1
|
Zhu W, Chen S, Wang Y, Xu X, Huang X, Yang X, Ren F. Investigation into the Quantitative Structure-Biotoxicity Relationship of Antibiotics and their Estrogenic Receptor Disruption Effects. Chem Biodivers 2025; 22:e202401843. [PMID: 39482255 DOI: 10.1002/cbdv.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 11/03/2024]
Abstract
In light of antibiotics being classified as environmental hormone-like compounds, their interference with the endocrine system has significantly impacted human health and ecological environments. This study employed Density Functional Theory (DFT) within Gaussian09, conducting structural optimizations and property calculations on 23 typical antibiotic molecules at the B3LYP/3-21G and B3LYP/6-31G(d) levels to obtain structural parameters and acquired physicochemical property parameters through the RDKit database in ChemDes platform for quantitative processing of the compounds. Multiple linear regression analysis identified the primary factors affecting antibiotics' biological toxicity (pLD50), and a QSAR model was established. The model's predictive capability was analyzed using leave-one-out cross-validation, and the binding modes and mechanisms of action between estrogen receptors (ER) and antibiotics were investigated via molecular docking and molecular dynamics simulations. The results indicate that six property parameters significantly influence the biological toxicity of antibiotics, with the established QSAR model C exhibiting regression coefficients R2 and Q2 of 0.92474 and 0.74913, respectively, demonstrating good stability and predictive power. Molecular surface electrostatic potential, frontier molecular orbitals, molecular docking, and molecular dynamics simulations revealed that stable hydrogen bonds and hydrophobic interactions primarily mediate the potential estrogenic disrupting effects between antibiotics and estrogen receptors. Predictions from an anticancer compound library identified ten compounds with strong estrogenic disrupting effects, and molecular docking validated the practical utility of model C. This provides a valuable exploration for discovering and screening PPCPs with potential estrogenic disrupting effects.
Collapse
Affiliation(s)
- Wanhong Zhu
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing key laboratory of industrial fermentation microorganisms, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Shuangkou Chen
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing key laboratory of industrial fermentation microorganisms, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yu Wang
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing key laboratory of industrial fermentation microorganisms, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xi Xu
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing key laboratory of industrial fermentation microorganisms, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xia Huang
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing key laboratory of industrial fermentation microorganisms, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xin Yang
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing key laboratory of industrial fermentation microorganisms, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Fengming Ren
- Pharmaceutical Biotechnology Center, Chongqing Institute of drug cultivation, Chongqing, 408435, China
| |
Collapse
|
2
|
Li Q, Cui Y, Wang Z, Li Y, Yang H. Toxicity assessment of dioxins and their transformation by-products from inferred degradation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173416. [PMID: 38795989 DOI: 10.1016/j.scitotenv.2024.173416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Due to the significant POPs characteristics, dioxins caused concern in public health and environmental protection. Evaluating the toxicity risk of dioxin degradation pathways is critical. OCDD, 1,2,3,4,6,7,8-HpCDD, and 1,2,3,4,6,7,8-HpCDF, which are highly abundant in the environment and have strong biodegradation capabilities, were selected as precursor molecules in this study. Firstly, their transformation pathways were deduced during the metabolism of biometabolism, microbial aerobic, microbial anaerobic, and photodegradation pathways, and density function theory (DFT) was used to calculate the Gibbs free energy to infer the possibility of the occurrence of the transformation pathway. Secondly, the carcinogenic potential of the precursors and their degradation products was evaluated using the TOPKAT modeling method. With the help of the positive indicator (0-1) normalization method and heat map analysis, a significant increase in the toxic effect of some of the transformation products was found, and it was inferred that it was related to the structure of the transformation products. Meanwhile, the strength of the endocrine disrupting effect of dioxin transformation products was quantitatively assessed using molecular docking and subjective assignment methods, and it was found that dioxin transformation products with a higher content of chlorine atoms and molecules similar to those of thyroid hormones exhibited a higher risk of endocrine disruption. Finally, the environmental health risks caused by each degradation pathway were comprehensively assessed with the help of the negative indicator (1-2) standardization method, which provides a theoretical basis for avoiding the toxicity risks caused by dioxin degradation transformation. In addition, the 3D-QSAR model was used to verify the necessity and rationality of this study. This paper provides theoretical support and reference significance for the toxicity assessment of dioxin degradation by-products from inferred degradation pathways.
