1
|
Shi H, Mao X, Yang F, Zhu M, Tan N, Tan W, Gu T, Zhang X. Multi-scale analysis of acidophilic microbial consortium biofilm's tolerance of lithium and cobalt ions in bioleaching. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134764. [PMID: 38824773 DOI: 10.1016/j.jhazmat.2024.134764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Metal ions stress will inhibit the oxidation capacity of iron and sulfur of an acidophilic microbial consortium (AMC), which leads to reduced bioleaching efficiency. This work explored the impacts of Li+ and Co2+ on the composition and function of AMC biofilms with a multi-scale approach. At the reactor scale, the results indicated that the oxidative activity, the adsorption capacity, and the biofilm formation ability of AMC on pyrite surfaces decreased under 500 mM Li+ and 500 mM Co2+. At the biofilm scale, the electrochemical measurements showed that Li+ and Co2+ inhibited the charge transfer between the pyrite working electrode and the biofilm, and decreased the corrosion current density of the pyrite working electrode. At the cell scale, the content of proteins in extracellular polymers substrate (EPS) increased as the concentrations of metal ions increased. Moreover, the adsorption capacity of EPS for Li+ and Co2+ increased. At the microbial consortium scale, a BugBase phenotype analysis showed that under 500 mM Li+ and 500 mM Co2+, the antioxidant stress capacity and the content of mobile gene elements in AMC increased. The results in this work can provide useful data and theoretical support for the regulation strategy of the bioleaching of spent lithium-ion batteries to recover valuable metals.
Collapse
Affiliation(s)
- Hongjie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xingshun Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minglong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ningjie Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Xu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Guo Z, Yang J, Li K, Shi J, Peng Y, Sarkodie EK, Miao B, Liu H, Liu X, Jiang L. Leaching Behavior of As and Pb in Lead-Zinc Mining Waste Rock under Mine Drainage and Rainwater. TOXICS 2023; 11:943. [PMID: 37999595 PMCID: PMC10675770 DOI: 10.3390/toxics11110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
At present, the pollution of arsenic (As) and lead (Pb) is becoming increasingly serious. The pollution caused by the release of As and Pb from lead-zinc mines has seriously affected the water and soil environment and threatened human health. It is necessary to reveal the release characteristics of As and Pb. The actual scene of mine drainage (MD) and rainwater (RW) leaching waste rocks is the one of the main reasons for the release of As and Pb. However, the leaching behavior of As and Pb in these waste rocks under MD and RW suffered from a lack of in-depth research. In this study, we investigated the occurrence of As and Pb in waste rocks (S1-S6) by using X-ray diffraction (XRD) and time-of-flight secondary ion mass spectrometry (TOF-SIMS), and then, the changes in As and Pb concentration and the hydrochemical parameter in leaching solution were systematically studied. Furthermore, the correlation between the release of As and Pb and mineral composition was also evaluated. Results showed that these waste rocks were mainly composed of carbonate and sulfide minerals. As and Pb were mainly bounded or associated with sulfide minerals such as arsenopyrite, pyrite, chalcopyrite, and galena in these waste rocks, and small parts of As and Pb were absorbed or encased by clay minerals such as kaolinite and chlorite. Under MD and RW leaching, the pH, redox potential (Eh), and electric conductivity (EC) of each waste rock tended to be consistent due to their buffering ability; the leachate pH of waste rocks with more carbonate minerals was higher than that of sulfide minerals. Both As and Pb were released most under MD leaching in comparison to RW, reaching 6.57 and 60.32 mg/kg, respectively, due to MD's low pH and high Eh value. However, As in waste rock released more under alkaline conditions because part of the arsenic was in the form of arsenate. As and Pb release were mainly positively correlated with the proportions of sulfide minerals in these waste rocks. MD leaching significantly promoted the release of As and Pb from waste rocks, which would cause a great threat to the surrounding environment, and control measures were imperative. This paper not only reveals the As and Pb pollution mechanism around the lead-zinc mining area but also provides a theoretical basis for the prevention and control of As and Pb pollution in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Luhua Jiang
- Key Laboratory of Biometallurgy, School of Minerals Processing and Bioengineering, Ministry of Education, Central South University, Changsha 410083, China; (Z.G.); (J.Y.); (K.L.); (J.S.); (Y.P.); (E.K.S.); (B.M.); (H.L.); (X.L.)
