2024; 262:119852. [PMID: 39197486 DOI: 10.1016/j.envres.2024.119852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Nanocolloids (Ncs) are ubiquitous in natural systems and play a critical role in the biogeochemical cycling of trace metals and the mobility of organic pollutants. However, the environmental behavior and ecological effects of Ncs in the soil remain largely unknown. The accumulation of Ncs may have detrimental or beneficial effects on different compartments of the soil environment. This review discusses the major transformation processes (e.g., agglomeration/aggregation, absorption, deposition, dissolution, and redox reactions), transport, bioavailability of Ncs, and their roles in element cycles in soil systems. Notably, Ncs can act as effective carriers for other pollutants and contribute to environmental pollution by spreading pathogens, nutrients, heavy metals, and organic contaminants to adjacent water bodies or groundwater. Finally, the key knowledge gaps are highlighted to better predict their potential risks, and important new directions include exploring the geochemical process and mechanism of Ncs's formation; elucidating the transformation, transport, and ultimate fate of Ncs, and their long-term effect on contaminants, organisms, and elemental cycling; and identifying the impact on the growth and quality of important crops, evaluating its dominant effect on agro-ecosystems in the soil environment.
Collapse
Affiliation(s)
- Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhicheng Bi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
7
|
Singh A, Rajput VD, Lalotra S, Agrawal S, Ghazaryan K, Singh J, Minkina T, Rajput P, Mandzhieva S, Alexiou A. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:148. [PMID: 38578547 DOI: 10.1007/s10653-024-01921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 04/06/2024]
Abstract
A slight variation in ecological milieu of plants, like drought, heavy metal toxicity, abrupt changes in temperature, flood, and salt stress disturbs the usual homeostasis or metabolism in plants. Among these stresses, salinity stress is particularly detrimental to the plants, leading to toxic effects and reduce crop productivity. In a saline environment, the accumulation of sodium and chloride ions up to toxic levels significantly correlates with intracellular osmotic pressure, and can result in morphological, physiological, and molecular alterations in plants. Increased soil salinity triggers salt stress signals that activate various cellular-subcellular mechanisms in plants to enable their survival in saline conditions. Plants can adapt saline conditions by maintaining ion homeostasis, activating osmotic stress pathways, modulating phytohormone signaling, regulating cytoskeleton dynamics, and maintaining cell wall integrity. To address ionic toxicity, researchers from diverse disciplines have explored novel approaches to support plant growth and enhance their resilience. One such approach is the application of nanoparticles as a foliar spray or seed priming agents positively improve the crop quality and yield by activating germination enzymes, maintaining reactive oxygen species homeostasis, promoting synthesis of compatible solutes, stimulating antioxidant defense mechanisms, and facilitating the formation of aquaporins in seeds and root cells for efficient water absorption under various abiotic stresses. Thus, the assessment mainly targets to provide an outline of the impact of salinity stress on plant metabolism and the resistance strategies employed by plants. Additionally, the review also summarized recent research efforts exploring the innovative applications of zinc oxide nanoparticles for reducing salt stress at biochemical, physiological, and molecular levels.
Collapse
Affiliation(s)
- Abhishek Singh
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Shivani Lalotra
- School of Agriculture, Lovely Professional University, Jalandhar, India
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, 391760, Gujarat, India
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Jagpreet Singh
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Priyadarshani Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| |
Collapse
|
8
|
Mgadi K, Ndaba B, Roopnarain A, Rama H, Adeleke R. Nanoparticle applications in agriculture: overview and response of plant-associated microorganisms. Front Microbiol 2024; 15:1354440. [PMID: 38511012 PMCID: PMC10951078 DOI: 10.3389/fmicb.2024.1354440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 03/22/2024] Open
Abstract
Globally, food security has become a critical concern due to the rise in human population and the current climate change crisis. Usage of conventional agrochemicals to maximize crop yields has resulted in the degradation of fertile soil, environmental pollution as well as human and agroecosystem health risks. Nanotechnology in agriculture is a fast-emerging and new area of research explored to improve crop productivity and nutrient-use efficiency using nano-sized agrochemicals at lower doses than conventional agrochemicals. Nanoparticles in agriculture are applied as nanofertilizers and/or nanopesticides. Positive results have been observed in terms of plant growth when using nano-based agricultural amendments. However, their continuous application may have adverse effects on plant-associated rhizospheric and endospheric microorganisms which often play a crucial role in plant growth, nutrient uptake, and disease prevention. While research shows that the application of nanoparticles has the potential to improve plant growth and yield, their effect on the diversity and function of plant-associated microorganisms remains under-explored. This review provides an overview of plant-associated microorganisms and their functions. Additionally, it highlights the response of plant-associated microorganisms to nanoparticle application and provides insight into areas of research required to promote sustainable and precision agricultural practices that incorporate nanofertilizers and nanopesticides.
Collapse
Affiliation(s)
- Katiso Mgadi
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Natural Resources and Engineering, Pretoria, South Africa
| | - Busiswa Ndaba
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Natural Resources and Engineering, Pretoria, South Africa
| | - Ashira Roopnarain
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Natural Resources and Engineering, Pretoria, South Africa
- Department of Environmental Sciences, University of South Africa–Florida Campus, Johannesburg, South Africa
| | - Haripriya Rama
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Natural Resources and Engineering, Pretoria, South Africa
- Department of Physics, University of South Africa–Florida Campus, Johannesburg, South Africa
| | - Rasheed Adeleke
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
9
|
Zhang F, Li S, Wang L, Li X. An Innovative Approach to Alleviate Zinc Oxide Nanoparticle Stress on Wheat through Nanobubble Irrigation. Int J Mol Sci 2024; 25:1896. [PMID: 38339174 PMCID: PMC10855730 DOI: 10.3390/ijms25031896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The extensive utilization of zinc oxide nanoparticles in consumer products and the industry has led to their substantial entry into the soil through air and surface runoff transportation, which causes ecotoxicity in agro-ecosystems and detrimental effects on crop production. Nanobubbles (diameter size < 1 µm) have many advantages, such as a high surface area, rapid mass transfer, and long retention time. In this study, wheat seedlings were irrigated with a 500 mg L-1 zinc oxide nanoparticle solution delivered in the form of nanobubble watering (nanobubble-ZnO-NPs). We found that nanobubble watering improved the growth and nutrient status of wheat exposed to zinc oxide nanoparticles, as evidenced by increased total foliar nitrogen and phosphorus, along with enhanced leaf dry mass per area. This effect can be attributed to nanobubbles disassembling zinc oxide aggregates formed due to soil organic carbon, thereby mitigating nutrient absorption limitations in plants. Furthermore, nanobubbles improved the capability of soil oxygen input, leading to increased root activity and glycolysis efficiency in wheat roots. This work provides valuable insights into the influence of nanobubble watering on soil quality and crop production and offers an innovative approach for agricultural irrigation that enhances the effectiveness and efficiency of water application.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxin Li
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichun Wang
- Key Laboratory of Crop Eco-Physiology and Farming System in the Northeastern, Institute of Agricultural Resources and Environment, Ministry of Agriculture and Rural Affair, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Xiangnan Li
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Daniel AI, Keyster M, Klein A. Biogenic zinc oxide nanoparticles: A viable agricultural tool to control plant pathogenic fungi and its potential effects on soil and plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165483. [PMID: 37442458 DOI: 10.1016/j.scitotenv.2023.165483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Fungal and bacterial pathogens represent some of the greatest challenges facing crop production globally and account for about 20-40 % crop losses annually. This review highlights the use of ZnO NPs as antimicrobial agents and explores their mechanisms of actions against disease causing plant fungal pathogens. The behavior of ZnO NPs in soil and their interactions with the soil components were also highlighted. The review discusses the potential effects of ZnO NPs on plants and their mechanisms of action on plants and how these mechanisms are related to their physicochemical properties. In addition, the reduction of ZnO NPs toxicity through surface modification and coating with silica is also addressed. Soil properties play a significant role in the dispersal, aggregation, stability, bioavailability, and transport of ZnO NPs and their release into the soil. The transport of ZnO NPs into the soil might influence soil components and, as a result, plant physiology. The harmful effects of ZnO NPs on plants and fungi are caused by a variety of processes, the most important of which is the formation of reactive oxygen species, lysosomal instability, DNA damage, and the reduction of oxidative stress by direct penetration/liberation of Zn2+ ions in plant/fungal cells. Based on these highlighted areas, this review concludes that ZnO NPs exhibit its antifungal activity via generations of reactive oxygen species, coupled with the inhibition of various metabolic pathways. Despite the numerous advantages of ZnO NPs, there is need to regulate its uses to minimize the harmful effects that may arise from its applications in the soil and plants.