| |
Collapse
|
3
|
Thermal pretreatment of spent button cell batteries (BCBs) for efficient bioleaching. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Wang H, Zhu F, Liu X, Han M, Zhang R. A mini-review of heavy metal recycling technologies for municipal solid waste incineration fly ash. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:1135-1148. [PMID: 33818201 DOI: 10.1177/0734242x211003968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This mini-review article summarizes the available technologies for the recycling of heavy metals (HMs) in municipal solid waste incineration (MSWI) fly ash (FA). Recovery technologies included thermal separation (TS), chemical extraction (CE), bioleaching, and electrochemical processes. The reaction conditions of various methods, the efficiency of recovering HMs from MSWI FA and the difficulties and solutions in the process of technical development were studied. Evaluation of each process has also been done to determine the best HM recycling method and future challenges. Results showed that while bioleaching had minimal environmental impact, the process was time-consuming. TS and CE were the most mature technologies, but the former process was not cost-effective. Overall, it has the greatest economic potential to recover metals by CE with scrubber liquid produced by a wet air pollution control system. An electrochemical process or solvent extraction could then be applied to recover HMs from the enriched leachate. Ongoing development of TS and bioleaching technologies could reduce the treatment cost or time.
Collapse
Affiliation(s)
- Huan Wang
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| | - Fenfen Zhu
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| | - Xiaoyan Liu
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| | - Meiling Han
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| | - Rongyan Zhang
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| |
Collapse
|
5
|
Lv X, Zhao H, Zhang Y, Yan Z, Zhao Y, Zheng H, Liu W, Xie J, Qiu G. Active destruction of pyrite passivation by ozone oxidation of a biotic leaching system. CHEMOSPHERE 2021; 277:130335. [PMID: 33780674 DOI: 10.1016/j.chemosphere.2021.130335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/28/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Although pyrite bio-dissolution plays an important role in the processing of sulfide ores, the formation of passivation film inhibited the further dissolution of sulfide ores. In order to enhance the dissolution of sulfide ores, a novel method for destroying the passivation film using ozone was proposed and verified. The generated passivation film inhibiting pyrite dissolution in the presence of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans was studied. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicate that a passivation film mainly consisting of jarosite and polysulfide (Snn-/S0) might be formed during biotic stage, which can be eliminated with the introduction of ozone (2 g/min) in 30 min. Electrochemical results show that ozone significantly increased the electrochemical reactivity of passivated pyrite, further proving that ozone enhanced the dissolution of passivated pyrite through destroying the passivation layer. Hence, a bi-stage method for dissolution of sulfide ores can be proposed.
Collapse
Affiliation(s)
- Xin Lv
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Hongbo Zhao
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China.
| | - Yisheng Zhang
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Zefan Yan
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Yu Zhao
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Hong Zheng
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Wenqing Liu
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Jianping Xie
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Guanzhou Qiu
- School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
6
|
Šyc M, Simon FG, Hykš J, Braga R, Biganzoli L, Costa G, Funari V, Grosso M. Metal recovery from incineration bottom ash: State-of-the-art and recent developments. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122433. [PMID: 32143166 DOI: 10.1016/j.jhazmat.2020.122433] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Municipal solid waste incineration (MSWI) is one of the leading technologies for municipal solid waste (MSW) treatment in Europe. Incineration bottom ash (IBA) is the main solid residue from MSWI, and its annual European production is about 20 million tons. The composition of IBA depends on the composition of the incinerated waste; therefore, it may contain significant amounts of ferrous and non-ferrous (NFe) metals as well as glass that can be recovered. Technologies for NFe metals recovery have emerged in IBA treatment since the 1990s and became common practice in many developed countries. Although the principles and used apparatus are nearly the same in all treatment trains, the differences in technological approaches to recovery of valuable components from IBA - with a special focus on NFe metals recovery - are summarized in this paper.
Collapse
Affiliation(s)
- Michal Šyc
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, Prague 6, Czech Republic.