Collapse
Affiliation(s)
- Augustine Innalegwu Daniel
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa; Department of Biochemistry, Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria.
| | - Marshall Keyster
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| | - Ashwil Klein
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| |
Collapse
|
11
|
Nepal J, Xin X, Maltais-Landry G, Ahmad W, Pereira J, Santra S, Wright AL, Ogram A, Stofella PJ, He Z. Carbon nanomaterials are a superior soil amendment for sandy soils than biochar based on impacts on lettuce growth, physiology and soil biochemical quality. NANOIMPACT 2023; 31:100480. [PMID: 37625671 DOI: 10.1016/j.impact.2023.100480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
A significant bottleneck of current agricultural systems remains the very low agronomic efficiency of conventional agrochemicals, particularly in sandy soils. Carbon nanomaterials (CNMs) have been proposed to address this inefficiency in sandy soils, which could potentially improve soil fertility and enhance crop growth and physiological processes. However, the effects of different rates of CNMs on crop physiological and soil biochemical quality in sandy soils must be compared to other carbon sources (e.g., biochar) before CNMs can be broadly used. To address this, a 70-day pot experiment was set up, growing lettuce under ten treatments: a negative control with no CNMs, biochar or fertilizer; a fertilizer-only control; three CNMs-only unfertilized treatments (CNMs at 200, 400 and 800 mg kg-1 soil); two biochar treatments with fertilizer (biochar at 0.5% and 1% by soil mass + fertilizer); and three CNMs treatments with fertilizer (CNMs at 200, 400 and 800 mg kg-1 soil + fertilizer). A novel amorphous, water-dispersible, and carboxyl-functionalized CNMs with pH of 5.5, zeta potential of -40.6 mV and primary particle diameter of 30-60 nm was used for this experiment. Compared to the fertilizer-only control, CNMs applied at low to medium levels (200-400 mg kg-1) significantly increased lettuce shoot biomass (20-21%), total chlorophyll (23-27%), and fluorescence and photosynthetic activities (4-10%), which was associated with greater soil nutrient availability (N: 24-58%, K: 68-111%) and higher leaf tissue accumulation (N: 25-27%; K: 66%). Low to medium levels of CNMs also significantly increased soil biochemical properties, such as higher soil microbial biomass carbon (27-29%) and urease enzyme activity (34-44%) relative to fertilizer-only applications. In contrast, biochar (0.5%) increased lettuce biomass relative to fertilizer-only but had no significant effect on soil fertility and biological properties. These results suggest that CNMs at low to medium application rates are a superior carbon-based amendment relative to biochar in sandy soils.
Collapse
Affiliation(s)
- Jaya Nepal
- Dept. of Soil, Water, and Ecosystem Sciences, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States of America
| | - Xiaoping Xin
- Dept. of Soil, Water, and Ecosystem Sciences, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States of America
| | - Gabriel Maltais-Landry
- Dept. of Soil, Water, and Ecosystem Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Wiqar Ahmad
- Department of Soil and Environmental Sciences, University of Agriculture, Peshawar, AMK Campus, 23200 Mardan, Pakistan
| | - Jorge Pereira
- Department of Chemistry, Nanoscience Technology Center, University of Central Florida, Orlando, FL, United States of America
| | - Swadeshmukul Santra
- Department of Chemistry, Nanoscience Technology Center, University of Central Florida, Orlando, FL, United States of America; Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States of America
| | - Alan L Wright
- Dept. of Soil, Water, and Ecosystem Sciences, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States of America
| | - Andy Ogram
- Dept. of Soil, Water, and Ecosystem Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Peter J Stofella
- Dept. of Horticultural Sciences, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States of America
| | - Zhenli He
- Dept. of Soil, Water, and Ecosystem Sciences, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States of America.
| |
Collapse
|
12
|
He G, Yang Y, Liu G, Zhang Q, Liu W. Global analysis of the perturbation effects of metal-based nanoparticles on soil nitrogen cycling. GLOBAL CHANGE BIOLOGY 2023; 29:4001-4017. [PMID: 37082828 DOI: 10.1111/gcb.16735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Although studies have investigated the effects of metal-based nanoparticles (MNPs) on soil biogeochemical processes, the results obtained thus far are highly variable. Moreover, we do not yet understand how the impact of MNPs is affected by experimental design and environmental conditions. Herein, we conducted a global analysis to synthesize the effects of MNPs on 17 variables associated with soil nitrogen (N) cycling from 62 studies. Our results showed that MNPs generally exerted inhibitory effects on N-cycling process rates, N-related enzyme activities, and microbial variables. The response of soil N cycling varied with MNP type, and exposure dose was the most decisive factor for the variations in the responses of N-cycling process rates and enzyme activities. Notably, Ag/Ag2 S and CuO had dose-dependent inhibitory effects on ammonia oxidation rates, while CuO and Zn/ZnO showed hormetic effects on nitrification and denitrification rates, respectively. Other experimental design factors (e.g., MNP size and exposure duration) also regulated the effect of MNPs on soil N cycling, and specific MNPs, such as Ag/Ag2 S, exerted stronger effects during long-term (>28 days) exposure. Environmental conditions, including soil pH, organic carbon, texture, and presence/absence of plants, significantly influenced MNP toxicity. For instance, the effects of Ag/Ag2 S on the ammonia oxidation rate and the activity of leucine aminopeptidase were more potent in acid (pH <6), organic matter-limited (organic carbon content ≤10 g kg-1 ), and coarser soils. Overall, these results provide new insights into the general mechanisms by which MNPs alter soil N processes in different environments and underscore the urgent need to perform multivariate and long-term in situ trials in simulated natural environments.
Collapse
Affiliation(s)
- Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuyi Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
13
|
Upadhayay VK, Chitara MK, Mishra D, Jha MN, Jaiswal A, Kumari G, Ghosh S, Patel VK, Naitam MG, Singh AK, Pareek N, Taj G, Maithani D, Kumar A, Dasila H, Sharma A. Synergistic impact of nanomaterials and plant probiotics in agriculture: A tale of two-way strategy for long-term sustainability. Front Microbiol 2023; 14:1133968. [PMID: 37206335 PMCID: PMC10189066 DOI: 10.3389/fmicb.2023.1133968] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023] Open
Abstract
Modern agriculture is primarily focused on the massive production of cereals and other food-based crops in a sustainable manner in order to fulfill the food demands of an ever-increasing global population. However, intensive agricultural practices, rampant use of agrochemicals, and other environmental factors result in soil fertility degradation, environmental pollution, disruption of soil biodiversity, pest resistance, and a decline in crop yields. Thus, experts are shifting their focus to other eco-friendly and safer methods of fertilization in order to ensure agricultural sustainability. Indeed, the importance of plant growth-promoting microorganisms, also determined as "plant probiotics (PPs)," has gained widespread recognition, and their usage as biofertilizers is being actively promoted as a means of mitigating the harmful effects of agrochemicals. As bio-elicitors, PPs promote plant growth and colonize soil or plant tissues when administered in soil, seeds, or plant surface and are used as an alternative means to avoid heavy use of agrochemicals. In the past few years, the use of nanotechnology has also brought a revolution in agriculture due to the application of various nanomaterials (NMs) or nano-based fertilizers to increase crop productivity. Given the beneficial properties of PPs and NMs, these two can be used in tandem to maximize benefits. However, the use of combinations of NMs and PPs, or their synergistic use, is in its infancy but has exhibited better crop-modulating effects in terms of improvement in crop productivity, mitigation of environmental stress (drought, salinity, etc.), restoration of soil fertility, and strengthening of the bioeconomy. In addition, a proper assessment of nanomaterials is necessary before their application, and a safer dose of NMs should be applicable without showing any toxic impact on the environment and soil microbial communities. The combo of NMs and PPs can also be encapsulated within a suitable carrier, and this method aids in the controlled and targeted delivery of entrapped components and also increases the shelf life of PPs. However, this review highlights the functional annotation of the combined impact of NMs and PPs on sustainable agricultural production in an eco-friendly manner.
Collapse
Affiliation(s)
- Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Manoj Kumar Chitara
- Department of Plant Pathology, College of Agriculture, A.N.D University of Agriculture and Technology, Ayodhya, Uttar Pradesh, India
| | - Dhruv Mishra
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Manindra Nath Jha
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Aman Jaiswal
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Geeta Kumari
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Saipayan Ghosh
- Department of Horticulture, PGCA, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Vivek Kumar Patel
- Department of Plant Pathology, PGCA, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Mayur G. Naitam
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Ashish Kumar Singh
- Department of Biotechnology and Synthetic Biology, Center of Innovative and Applied Bioprocessing, Sector 81, Mohali, India
| | - Navneet Pareek
- Department of Soil Science, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Gohar Taj
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences and Humanities, GBPUA&; T, Pantnagar, Uttarakhand, India
| | | | - Ankit Kumar
- Department of Horticulture, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Hemant Dasila
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Adita Sharma
- College of Fisheries, Dholi, Dr. Rajendra Prasad Central Agricultural University, Muzaffarpur, Bihar, India
| |
Collapse
|
14
|
Rashid MI, Shah GA, Iqbal Z, Ramzan M, Rehan M, Ali N, Shahzad K, Summan A, Ismail IMI, Ondrasek G. Nanobiochar Associated Ammonia Emission Mitigation and Toxicity to Soil Microbial Biomass and Corn Nutrient Uptake from Farmyard Manure. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091740. [PMID: 37176798 PMCID: PMC10181413 DOI: 10.3390/plants12091740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
The unique properties of NB, such as its nano-size effect and greater adsorption capacity, have the potential to mitigate ammonia (NH3) emission, but may also pose threats to soil life and their associated processes, which are not well understood. We studied the influence of different NB concentrations on NH3 emission, soil microbial biomass, nutrient mineralization, and corn nutrient uptake from farmyard manure (FM). Three different NB concentrations i.e., 12.5 (NB1), 25 (NB2), and 50% (NB3), alone and in a fertilizer mixture with FM, were applied to corn. NB1 alone increased microbial biomass in soil more than control, but other high NB concentrations did not influence these parameters. In fertilizer mixtures, NB2 and NB3 decreased NH3 emission by 25% and 38%, respectively, compared with FM alone. Additionally, NB3 significantly decreased microbial biomass carbon, N, and soil potassium by 34%, 36%, and 14%, respectively, compared with FM. This toxicity to soil parameters resulted in a 21% decrease in corn K uptake from FM. Hence, a high NB concentration causes toxicity to soil microbes, nutrient mineralization, and crop nutrient uptake from the FM. Therefore, this concentration-dependent toxicity of NB to soil microbes and their associated processes should be considered before endorsing NB use in agroecosystems.
Collapse
Affiliation(s)
- Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Ghulam Abbas Shah
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Zahid Iqbal
- Department of Soil Science, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Ramzan
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Nadeem Ali
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Khurram Shahzad
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Ahmad Summan
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Iqbal M I Ismail
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Gabrijel Ondrasek
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Suazo-Hernández J, Arancibia-Miranda N, Mlih R, Cáceres-Jensen L, Bolan N, Mora MDLL. Impact on Some Soil Physical and Chemical Properties Caused by Metal and Metallic Oxide Engineered Nanoparticles: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:572. [PMID: 36770533 PMCID: PMC9919586 DOI: 10.3390/nano13030572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the release of metal and metallic oxide engineered nanoparticles (ENPs) into the environment has generated an increase in their accumulation in agricultural soils, which is a serious risk to the ecosystem and soil health. Here, we show the impact of ENPs on the physical and chemical properties of soils. A literature search was performed in the Scopus database using the keywords ENPs, plus soil physical properties or soil chemical properties, and elements availability. In general, we found that the presence of metal and metallic oxide ENPs in soils can increase hydraulic conductivity and soil porosity and reduce the distance between soil particles, as well as causing a variation in pH, cation exchange capacity (CEC), electrical conductivity (EC), redox potential (Eh), and soil organic matter (SOM) content. Furthermore, ENPs or the metal cations released from them in soils can interact with nutrients like phosphorus (P) forming complexes or precipitates, decreasing their bioavailability in the soil solution. The results depend on the soil properties and the doses, exposure duration, concentrations, and type of ENPs. Therefore, we suggest that particular attention should be paid to every kind of metal and metallic oxide ENPs deposited into the soil.
Collapse
Affiliation(s)
- Jonathan Suazo-Hernández
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4780000, Chile
- Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| | - Nicolás Arancibia-Miranda
- Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago 8320000, Chile
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile
| | - Rawan Mlih
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Juelich (FZJ), 52425 Juelich, Germany
| | - Lizethly Cáceres-Jensen
- Physical & Analytical Chemistry Laboratory (PachemLab), Nucleus of Computational Thinking and Education for Sustainable Development (NuCES), Center for Research in Education (CIE-UMCE), Department of Chemistry, Metropolitan University of Educational Sciences, Santiago 776019, Chile
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4780000, Chile
- Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| |
Collapse
|
16
|
Sivagami M, Asharani I. Phyto-mediated Ni/NiO NPs and their catalytic applications-a short review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Beig B, Niazi MBK, Jahan Z, Zia M, Shah GA, Iqbal Z, Douna I. Facile coating of micronutrient zinc for slow release urea and its agronomic effects on field grown wheat (Triticum aestivum L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155965. [PMID: 35588805 DOI: 10.1016/j.scitotenv.2022.155965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
Slow release urea has been widely tested in recent past as an effective method to enhance the crop productivity with fewer environmental concerns. However, very few research studies have been performed using micronutrients as a source of slow release of urea nitrogen. A laboratory and field study were carried out to check the agronomic effects of zinc oxide nanoparticles and its bulk salt coatings on urea prills on wheat (Triticum aestivum L.). Different concentrations of zinc oxide nanoparticles (0.25, 0.5 and 4% elemental zinc) were coated on urea prills to slow down the release rate. Bulk zinc oxide salt (ZnO) with similar concentrations was also used in parallel to make a comparison between nano and bulk salt. The SEM of zinc oxide nanoparticles clearly depicted zinc oxide nanoparticles size within a range of 50-90 nm. The XRD and FTIR spectrums also showed its characteristics peak at designated positions. Field study revealed than 0.5% zinc oxide nanoparticles coated urea boosted the crop growth and yield in comparison to the bulk zinc oxide coated urea having similar zinc concentrations, i.e., 0.25%, 0.5% and 4% elemental zinc. The plant parameters like plant height, root length, root volume, grain yield and dry matter weight were significantly increased due to application of zinc oxide nanoparticles.
Collapse
Affiliation(s)
- Bilal Beig
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Zaib Jahan
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Munir Zia
- Research and Development Department, Fauji Fertilizer Company Limited, Head Office 156-The Mall, Rawalpindi, Pakistan
| | - Ghulam Abbas Shah
- Department of Agronomy, PMAS-Arid Agriculture University, Murree Road, Rawalpindi, Punjab 10370, Pakistan
| | - Zahid Iqbal
- Institute of Soil and Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakisatan
| | - Inamullah Douna
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
18
|
Mandal AK, Katuwal S, Tettey F, Gupta A, Bhattarai S, Jaisi S, Bhandari DP, Shah AK, Bhattarai N, Parajuli N. Current Research on Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173066. [PMID: 36080103 PMCID: PMC9459703 DOI: 10.3390/nano12173066] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have piqued the curiosity of researchers all over the world due to their extensive biological activity. They are less toxic and biodegradable with the capacity to greatly boost pharmacophore bioactivity. ZnO-NPs are the most extensively used metal oxide nanoparticles in electronic and optoelectronics because of their distinctive optical and chemical properties which can be readily modified by altering the morphology and the wide bandgap. The biosynthesis of nanoparticles using extracts of therapeutic plants, fungi, bacteria, algae, etc., improves their stability and biocompatibility in many biological settings, and its biofabrication alters its physiochemical behavior, contributing to biological potency. As such, ZnO-NPs can be used as an effective nanocarrier for conventional drugs due to their cost-effectiveness and benefits of being biodegradable and biocompatible. This article covers a comprehensive review of different synthesis approaches of ZnO-NPs including physical, chemical, biochemical, and green synthesis techniques, and also emphasizes their biopotency through antibacterial, antifungal, anticancer, anti-inflammatory, antidiabetic, antioxidant, antiviral, wound healing, and cardioprotective activity. Green synthesis from plants, bacteria, and fungus is given special attention, with a particular emphasis on extraction techniques, precursors used for the synthesis and reaction conditions, characterization techniques, and surface morphology of the particles.
Collapse
Affiliation(s)
| | - Saurav Katuwal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Felix Tettey
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Aakash Gupta
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Salyan Bhattarai
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, QC H4S 2E1, Canada
| | - Shankar Jaisi
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Devi Prasad Bhandari
- Natural Product Research Laboratory, Thapathali, Kathmandu 44600, Nepal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Ajay Kumar Shah
- Faculty of Health Sciences, School of Health and Allied Sciences, Pokhara University, Lekhnath 33700, Nepal
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA
- Correspondence: (N.B.); (N.P.)
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
- Correspondence: (N.B.); (N.P.)
| |
Collapse
|
19
|
Bao S, Xiang D, Xue L, Xian B, Tang W, Fang T. Pristine and sulfidized ZnO nanoparticles alter microbial community structure and nitrogen cycling in freshwater lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118661. [PMID: 34896219 DOI: 10.1016/j.envpol.2021.118661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) and its sulfidized form (ZnS NPs) are increasingly entering into freshwater systems through multiple pathways. However, their impacts on the composition and function of sedimentary microbial communities are still largely unknown. Here, two kinds of lake-derived microcosms were constructed and incubated with ZnO NPs, or ZnS NPs to investigate the short-term (7 days) and long-term (50 days) impacts on sedimentary microbial communities and nitrogen cycling. After 7 days, both ZnO NPs and ZnS NPs dosed microbial communities experienced distinct alterations as compared to the undosed controls. By day 50, the structural shifts of microbial communities caused by ZnO NPs were significantly enlarged, while the microbial shifts induced by ZnS NPs were largely resolved. Additionally, ZnO NPs and ZnS NPs could significantly alter nitrogen species and nitrogen cycling genes in sediments, revealing their non-negligible impacts on nitrogen cycling processes. Furthermore, our data clearly indicated that the impacts of ZnO NPs and ZnS NPs on nitrogen cycling differed distinctly in different lake-derived microcosms, and the impacts were significantly correlated with microbial community structure. Overall, this research suggests that the entrance of pristine or sulfidized ZnO NPs into freshwater systems may significantly impact the sedimentary microbial community structure and nitrogen cycling.