| | - Franz Georg Simon
- BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 1205, Berlin, Germany
| | - Jiri Hykš
- Danish Waste Solutions ApS, Agern Allé 3, 2970, Hørsholm, Denmark
| | - Roberto Braga
- Dipartimento di Scienze Biologiche Geologiche e Ambientali (BiGeA), Università di Bologna, Piazza di Porta San Donato 1, 40126, Bologna, Italy
| | - Laura Biganzoli
- Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milano, Italy
| | - Giulia Costa
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering (DICII), University of Rome Tor Vergata, via del Politecnico 1, 00133, Rome, Italy
| | - Valerio Funari
- Dipartimento di Scienze Biologiche Geologiche e Ambientali (BiGeA), Università di Bologna, Piazza di Porta San Donato 1, 40126, Bologna, Italy; Dipartimento di Biotecnologie, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121, Naples, Italy
| | - Mario Grosso
- Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
7
|
Sajjad W, Zheng G, Ma X, Xu W, Ali B, Rafiq M, Zada S, Irfan M, Zeman J. Dissolution of Cu and Zn-bearing ore by indigenous iron-oxidizing bacterial consortia supplemented with dried bamboo sawdust and variations in bacterial structural dynamics: A new concept in bioleaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136136. [PMID: 31884267 DOI: 10.1016/j.scitotenv.2019.136136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/19/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Disposing of low-grade ores involves numerous environmental issues. Bioleaching with acidophilic bacteria is the preferred solution to process these ores for metals recovery. In this study, indigenous iron-oxidizing bacteria Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum, and Leptospirillum ferrooxidans were used in consortia supplemented with acid-treated bamboo sawdust (BSD) for copper and zinc recovery. Findings showed the extreme catalytic response of BSD with the best recovery of metals. Maximum of 92.2 ± 4.0% copper (0.35%) and 90.0 ± 5.4% zinc (0.33%) were recovered after 8 days of processing in the presence of 2 g/L BSD. Significant variations were reported in physicochemical parameters during bioleaching in the presence of a different concentration of BSD. Fourier Transform Infrared spectroscopy results of bioleached residues showed significant variations in spectral pattern and maximum variations were reported in 2.0 g/L BSD, which indicates maximum metals dissolutions. The impact of bacterial consortia and BSD on iron speciation of bioleached ores was analyzed by using Mössbauer spectroscopy and clear variations in iron speciation were reported. Furthermore, the bacterial community structure dynamics revealed significant variations in the individual bacterial proportion in each experiment. This finding shows that the dosage concentration of BSD influenced the microenvironment, which effect the bacterial abundance and these variations in the bacterial structural communities were not associated with the initial proportion of bacterial cells inoculated in the bioleaching process. Moreover, the mechanism of chemical reactions was proposed by explaining the possible role of BSD as a reductant under micro-aerophilic conditions that facilitates the bacterial reduction of ferric iron. This type of bioleaching process with indigenous iron-oxidizing bacteria and BSD has significant potential to further upscale the bioleaching process for recalcitrant ore bodies in an environment friendly and cost-effective way.
Collapse
Affiliation(s)
- Wasim Sajjad
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China; State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China
| | - Guodong Zheng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China.
| | - Xiangxian Ma
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Wang Xu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Barkat Ali
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Muhammad Irfan
- Department of Microbiology and Cell Science Genetics Institute and Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States of America
| | - Josef Zeman
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China; Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| |
Collapse
|
8
|
Panda S. Magnetic separation of ferrous fractions linked to improved bioleaching of metals from waste-to-energy incinerator bottom ash (IBA): a green approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9475-9489. [PMID: 31919815 DOI: 10.1007/s11356-020-07615-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Ferrous fractions in incinerated bottom ash (IBA) are linked to lower metal dissolution. In the present study, a novel eco-friendly biotechnological approach has been tested for multi-metal leaching using meso-acidophilic Fe2+/S° oxidizing bacterial consortium from magnetically separated IBA, owing to the inherent property of IBA to release Fe2+. Comprehensive lab-scale studies, first-of-its-kind, considered all the potential elements to understand targeted metal dissolutions from the sample under differential conditions. Concentrations of metals, Al > Ti > Ni > Zn > Cu, as analyzed by ICP-OES, were targeted to be bioleached. XRD analysis indicated the sample to be amorphous with magnetite (Fe3O4) and iron (Fe) forming major phases in the magnetic part (IBAM) and titano-magnetite (Fe3-x. TixO4) and iron (Fe) for the nonmagnetic part (IBAN). The study indicated that 73.98% Cu, 98.68% Ni, 59.09% Zn, 58.84% Al, and 92.85% Ti could be leached from IBAM when the bioleaching system operates at pH 1.5, 5% pulp density for 8 days. Under similar conditions, within 6 days, 37.55% Cu, 87.99% Ni, 45.03% Zn, 40.72% Al, and 63.97% Ti could be leached from IBAN. Two routes were identified and the mechanism of action has been proposed for the leaching of metals.