Collapse
Affiliation(s)
- Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Dongfang Xiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Xue
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Xian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Shah GM, Ali H, Ahmad I, Kamran M, Hammad M, Shah GA, Bakhat HF, Waqar A, Guo J, Dong R, Rashid MI. Nano agrochemical zinc oxide influences microbial activity, carbon, and nitrogen cycling of applied manures in the soil-plant system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118559. [PMID: 34801625 DOI: 10.1016/j.envpol.2021.118559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of nano-enabled agrochemicals in agriculture for remediating soil and improving nutrient use efficiency of organic and chemical fertilizers is increasing continuously with limited understanding on their potential risks. Recent studies suggested that nanoparticles (NPs) are harmful to soil organisms and their stimulated nutrient cycling in agriculture. However, their toxic effects under natural input farming systems are just at its infancy. Here, we aimed to examine the harmful effects of nano-agrochemical zinc oxide (ZnONPs) to poultry (PM) and farmyard manure (FYM) C and N cycling in soil-plant systems. These manures enhanced microbial counts, CO2 emission, N mineralization, spinach yield and N recovery than control (unfertilized). Soil applied ZnONPs increased labile Zn in microbial biomass, conferring its consumption and thereby reduced the colony-forming bacterial and fungal units. Such effects resulted in decreasing CO2 emitted from PM and FYM by 39 and 43%, respectively. Further, mineralization of organic N was reduced from FYM by 32%, and PM by 26%. This process has considerably decreased the soil mineral N content from both manure types and thereby spinach yield and plant N recoveries. In the ZnONPs amended soil, only about 23% of the applied total N from FYM and 31% from PM was ended up in plants, whereas the respective fractions in the absence of ZnONPs were 33 and 53%. Hence, toxicity of ZnONPs should be taken into account when recommending its use in agriculture for enhancing nutrient utilization efficiency of fertilizers or soil remediation purposes.
Collapse
Affiliation(s)
- Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari, 61100, Pakistan; College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China
| | - Hifsa Ali
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari, 61100, Pakistan
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari, 61100, Pakistan
| | - Muhammad Kamran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari, 61100, Pakistan
| | - Mohkum Hammad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari, 61100, Pakistan
| | - Ghulam Abbas Shah
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Hafiz Faiq Bakhat
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari, 61100, Pakistan
| | - Atika Waqar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari, 61100, Pakistan
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China
| | - Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
21
|
Engineered zinc oxide nanoparticles: an alternative to conventional zinc sulphate in neutral and alkaline soils for sustainable wheat production. 3 Biotech 2021; 11:322. [PMID: 34194906 DOI: 10.1007/s13205-021-02861-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/25/2021] [Indexed: 10/21/2022] Open
Abstract
Zinc oxide nanoparticles (ZnONP) were synthesized and characterized using SEM, EDAX, DLS and UV-Vis spectra. Its use as a nanofertilizer as an alternative to conventional zinc sulphate (ZnSO4.7H2O) was evaluated in five Zn-deficient soils with a variable pH range (7.2-8.7). For this, the carbon of the soil microbial biomass (SMBC), the bacterial population, the nutrient dynamics and the biometric parameters of the wheat crop were assessed. The varying dosages (0, 100, 200 and 500 mg/L), sizes (30-100 nm), and the spherical shape of ZnONPs were evaluated in comparison to ZnSO4.7H2O levels. Results showed the maximum SMBC and bacterial population at 100 mg/L of ZnONPs but a sharp decline at higher concentrations. In addition, soil application of ZnONPs at 5 mg/kg produced a higher root elongation (4.3-8.8%), shoot elongation (3.5-4.0%), total chlorophyll (4.9-5.6%), grain yield (1.7-2.3%) and grain Zn-content (1.6-2.1%) in comparison to the conventional ZnSO4.7H2O at 10 mg/L. ZnONPs at 100 mg/L produced a higher soil microbial biomass carbon (3.9-4.6%), bacterial population (7.2-9.0%), germination (22%) and grain Zn-content (17.9-20%) as compared to the conventional ZnSO4.7H2O at 0.5%. The higher grain Zn-contents could be attributed to the small size and high surface area of ZnONPs resulting in easy entry into the plant system either through root or foliar by penetrating the pores present in the cell membranes. Conversely, the conventional ZnSO4.7H2O, due to its larger size and higher solubility as compared to ZnONPs, has low retention in plant systems, high surface run-off and low fertilizer efficiency. Thus, the authors concluded to apply spherically synthesized ZnONPs (average size-36.7 nm) at 5 mg/kg in the soil application and 100 mg/L in the foliar application for maintaining SMBC and bacterial population, improving total chlorophyll, and grain Zn-contents and overall sustaining wheat production in Zn-deficient neutral and alkaline soils. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02861-1.
Collapse
|
22
|
Sheteiwy MS, Shaghaleh H, Hamoud YA, Holford P, Shao H, Qi W, Hashmi MZ, Wu T. Zinc oxide nanoparticles: potential effects on soil properties, crop production, food processing, and food quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36942-36966. [PMID: 34043175 DOI: 10.1007/s11356-021-14542-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
The use of zinc oxide nanoparticles (ZnO NPs) is expected to increase soil fertility, crop productivity, and food quality. However, the potential effects of ZnO NP utilization should be deeply understood. This review highlights the behavior of ZnO NPs in soil and their interactions with the soil components. The review discusses the potential effects of ZnO NPs on plants and their mechanisms of action on plants and how these mechanisms are related to their physicochemical properties. The impact of current applications of ZnO NPs in the food industry is also discussed. Based on the literature reviewed, soil properties play a vital role in dispersing, aggregation, stability, bioavailability, and transport of ZnO NPs and their release into the soil. The transfer of ZnO NPs into the soil can affect the soil components, and subsequently, the structure of plants. The toxic effects of ZnO NPs on plants and microbes are caused by various mechanisms, mainly through the generation of reactive oxygen species, lysosomal destabilization, DNA damage, and the reduction of oxidative stress through direct penetration/liberation of Zn2+ ions in plant/microbe cells. The integration of ZnO NPs in food processing improves the properties of the relative ZnO NP-based nano-sensing, active packing, and food/feed bioactive ingredients delivery systems, leading to better food quality and safety. The unregulated/unsafe discharge concentrations of ZnO NPs into the soil, edible plant tissues, and processed foods raise environmental/safety concerns and adverse effects. Therefore, the safety issues related to ZnO NP applications in the soil, plants, and food are also discussed.
Collapse
Affiliation(s)
- Mohamed Salah Sheteiwy
- Salt-Soil Agricultural Center, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science (JAAS), Nanjing, 210014, China
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Hiba Shaghaleh
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yousef Alhaj Hamoud
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.
| | - Paul Holford
- School of Science, Western Sydney University, Locked Bag 1797, NSW, 2751, Penrith, Australia
| | - Hongbo Shao
- Salt-Soil Agricultural Center, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science (JAAS), Nanjing, 210014, China.
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, China.
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, China.
| | - Weicong Qi
- Salt-Soil Agricultural Center, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science (JAAS), Nanjing, 210014, China
| | | | - Tianow Wu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
23
|
Azeez L, Lateef A, Adetoro RO, Adeleke AE. Responses of Moringa oleifera to alteration in soil properties induced by calcium nanoparticles (CaNPs) on mineral absorption, physiological indices and photosynthetic indicators. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00128-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The application of nanofertilisers in agriculture has been widely utilised due to their distinct characteristics and negative impacts of conventional chemical fertilisers. This study thus examined the influence of calcium nanoparticles (CaNPs) on soil composition vis-à-vis performance parameters in Moringa oleifera L exposed to water, 100 mg Ca(NO3)2kg−1 soil and 100, 75 and 50 mg CaNPs kg−1 soil. Soil morphology was determined with a scanning electron microscope coupled with energy dispersive x-ray (SEM-EDX) and elemental composition in both soils and M. oleifera roots determined with inductively coupled plasma-optical emission spectrometer (ICP-OES).
Results
The CaNP-amended soils were more crystalline, more fertile and had reduced salinity. An increase in immobilisation percentage of heavy metals, improvement in physiological parameters (percentage germination, vigour indices, relative water contents, lengths of roots and shoots) and photosynthetic efficiency in M. oleifera were recorded.
Conclusion
This study has demonstrated that CaNPs could improve soil composition for better plant performance and can act as nanofertilisers mobilising essential nutrients.