Collapse
Affiliation(s)
- Sandeep Panda
- Department of Mining Engineering, Mineral-Metal Recovery and Recycling (MMR&R) Research Group, Mineral Processing Division, Suleyman Demirel University, TR32260, Isparta, Turkey.
| |
Collapse
|
9
|
Liu R, Mao Z, Liu W, Wang Y, Cheng H, Zhou H, Zhao K. Selective removal of cobalt and copper from Fe (III)-enriched high-pressure acid leach residue using the hybrid bioleaching technique. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121462. [PMID: 31694776 DOI: 10.1016/j.jhazmat.2019.121462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Removal of metals from high pressure acid leaching (HPAL) residue was essential to alleviate potential environmental threat and avoid valuable metals loss. However, cost-effective metals extraction from HPAL residue remains a difficulty. In this study, a hybrid bioleaching process was developed for Co and Cu extraction from HPAL residue of Cu-Co sulfide ores. Results for microbial community structure optimization showed that moderate thermophilum consortium with coexistence of iron oxidizer and sulfur oxidizer was more efficient on metal extraction compared with mesophiles. Further addition of citric acid, Fe (II) and S0 significantly enhanced the release of metals through improving the total biomass, attached cells and community diversity. As a result, 87.91% of cobalt and 58.52% of copper were extracted at initial pH 1.4 and pulp density of 50 g/L by hybrid bioleaching. The hazardous potential assessments revealed that the bioleached residue could be disposed safely. These findings demonstrated that organic acids assisting bioleaching with community adjusting was a promising strategy for metals removal from HPAL residue.
Collapse
Affiliation(s)
- Ronghui Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy of Ministry of Education, ChangSha 410083, China
| | - Zhenhua Mao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Wenxian Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy of Ministry of Education, ChangSha 410083, China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy of Ministry of Education, ChangSha 410083, China.
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy of Ministry of Education, ChangSha 410083, China.
| | - Kaifang Zhao
- Dongguan Kecheng Environmental Technology Co., LTD, Dongguan, China
| |
Collapse
|
10
|
Pourhossein F, Mousavi SM. A novel step-wise indirect bioleaching using biogenic ferric agent for enhancement recovery of valuable metals from waste light emitting diode (WLED). JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120648. [PMID: 31203122 DOI: 10.1016/j.jhazmat.2019.05.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/25/2019] [Accepted: 05/17/2019] [Indexed: 05/24/2023]
Abstract
Waste light-emitting diodes (WLED) are of major interest as they are a considered secondary source of valuable metals with a high potential for polluting the environment. To recover the valuable metals from WLEDs, various methods have been applied such as direct and indirect bioleaching. A novel step-wise indirect bioleaching process has been developed in this study for recycling valuable metals from WLEDs using adapted Acidithiobacillus ferrooxidans. The ferric ion concentration was controlled at 4-5 g/L with step-wise addition of biogenic ferric for faster bioleaching rate. The results indicated the negative effect of bacterial attachment in bioleaching of WLEDs. A direct bioleaching offers low copper, nickel, and gallium leach yields, while all metals' recovery improved with step-wise indirect bioleaching. At a pulp density of 20 g/L, the copper, nickel, and gallium recovery efficiency was 83%, 97%, 84%, respectively. In addition, leaching time was reduced to 15 days from 30 days. From a technological perspective, the study proved that step-wise indirect bioleaching by biogenic ferric resulted in maximum valuable metal recovery from WLEDs at a low cost and via a short, simple and environmentally-friendly process.
Collapse
Affiliation(s)
- Fatemeh Pourhossein
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Ma L, Wang H, Wu J, Wang Y, Zhang D, Liu X. Metatranscriptomics reveals microbial adaptation and resistance to extreme environment coupling with bioleaching performance. BIORESOURCE TECHNOLOGY 2019; 280:9-17. [PMID: 30743055 DOI: 10.1016/j.biortech.2019.01.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Chalcopyrite bioleaching by 2, 4 and 6 acidophilic strains with the same inoculation density were studied, respectively. The results indicated that the 6-strain community firstly adapted to bioleaching environment, dissolved the chalcopyrite rapidly and maintained an efficient work until late stage. Transcriptome profiles of the 6-strain community at 6th and 30th day during bioleaching process were investigated by RNA-seq. Comparative transcriptomics identified 226 and 737 significantly up-regulated genes at early and late stage, respectively. Gene annotation results revealed that microorganisms adapted to the oligotrophic environment by enhancing cell proliferation, catalytic activation and binding action to maintain their life activities at early stage, and genes related to signal transduction, localization and transporter were highly expressed as an effective response to the stressful late stage. A graphical representation was presented to show how microorganisms adapted and resisted to the extreme environment by their inner functional properties and promoted the bioleaching efficiency.