Graphical abstract
Collapse
|
24
|
Toxicity of NiO nanoparticles to soil nutrient availability and herbage N uptake from poultry manure. Sci Rep 2021; 11:11540. [PMID: 34079018 PMCID: PMC8172895 DOI: 10.1038/s41598-021-91080-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/21/2021] [Indexed: 11/08/2022] Open
Abstract
Recently, there is an increasing trend of using metallic nanoparticles (NPs) in agriculture due to their potential role in remediating soil pollution and improving nutrient utilization from fertilizers. However, evidence suggested that these NPs were toxic to the soil life and their associated functions, and this toxicity depended on their dose, type, and size. Here, a dose-dependent (5, 50, and 100 mg kg−1 soil) toxicity of NiO NPs on poultry manure (PM: 136 kg N ha−1) decomposition, nutrient mineralization, and herbage N uptake were studied in a standard pot experiment. The NPs doses were mixed with PM and applied in soil-filled pots where then ryegrass was sown. Results revealed that the lowest dose significantly increased microbial biomass (C and N) and respiration from PM, whereas a high dose reduced these parameters. This decrease in such parameters by the highest NPs dose resulted in 13 and 41% lower soil mineral N and plant available K from PM, respectively. Moreover, such effects resulted in 32 and 35% lower herbage shoot and root N uptakes from PM in this treatment. Both intermediate and high doses decreased herbage shoot Ni uptake from PM by 33 and 34%, respectively. However, all NPs doses did not influence soil Ni content from PM. Hence, our results indicated that high NPs dose (100 mg kg−1) was toxic to decomposition, nutrient mineralization, and herbage N uptake from PM. Therefore, such NiONPs toxicity should be considered before recommending their use in agriculture for soil remediation or optimizing nutrient use efficiency of fertilizers.
Collapse
|
25
|
Bungau S, Behl T, Aleya L, Bourgeade P, Aloui-Sossé B, Purza AL, Abid A, Samuel AD. Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30528-30550. [PMID: 33905061 DOI: 10.1007/s11356-021-14127-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 05/26/2023]
Abstract
This article is an extensive collection of scientific literature related to the impact of fertilizers on soil microbial and enzymatic activity. Due to the significance of technology in quantitative and qualitative evaluation of agricultural production, this is a basic problem for the present and future of mankind, where the scientific data being of utmost importance related to the topic. The comparison, including pedo-enzymological evaluation of minerals along with organic fertilization, highlights significant differences between mineral and organic fertilizers, confirming the superiority of complex mineral-organic fertilization. Enzymatic indicators that describe and define the soil quality resulted from enzymatic activities value and provide valuable information regarding the soil fertility status. Moreover, soil enzyme responds to soil management as well as to environmental pollutants. Changes of environmental conditions and pollutants like heavy metals and other toxic substances result in a shift in the biological activity of the soil. These changes can destabilize the soil system and cause a decrease in the nutrient pools. To ensure the improvement of fertilization techniques, the properties of nanoparticles are exploited that can efficiently release nutrients to plant cells. Numerous researches were performed in order to follow the long-term effects of incorporating nanofertilizers into the soil, obtaining an exhaustive overview of this new technology over the development of sustainable agriculture.
Collapse
Affiliation(s)
- Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Lotfi Aleya
- Laboratoire Chrono-environnement, CNRS 6249, Université de Franche-Comté, Besancon, France
| | - Pascale Bourgeade
- Laboratoire Chrono-environnement, CNRS 6249, Université de Franche-Comté, Besancon, France
| | - Badr Aloui-Sossé
- Laboratoire Chrono-environnement, CNRS 6249, Université de Franche-Comté, Besancon, France
| | - Anamaria Lavinia Purza
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania
| | - Areha Abid
- Department of Food Science, Faculty of Agricultural and Food Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Alina Dora Samuel
- Department of Biology, Faculty of Sciences, University of Oradea, 410087, Oradea, Romania
| |
Collapse
|
26
|
Shemawar, Mahmood A, Hussain S, Mahmood F, Iqbal M, Shahid M, Ibrahim M, Ali MA, Shahzad T. Toxicity of biogenic zinc oxide nanoparticles to soil organic matter cycling and their interaction with rice-straw derived biochar. Sci Rep 2021; 11:8429. [PMID: 33875737 PMCID: PMC8055651 DOI: 10.1038/s41598-021-88016-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Given the rapidly increasing use of metal oxide nanoparticles in agriculture as well as their inadvertent addition through sewage sludge application to soils, it is imperative to assess their possible toxic effects on soil functions that are vital for healthy crop production. In this regard, we designed a lab study to investigate the potential toxicity of one of the most produced nanoparticles, i.e. zinc oxide nanoparticles (nZnO), in a calcareous soil. Microcosms of 80 g of dry-equivalent fresh soils were incubated in mason jars for 64 days, after adding 100 or 1000 mg of biogenically produced nZnO kg-1 soil. Moreover, we also added rice-straw derived biochar at 1 or 5% (w: w basis) hypothesizing that the biochar would alleviate nZnO-induced toxicity given that it has been shown to adsorb and detoxify heavy metals in soils. We found that the nZnO decreased microbial biomass carbon by 27.0 to 33.5% in 100 mg nZnO kg-1 soil and by 39.0 to 43.3% in 1000 mg nZnO kg-1 soil treatments across biochar treatments in the short term i.e. 24 days after incubation. However, this decrease disappeared after 64 days of incubation and the microbial biomass in nZnO amended soils were similar to that in control soils. This shows that the toxicity of nZnO in the studied soil was ephemeral and transient which was overcome by the soil itself in a couple of months. This is also supported by the fact that the nZnO induced higher cumulative C mineralization (i.e. soil respiration) at both rates of addition. The treatment 100 mg nZnO kg-1 soil induced 166 to 207%, while 1000 mg nZnO kg-1 soil induced 136 to 171% higher cumulative C mineralization across biochar treatments by the end of the experiment. However, contrary to our hypothesis increasing the nZnO addition from 100 to 1000 mg nZnO kg-1 soil did not cause additional decrease in microbial biomass nor induced higher C mineralization. Moreover, the biochar did not alleviate even the ephemeral toxicity that was observed after 24d of incubation. Based on overall results, we conclude that the studied soil can function without impairment even at 1000 mg kg-1 concentration of nZnO in it.
Collapse
Affiliation(s)
- Shemawar
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Abid Mahmood
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Sabir Hussain
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Faisal Mahmood
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Iqbal
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Shahid
- grid.411786.d0000 0004 0637 891XDepartment of Bioinformatics and Biotechnology, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Ibrahim
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Arif Ali
- grid.411501.00000 0001 0228 333XDepartment of Soil Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Tanvir Shahzad
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| |
Collapse
|
27
|
Chen C, Unrine JM, Hu Y, Guo L, Tsyusko OV, Fan Z, Liu S, Wei G. Responses of soil bacteria and fungal communities to pristine and sulfidized zinc oxide nanoparticles relative to Zn ions. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124258. [PMID: 33153791 DOI: 10.1016/j.jhazmat.2020.124258] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are attracting much interest due to their potential toxicity and ubiquity in consumer products. However, understanding of pristine and transformed ZnO NPs impact on soil microbial communities is still limited. Here, we explored changes in the microbial communities of soils treated with pristine and sulfidized ZnO NPs (s-ZnO NPs), and their corresponding Zn ions (ZnSO4) for 30 and 90 days exposures at 100 and 500 mg Zn kg-1. The similarity in bacterial community responses was observed between ZnO NPs and s-ZnO NPs, and these Zn treatments significantly affected the bacterial communities at 90 days, which exhibited distinct patterns compared to ZnSO4. The single-time tested DTPA and H2O extractable Zn ions could not fully explain the observed ZnO NPs and s-ZnO NPs impact on bacterial communities. The two most dominant phylum Nitrospirae and Actinobacteria, associated with the reduction of NH4+-N and dissolved organic carbon, demonstrated significant changes in soils exposed to ZnO NPs and s-ZnO NPs. This suggests the potential long-term impact of transformed ZnO NPs on soil carbon and nitrogen cycling. For fungal communities, we did not find the distinct response patterns of fungal communities between nanoparticulate and ionic Zn exposures.
Collapse
Affiliation(s)
- Chun Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Yingwei Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Lulu Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Zhen Fan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shuang Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
28
|
Abstract
The geomorphological characteristics of the materials inherent in tropical soils, in addition to the excessive use of fertilizers and pesticides, industrial waste and residues, and novel pollutants derived from emerging new technologies such as nanomaterials, affect the functionality and resilience of the soil-microorganism-plant ecosystem; impacting phytoremediation processes and increasing the risk of heavy metal transfer into the food chain. The aim of this review is to provide a general overview of phytoremediation in tropical soils, placing special emphasis on the factors that affect this process, such as nanoagrochemicals, and highlighting the value of biodiversity among plant species that have the potential to grow and develop in soils impacted by heavy metals, as a useful resource upon which to base further research.
Collapse
|
29
|
Sakthivel S, Periakaruppan R, Chandrasekaran R, Abd-Elsalam KA. Zinc nanomaterials: Synthesis, antifungal activity, and mechanisms. ZINC-BASED NANOSTRUCTURES FOR ENVIRONMENTAL AND AGRICULTURAL APPLICATIONS 2021:139-165. [DOI: 10.1016/b978-0-12-822836-4.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
30
|
Kamran M, Ali H, Saeed MF, Bakhat HF, Hassan Z, Tahir M, Abbas G, Naeem MA, Rashid MI, Shah GM. Unraveling the toxic effects of iron oxide nanoparticles on nitrogen cycling through manure-soil-plant continuum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111099. [PMID: 32829207 DOI: 10.1016/j.ecoenv.2020.111099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Soil contamination with metallic nanoparticles is increasing due to their increased use in industrial and domestic settings. These nanoparticles are potentially toxic to soil microbes and may affect their associated functions and thereby the nutrient cycling in agro-ecosystems. This study examined the effects of iron oxides nanoparticles (IONPs) on carbon (C) and nitrogen (N) dynamics of poultry (PM) and farmyard manure (FYM) in the soil. The application of IONPs increased iron content in soil microbial biomass, which reflected its consumption by the microbes. As a result, colony-forming units of bacteria and fungi reduced considerably. Such observations lead to a decrease in CO2 emission from PM and FYM by 27 and 28%, respectively. The respective decrease fractions in the case of N mineralization were 24 and 35%. Consequently, soil mineral N content was reduced by 16% from PM and 12% from FYM as compared to their sole application without IONPs. Spinach dry matter yield and apparent N recovery were increased by the use of organic waste (FYM, PM). The use of IONPs significantly reduced the plant N recovery fraction by 26 and 24% (P < 0.05) from PM and FYM, respectively. All the results mentioned above lead us to conclude that IONPs are toxic to soil microbes and affect their function i.e., carbon and N mineralization of applied manure, and thereby the on-farm N cycling from the manure-soil-plant continuum.
Collapse
Affiliation(s)
- Muhammad Kamran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Hifsa Ali
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Hafiz Faiq Bakhat
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Zeshan Hassan
- College of Agriculture, Bahauddin Zakariya University, Multan, Bahadur Sub Campus, Layyah, Pakistan
| | - Muhammad Tahir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan.
| |
Collapse
|
31
|
Du J, Zhang Y, Yin Y, Zhang J, Ma H, Li K, Wan N. Do environmental concentrations of zinc oxide nanoparticle pose ecotoxicological risk to aquatic fungi associated with leaf litter decomposition? WATER RESEARCH 2020; 178:115840. [PMID: 32339863 DOI: 10.1016/j.watres.2020.115840] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/20/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Ecotoxicological risk of ZnO nanoparticles at environmental levels is a key knowledge gap for predicting how freshwater ecosystems will respond to nanoparticle pollution. A microcosm experiment was conducted to explore the chronic effects of ZnO nanoparticle at environmental concentrations (30, 300, 3000 ng L-1) on aquatic fungi associated with the decomposing process of poplar leaf litter (45 days). ZnO nanoparticles led to 9-33% increases in fungal biomass after acute exposure (5 days), but 33-50% decreases after chronic exposure (45 days), indicating that the hormetic effect of ZnO nanoparticles at the environmental level may occur during acute exposure. Besides, ZnO nanoparticles had negative effects on microbial enzyme activity, especially on day 10, when the activities of N-acetylglucosaminidase, glycine-aminopeptidase, aryl-sulfatase, polyphenol oxidase, and peroxidase were significantly inhibited. After chronic exposure, the fungal community structure was significantly impacted by ZnO nanoparticles at 300 ng L-1 due to the reduced proportion of Anguillospora, which eventually caused a significant decrease in litter decomposition rate. Therefore, ZnO nanoparticles may pose ecotoxicological effects on aquatic fungi even at a very low concentration and eventually negatively affect freshwater functioning.
Collapse
Affiliation(s)
- Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Key Laboratory of Pollution Treatment and Resource, National Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, Zhengzhou, China.
| | - Yuyan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuting Yin
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jin Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hang Ma
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ke Li
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ning Wan
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
32
|
Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman HU, Ashraf I, Sanaullah M. Nanotechnology in agriculture: Current status, challenges and future opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137778. [PMID: 32179352 DOI: 10.1016/j.scitotenv.2020.137778] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 05/12/2023]
Abstract
Nanotechnology has shown promising potential to promote sustainable agriculture. This article reviews the recent developments on applications of nanotechnology in agriculture including crop production and protection with emphasis on nanofertilizers, nanopesticides, nanobiosensors and nano-enabled remediation strategies for contaminated soils. Nanomaterials play an important role regarding the fate, mobility and toxicity of soil pollutants and are essential part of different biotic and abiotic remediation strategies. Efficiency and fate of nanomaterials is strongly dictated by their properties and interactions with soil constituents which is also critically discussed in this review. Investigations into the remediation applications and fate of nanoparticles in soil remain scarce and are mostly limited to laboratory studies. Once entered in the soil system, nanomaterials may affect the soil quality and plant growth which is discussed in context of their effects on nutrient release in target soils, soil biota, soil organic matter and plant morphological and physiological responses. The mechanisms involved in uptake and translocation of nanomaterials within plants and associated defense mechanisms have also been discussed. Future research directions have been identified to promote the research into sustainable development of nano-enabled agriculture.
Collapse
Affiliation(s)
- Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Oman.
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman; Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Abdul Wakeel
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Ahmad Nawaz
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Hafeez Ur Rehman
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Imran Ashraf
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
33
|
Hemati Matin N, Jalali M, Buss W. Synergistic immobilization of potentially toxic elements (PTEs) by biochar and nanoparticles in alkaline soil. CHEMOSPHERE 2020; 241:124932. [PMID: 31590018 DOI: 10.1016/j.chemosphere.2019.124932] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 05/15/2023]
Abstract
Biochar and nanoparticle (NP) have the ability to sorb potentially toxic elements (PTEs) from soil and reduce toxicity and leaching into water bodies. However, there is need to tailor biochar formulations to soil types. In this study, we investigate the mobility and chemical forms of Cd, Cr, Cu, Ni, and Zn in a spiked, alkaline soil after amendment with combination of NPs (nano-Fe (NF), nano-clay (NC)) and biochars (almond shell 500 °C, walnut shell 400 °C) in different doses (0, 2.5, 5, and 10%). Many previous studies concluded biochar immobilized PTEs due to an increase in soil pH, which can be disregarded here (soil pH 7.9). In a twenty-week column leaching experiment biochar addition significantly decreased PTE leaching and NP addition further immobilized PTEs in most cases. On average almond biochar more effectively reduced Zn leaching and walnut biochar was more effective in decreasing the leaching of Cd, Cr, and Ni (e.g. 5% biochar reduced Cr leaching by 68%). Copper was immobilized effectively by both biochars. Nano-clay combined with walnut biochar performed best in all treatments, in particular for Cd, Ni, and Zn (e.g. 10% walnut biochar only and in combination with NC reduced Zn leaching by 14.2% and 58.5%, respectively). After amendment, PTEs were present in the Fe-Mn oxides, organic and residual fractions and less in the exchangeable fraction, reducing PTE availability and leachability. The results demonstrate that even for cationic PTEs that behave similarly in the environment optimal biochar-mineral formulations can differ.
Collapse
Affiliation(s)
- Narges Hemati Matin
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamadan, Iran.
| | - Mohsen Jalali
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamadan, Iran.
| | - Wolfram Buss
- Fenner School of Environment and Society, Australian National University, Canberra, Australia; Conversion Technologies of Biobased Resources, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
34
|
de Campos RP, Chagas TQ, da Silva Alvarez TG, Mesak C, de Andrade Vieira JE, Paixão CFC, de Lima Rodrigues AS, de Menezes IPP, Malafaia G. Analysis of ZnO nanoparticle-induced changes in Oreochromis niloticus behavior as toxicity endpoint. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:561-571. [PMID: 31128370 DOI: 10.1016/j.scitotenv.2019.05.183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
The toxicity of zinc oxide nanoparticles (ZnO NPs) has been investigated in different animal models. However, concentrations tested in most studies are often much higher than the ones potentially identified in the environment. Therefore, such toxicity limits the application of these studies to evaluate ecotoxicological risks posed by these nanopollutants. Thus, the aim of the current study is to evaluate the impacts of ZnO NPs (at environmentally relevant concentrations - 760 μg/L and 76,000 μg/L, for 72 h) on the behavioral responses of Oreochromis niloticus (Nile tilapia) exposed to it. Results did not evidence harmful effects of NPs on animals' locomotor abilities (evaluated through open-field and light-dark transition tests), or anxiety-predictive behavior. On the other hand, Zn bioaccumulation in the body tissues of the analyzed tilapias was correlated to changes in eating behavior (motivated by ration pellets), as well as to deficits in antipredatory defensive behavior (under individual and collective conditions). Tilapia exposed to ZnO NPs recorded lower avoidance, flight and territorialist behavior rates when they were individually confronted with potential predators (Salminus brasiliensis). However, collectively exposed animals were unable to recognize their predators, as well as to differentiate them from artificial baits ("false predators"). The present study is the first to report biological impacts resulting from the short exposure of fish-group representatives to ZnO NPs. Thus, we believe that it may be relevant to improve the knowledge about ecotoxicological risks posed by these pollutants.