Collapse
Affiliation(s)
- Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jiangjun Wu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yuguang Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Du Zhang
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
12
|
Wang S, Xie Y, Yan W, Wu X, Wang CT, Zhao F. Leaching of vanadium from waste V 2O 5-WO 3/TiO 2 catalyst catalyzed by functional microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:497-503. [PMID: 29800843 DOI: 10.1016/j.scitotenv.2018.05.168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Solid wastes are currently produced in large amounts. Although bioleaching of metals from solid wastes is an economical and sustainable technology, it has seldom been used to recycle metals from abandoned catalyst. In this study, the bioleaching of vanadium from V2O5-WO3/TiO2 catalyst were comprehensively investigated through five methods: Oligotrophic way, Eutrophic way, S-mediated way, Fe-mediated way and Mixed way of S-mediated and Fe-mediated. The observed vanadium bioleaching effectiveness of the assayed methods was follows: S-mediated > Mixed > Oligotrophic > Eutrophic > Fe-mediated, which yielded the maximum bioleaching efficiencies of approximately 90%, 35%, 33%, 20% and 7%, respectively. The microbial community analysis suggested that the predominant genera Acidithiobacillus and Sulfobacillus from the S-mediated bioleaching way effectively catalyzed the vanadium leaching, which could have occurred through the indirect mechanism from the microbial oxidation of S0. In addition, the direct mechanism, involving direct electron transfer between the catalyst and the microorganisms that attached to the catalyst surface, should also help the vanadium to be leached more effectively. Therefore, this work provides guidance for future research and practical application on the treatment of waste V2O5-WO3/TiO2 catalyst.
Collapse
Affiliation(s)
- Shuhua Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaling Xie
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361021, China
| | - Weifu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuee Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361021, China
| | - Chin-Tsan Wang
- Department of Mechanical and Electro-Mechanical Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
13
|
Bioleaching of copper- and zinc-bearing ore using consortia of indigenous iron-oxidizing bacteria. Extremophiles 2018; 22:851-863. [DOI: 10.1007/s00792-018-1042-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/09/2018] [Indexed: 11/25/2022]
|
14
|
Panda S, Akcil A, Mishra S, Erust C. A novel bioreactor system for simultaneous mutli-metal leaching from industrial pyrite ash: Effect of agitation and sulphur dosage. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:454-463. [PMID: 28881272 DOI: 10.1016/j.jhazmat.2017.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Simultaneous multi-metal leaching from industrial pyrite ash is reported for the first time using a novel bioreactor system that allows natural diffusion of atmospheric O2 and CO2 along with the required temperature maintenance. The waste containing economically important metals (Cu, Co, Zn & As) was leached using an adapted consortium of meso-acidophilic Fe2+ and S oxidising bacteria. The unique property of the sample supported adequate growth and activity of the acidophiles, thereby, driving the (bio) chemical reactions. Oxido-reductive potentials were seen to improve with time and the system's pH lowered as a result of active S oxidation. Increase in sulphur dosage (>1g/L) and agitation speed (>150rpm) did not bear any significant effect on metal dissolution. The consortium was able to leach 94.01% Cu (11.75% dissolution/d), 98.54% Co (12.3% dissolution/d), 75.95% Zn (9.49% dissolution/d) and 60.80% As (7.6% dissolution/d) at 150rpm, 1g/L sulphur, 30°C in 8days.
Collapse
Affiliation(s)
- Sandeep Panda
- Mineral-Metal Recovery and Recycling (MMR&R) Research Group, Mineral Processing Division, Department of Mining Engineering, Suleyman Demirel University, TR32260 Isparta, Turkey
| | - Ata Akcil
- Mineral-Metal Recovery and Recycling (MMR&R) Research Group, Mineral Processing Division, Department of Mining Engineering, Suleyman Demirel University, TR32260 Isparta, Turkey.
| | - Srabani Mishra
- Mineral-Metal Recovery and Recycling (MMR&R) Research Group, Mineral Processing Division, Department of Mining Engineering, Suleyman Demirel University, TR32260 Isparta, Turkey; Academy of Scientific and Innovation Research, CSIR - Institute of Minerals & Materials Technology (AcSIR), Bhubaneswar, 751013, India
| | - Ceren Erust
- Mineral-Metal Recovery and Recycling (MMR&R) Research Group, Mineral Processing Division, Department of Mining Engineering, Suleyman Demirel University, TR32260 Isparta, Turkey
| |
Collapse
|