Collapse
Affiliation(s)
- Raphael Pires de Campos
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Thales Quintão Chagas
- Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | | | - Carlos Mesak
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | | | - Caroliny Fátima Chaves Paixão
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Ivandilson Pessoa Pinto de Menezes
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Guilherme Malafaia
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil.
| |
Collapse
|
35
|
Sarker NC, Borhan M, Fortuna AM, Rahman S. Understanding gaseous reduction in swine manure resulting from nanoparticle treatments under anaerobic storage conditions. J Environ Sci (China) 2019; 82:179-191. [PMID: 31133263 DOI: 10.1016/j.jes.2019.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Manure is an impending source of carbon (C), sulfur (S) and water (H2O). Consequently, microbial populations utilize these constituents to produce methane (CH4), carbon dioxide (CO2), greenhouse gases (GHGs), and hydrogen sulfide (H2S). Application of nanoparticles (NPs) to stored manure is an emerging GHG mitigation technique. In this study, two NPs: nano zinc oxide (nZnO) and nano silver (nAg) were tested in swine manure stored under anaerobic conditions to determine their effectiveness in mitigating gaseous emissions and total gas production. The biological sources of gas production, i.e., microbial populations were characterized via Quantitative Polymerase Chain Reaction (qPCR) analysis. Additionally, pH, redox, and VFAs were determined using standard methods. Each treatment of the experiment was replicated three times and NPs were applied at a dose of 3 g/L of manure. Also, headspace gas from all treatment replicates were analyzed for CH4 and CO2 gas concentrations using an SRI-8610 Gas Chromatograph and H2S concentrations were measured using a Jerome 631X meter. Nanoparticles tested in this study reduced the cumulative gas volume by 16%-79% compared to the control. Among the NPs tested, only nZnO consistently reduced GHG concentrations by 37%-97%. Reductions in H2S concentrations ranged from 87% to 97%. Gaseous reductions were likely due to decreases in the activity and numbers of specific gas producing methanogenic archaea and sulfate reducing bacterial (SRB) species.
Collapse
Affiliation(s)
- Niloy Chandra Sarker
- Agricultural and Biosystems Engineering Department, North Dakota State University, Fargo, ND 58108, USA
| | - Md Borhan
- Agricultural and Biosystems Engineering Department, North Dakota State University, Fargo, ND 58108, USA
| | - Ann-Marie Fortuna
- USDA-ARS, Grazinglands Research Laboratory, 7207 West, Sheyenne Street, El Reno, OK 73036, USA
| | - Shafiqur Rahman
- Agricultural and Biosystems Engineering Department, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
36
|
Gebre SH, Sendeku MG. New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0931-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
37
|
Ali B, Shah GA, Traore B, Shah SAA, Shah SUS, Al-Solaimani SGM, Hussain Q, Ali N, Shahzad K, Shahzad T, Ahmad A, Muhammad S, Shah GM, Arshad M, Hussain RA, Shah JA, Anwar A, Amjid MW, Rashid MI. Manure storage operations mitigate nutrient losses and their products can sustain soil fertility and enhance wheat productivity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:468-478. [PMID: 30967352 DOI: 10.1016/j.jenvman.2019.02.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Livestock manure is a valuable source of nutrients for plants. However, poor handling practices during storage resulted in nutrient losses from the manure and decrement in its nitrogen (N) fertilizer value. We explored the influence of divergent storage methods on manure chemical composition, carbon (C) and N losses to the environment as well as fertilizer value of storage products after their application to the wheat. Fresh buffalo manure (FM) was subjected to different storage operations for a period of ∼6 months, (i) fermentation by covering with a plastic sheet (CM) (ii) placed under the roof (RM) (iii) heap was unturned (SM) to remain stacked at an open space and (iv) manure heap turned monthly (TM) to make compost. During storage, 8, 24, 45 and 46% of the initial Ntotal was lost from CM, RM, SM, and TM, respectively. The respective C losses from these treatments were 16, 34, 47 and 44% of the initial C content. After stored manures application to the wheat crop, mineral N in the soil remained 27% higher in CM (14.1 vs. 11.1 kg ha-1) and 3% (10.8 vs. 11.1 kg ha-1) lower in SM compared to FM treatment. In contrast, microbial biomass C and N was 35 (509 vs.782 mg C kg-1 soil) and 25% (278 vs.370 mg N kg-1 soil) lower in CM than FM treatment, respectively indicating lower N immobilization of CM in the soil. These findings could result in the highest grain yield (5166 kg ha-1) and N uptake (117 kg ha-1) in CM and the lowest in SM treatments (3105 and 61 kg ha-1, respectively). Similarly, wheat crop recovered 44, 15 and 13% N from CM, TM and SM, respectively. Hence, management operations play a critical role in conserving N during storage phase and after stored manure application to the field. Among the studied operations, storing animal manure under an impermeable plastic sheet is a much better and cheaper option for decreasing N losses during storage and improving wheat yield when incorporated into the soil. Therefore, by adopting this manure storage technique, farmers can improve the agro-environmental value of animal manure in Pakistan.
Collapse
Affiliation(s)
- Basit Ali
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan
| | - Ghulam Abbas Shah
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan.
| | - Bouba Traore
- International Crops Research Institute for the Semi-Arid and Tropics (ICRISAT), Mali
| | | | - Shamim-Ul-Sibtain Shah
- Farm Operations and Services, National Agriculture Research Centre (NARC), Islamabad, Pakistan
| | - Samir Gamil Mohammad Al-Solaimani
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz, University, Jeddah, Saudi Arabia
| | - Qaiser Hussain
- Institute of Soil Science, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan
| | - Nadeem Ali
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia
| | - Khurram Shahzad
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia
| | - Tanvir Shahzad
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad, Pakistan
| | - Afzal Ahmad
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad, Pakistan
| | - Sher Muhammad
- National Institute of Organic Agriculture, National Agriculture Research Centre (NARC), Islamabad, Pakistan
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University, Islamabad, Sub-campus Vehari 61100, Pakistan
| | - Muhammad Arshad
- Department of Agriculture & Food Technology, Karakoram International University, Gilgit 15100, Pakistan
| | - Rai Altaf Hussain
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan
| | - Jawad Ali Shah
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Adeel Anwar
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan
| | - Muhammad Waqas Amjid
- Department of Agriculture, Bacha Khan University Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia; Department of Environmental Sciences, COMSATS University, Islamabad, Sub-campus Vehari 61100, Pakistan.
| |
Collapse
|
38
|
Aziz Y, Shah GA, Rashid MI. ZnO nanoparticles and zeolite influence soil nutrient availability but do not affect herbage nitrogen uptake from biogas slurry. CHEMOSPHERE 2019; 216:564-575. [PMID: 30390587 DOI: 10.1016/j.chemosphere.2018.10.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 05/20/2023]
Abstract
Recently, there is a growing interest among agriculturists to use nanotechnology for the development of nutrient-use efficient fertilizers. However, its sustainable use for the synthesis of mineral or organic nano-fertilizers requires a thoughtful of the mechanism as well as the fate of nutrients and their interaction with soil-plant systems. Therefore, the aim of current study was to investigate the mixing of three different application rates of zinc oxide nanoparticles (ZNPs: 1.4, 2.8 and 3.6 mg kg-1 soil) as well as zeolite (141, 282 and 423 mg kg-1 soil) with biogas slurry (AS) on soil nutrient availability and herbage nitrogen (N) and zinc (Zn) uptake in a standard pot experiment. We found that both ZNPs and zeolite significantly increased mineral N content in soil compared to AS alone (P < 0.05). On the other hand, plant available phosphorus or potassium and microbial biomass carbon (C) in the soil were neither significantly affected by any application rate of ZNPs nor zeolite mixed AS. Soil microbial biomass N was significantly higher in second and third application rates of both ZNPs and zeolite amended AS treatments compared to AS alone. However, this increment in mineral N did not influence shoot uptake and herbage apparent recovery of this nutrient from AS. Similarly, co-mixing of both ZNPs and zeolite in AS did not influence shoot N uptake but Zn uptake was significantly higher in this treatment compared to AS alone. Therefore, this combination would be considered for improving crop Zn uptake under such fertilizer management regimes.
Collapse
Affiliation(s)
- Yasir Aziz
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Ghulam Abbas Shah
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia; Department of Environmental Sciences, COMSATS University, Islamabad, Sub-campus, Vehari, 61100, Pakistan.
| |
Collapse
|
39
|
Plant cell nanomaterials interaction: Growth, physiology and secondary metabolism. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Parada J, Rubilar O, Fernández-Baldo MA, Bertolino FA, Durán N, Seabra AB, Tortella GR. The nanotechnology among US: are metal and metal oxides nanoparticles a nano or mega risk for soil microbial communities? Crit Rev Biotechnol 2018; 39:157-172. [PMID: 30396282 DOI: 10.1080/07388551.2018.1523865] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metal nanoparticles and metal oxides nanoparticles (MNPs/MONPs) have been widely included in a great diversity of products and industrial applications and they are already a part of our everyday life. According to estimation studies, their production is expected to increase exponentially in the next few years. Consequently, soil has been suggested as the main sink of MNPs/MONPs once they are deliberately or accidentally released into the environment. The potential negative perturbations that may result on soil microbial communities and ecological processes are resulting in concerns. Several nano-toxicological studies of MNPs/MONPs, reported so far, have focused on aquatic organisms, animals, and soil invertebrates. However, during recent years, the studies have been oriented to understand the effects of MNPs/MONPs on microbial communities and their interaction with soil components. The studies have suggested that MNPs/MONPs are one of the most toxic type to soil biota, amongst different types of nanomaterials. This may threaten soil health and fertility, since microbial communities are known to support important biological processes and ecosystem services such as the nutrient cycling, whereby their protection against the environmental pollution is imperative. Therefore, in this review we summarize the actual knowledge available from the last five years (2013-2018) and gaps about the potential negative, positive or neutral effects produced on soil by different classes of MNPs/MONPs. A particular emphasis has been placed on the associated soil microorganisms and biological processes. Finally, perspectives about future research are discussed.
Collapse
Affiliation(s)
- J Parada
- a Doctoral Program in Sciences of Natural Resources , Universidad de La Frontera , Temuco , Chile
| | - O Rubilar
- b Chemical Engineering Department , Universidad de La Frontera , Temuco , Chile.,c Scientific & Technological Bioresource Nucleus , Universidad de La Frontera , Temuco , Chile
| | - M A Fernández-Baldo
- d INQUISAL, Departamento de Química , Universidad Nacional de San Luis , San Luis , Argentina
| | - F A Bertolino
- d INQUISAL, Departamento de Química , Universidad Nacional de San Luis , San Luis , Argentina
| | - N Durán
- e Institute of Biology, Urogenital, Carcinogenesis and Immunotherapy Laboratory, Department of Genetics, Evolution and Bioagents, University of Campinas, Campinas, Brazil.,f NanoBioss, Chemistry Institute , University of Campinas , Campinas , Brazil.,g Nanomedicine Research Unit (Nanomed) , Federal University of ABC (UFABC) , Santo André , Brazil
| | - A B Seabra
- h Center for Natural and Human Sciences , Universidade Federal do ABC , Santo André , Brazil
| | - G R Tortella
- b Chemical Engineering Department , Universidad de La Frontera , Temuco , Chile.,c Scientific & Technological Bioresource Nucleus , Universidad de La Frontera , Temuco , Chile
| |
Collapse
|
41
|
Du J, Qv M, Zhang Y, Yin X, Wan N, Zhang B, Zhang H. The potential phototoxicity of nano-scale ZnO induced by visible light on freshwater ecosystems. CHEMOSPHERE 2018; 208:698-706. [PMID: 29894971 DOI: 10.1016/j.chemosphere.2018.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
With the development of nanotechnology, nanomaterials have been widely applied in anti-bacterial coating, electronic device, and personal care products. NanoZnO is one of the most used materials and its ecotoxicity has been extensively studied. To explore the potential phototoxicity of nanoZnO induced by visible light, we conducted a long-term experiment on litter decomposition of Typha angustifolia leaves with assessment of fungal multifaceted natures. After 158 d exposure, the decomposition rate of leaf litter was decreased by nanoZnO but no additional effect by visible light. However, visible light enhanced the inhibitory effect of nanoZnO on fungal sporulation rate due to light-induced dissolution of nanoZnO. On the contrary, enzymes such as β-glucosidase, cellobiohydrolase, and leucine-aminopeptidase were significantly increased by the interaction of nanoZnO and visible light, which led to high efficiency of leaf carbon decomposition. Furthermore, different treatments and exposure time separated fungal community associated with litter decomposition. Therefore, the study provided the evidence of the contribution of visible light to nanoparticle phototoxicity at the ecosystem level.
Collapse
Affiliation(s)
- Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Mingxiang Qv
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuyan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaoyun Yin
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ning Wan
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Baozhong Zhang
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou, China
| | - Hongzhong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
42
|
Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S. Engineered nanomaterials for plant growth and development: A perspective analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1413-1435. [PMID: 29554761 DOI: 10.1016/j.scitotenv.2018.02.313] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
With the overwhelmingly rapid advancement in the field of nanotechnology, the engineered nanomaterials (ENMs) have been extensively used in various areas of the plant system, including quality improvement, growth and nutritional value enhancement, gene preservation etc. There are several recent reports on the ENMs' influence on growth enhancements, growth inhibition as well as certain toxic impacts on plant. However, translocation, growth responses and stress modulation mechanisms of ENMs in the plant systems call for better and in-depth understanding. Herein, we are presenting a comprehensive and critical account of different types of ENMs, their applications and their positive, negative and null impacts on physiological and molecular aspects of plant growth, development and stress responses. Recent reports revealed mixed effects on plants, ranging from enhanced crop yield, epi/genetic alterations, and phytotoxicity, resulting from the ENMs' exposure. Creditable research in recent years has revealed that the effects of ENMs on plants are species specific and are variable among plant species. ENM exposures are reported to trigger free radical formation, responsive scavenging, and antioxidant armories in the exposed plants. The ENMs are also reported to induce aberrant expressions of microRNAs, the key post-transcriptional regulators of plant growth, development and stress-responses of plants. However, these modulations, if judiciously done, may lead to improved plant growth and yield. A better understanding of the interactions between ENMs and plant responses, including their uptake transport, internalization, and activity, could revolutionize crop production through increased disease resistance, nutrient utilization, and crop yield. Therefore, in this review, we are presenting a critical account of the different selected ENMs, their uptake by the plants, their positive/negative impacts on plant growth and development, along with the resultant ENM-responsive post-transcriptional modifications, especially, aberrant miRNA expressions. In addition, underlying mechanisms of various ENM-plant cell interactions have been discussed.
Collapse
Affiliation(s)
- Sandeep Kumar Verma
- Department of Biotechnology, Innovate Mediscience India, Vijay Nagar, Indore 452010, Madhya Pradesh, India.
| | - Ashok Kumar Das
- Center for Superfunctional Materials, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Manoj Kumar Patel
- School of Studies in Life Sciences, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Ashish Shah
- Department of Biotechnology, Innovate Mediscience India, Vijay Nagar, Indore 452010, Madhya Pradesh, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, 411016 Pune, Maharashtra, India; Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, 411016 Pune, Maharashtra, India
| | - Saikat Gantait
- All India Coordinated Research Project on Groundnut, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia 741235, West Bengal, India; Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| |
Collapse
|
43
|
Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2017.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Agarwal H, Venkat Kumar S, Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. RESOURCE-EFFICIENT TECHNOLOGIES 2017. [DOI: 10.1016/j.reffit.2017.03.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Du J, Zhang Y, Liu L, Qv M, Lv Y, Yin Y, Zhou Y, Cui M, Zhu Y, Zhang H. Can visible light impact litter decomposition under pollution of ZnO nanoparticles? CHEMOSPHERE 2017; 187:368-375. [PMID: 28858717 DOI: 10.1016/j.chemosphere.2017.08.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
ZnO nanoparticles is one of the most used materials in a wide range including antibacterial coating, electronic device, and personal care products. With the development of nanotechnology, ecotoxicology of ZnO nanoparticles has been received increasing attention. To assess the phototoxicity of ZnO nanoparticles in aquatic ecosystem, microcosm experiments were conducted on Populus nigra L. leaf litter decomposition under combined effect of ZnO nanoparticles and visible light radiation. Litter decomposition rate, pH value, extracellular enzyme activity, as well as the relative contributions of fungal community to litter decomposition were studied. Results showed that long-term exposure to ZnO nanoparticles and visible light led to a significant decrease in litter decomposition rate (0.26 m-1 vs 0.45 m-1), and visible light would increase the inhibitory effect (0.24 m-1), which caused significant decrease in pH value of litter cultures, fungal sporulation rate, as well as most extracellular enzyme activities. The phototoxicity of ZnO nanoparticles also showed impacts on fungal community composition, especially on the genus of Varicosporium, whose abundance was significantly and positively related to decomposition rate. In conclusion, our study provides the evidence for negatively effects of ZnO NPs photocatalysis on ecological process of litter decomposition and highlights the contribution of visible light radiation to nanoparticles toxicity in freshwater ecosystems.
Collapse
Affiliation(s)
- Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, PR China.
| | - Yuyan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Lina Liu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Mingxiang Qv
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Yanna Lv
- School of Pharmacy, Weifang Medical University, Weifang, PR China
| | - Yifei Yin
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Yinfei Zhou
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Minghui Cui
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Yanfeng Zhu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Hongzhong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, PR China.
| |
Collapse
|
46
|
Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil. Sci Rep 2017; 7:41965. [PMID: 28155886 PMCID: PMC5290472 DOI: 10.1038/srep41965] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/19/2016] [Indexed: 11/09/2022] Open
Abstract
We examined time-dependent effect of iron oxide nanoparticles (IONPs) at a rate of 2000 mg kg−1 soil on Cynodon dactylon litter (3 g kg−1) decomposition in an arid sandy soil. Overall, heterotrophic cultivable bacterial and fungal colonies, and microbial biomass carbon were significantly decreased in litter-amended soil by the application of nanoparticles after 90 and 180 days of incubation. Time dependent effect of nanoparticles was significant for microbial biomass in litter-amended soil where nanoparticles decreased this variable from 27% after 90 days to 49% after 180 days. IONPs decreased CO2 emission by 28 and 30% from litter-amended soil after 90 and 180 days, respectively. These observations indicated that time-dependent effect was not significant on grass-litter carbon mineralization efficiency. Alternatively, nanoparticles application significantly reduced mineral nitrogen content in litter-amended soil in both time intervals. Therefore, nitrogen mineralization efficiency was decreased to 60% after 180 days compared to that after 90 days in nanoparticles grass-litter amended soil. These effects can be explained by the presence of labile Fe in microbial biomass after 180 days in nanoparticles amendment. Hence, our results suggest that toxicity of IONPs to soil functioning should consider before recommending their use in agro-ecosystems.
Collapse
|