Collapse
Affiliation(s)
- Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yuhan Cui
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Zhonghe Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
3
|
Sun S, Liu Z, Li Q, Li Y. Molecular design of environment-friendly chlorophenol (CP) derivatives based on 3D-QSAR assisted with a comprehensive evaluation method combining bioaccumulation and degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83643-83656. [PMID: 37347327 DOI: 10.1007/s11356-023-28322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
In this study, a chlorophenol (CP) 3D-QSAR model with a double activity (bioaccumulation and degradation) combination was established. 19 CPs were divided into a training set and test set according to the ratio of 4:1. The cross-validation coefficient (q2) and non-cross-validation coefficient (R2) of the model were 0.803 (> 0.5) and 0.925 (> 0.9), respectively, indicating a good stability and predictive ability of the 3D-QSAR. 2,4,6-trichlorophenol (2,4,6-TCP) was used as a target molecule, and 46 derivatives with low comprehensive effects were designed. Out of the 46 derivatives, 11 derivatives were screened to have the good insecticidal and preservative properties. From the perspective of the toxicity of zebrafish, 4 out of the 11 derivatives were found to have lower aquatic toxicity effects. Through the food chain simulation of cyanobacteria-daphnia-swamp-mandarin fish, it was found that the bioaccumulation effect of the four derivatives was lower than that of 2,4, 6-TCP. Finally, molecular dynamics simulation was conducted using 2-CH2NH2 substituted derivatives, and it was found that the degradation effect by laccase (white rot fungi) was significantly improved in the presence of violuric acid, hydroxybenzotriazole, and syringaldehyde. This study can provide theoretical support for the development of environment-friendly technology for emerging pollutants.
Collapse
Affiliation(s)
- Shuhai Sun
- School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun, 130012, China
| | - Zeyang Liu
- School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun, 130012, China
| | - Qing Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
4
|
Bo T, Lin Y, Han J, Hao Z, Liu J. Machine learning-assisted data filtering and QSAR models for prediction of chemical acute toxicity on rat and mouse. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131344. [PMID: 37027914 DOI: 10.1016/j.jhazmat.2023.131344] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Machine learning (ML) methods provide a new opportunity to build quantitative structure-activity relationship (QSAR) models for predicting chemicals' toxicity based on large toxicity data sets, but they are limited in insufficient model robustness due to poor data set quality for chemicals with certain structures. To address this issue and improve model robustness, we built a large data set on rat oral acute toxicity for thousands of chemicals, then used ML to filter chemicals favorable for regression models (CFRM). In comparison to chemicals not favorable for regression models (CNRM), CFRM accounted for 67% of chemicals in the original data set, and had a higher structural similarity and a smaller toxicity distribution in 2-4 log10 (mg/kg). The performance of established regression models for CFRM was greatly improved, with root-mean-square deviations (RMSE) in the range of 0.45-0.48 log10 (mg/kg). Classification models were built for CNRM using all chemicals in the original data set, and the area under receiver operating characteristic (AUROC) reached 0.75-0.76. The proposed strategy was successfully applied to a mouse oral acute data set, yielding RMSE and AUROC in the range of 0.36-0.38 log10 (mg/kg) and 0.79, respectively.
Collapse
Affiliation(s)
- Tao Bo
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Yaohui Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jinglong Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| | - Jingfu Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| |
Collapse
|
5
|
Gao J, Li X, Fu R, Li Y. Mechanism analysis and improved molecular modification: Design of high efficiency and environmentally friendly triazole fungicide substitutes. CHEMOSPHERE 2023:139150. [PMID: 37290508 DOI: 10.1016/j.chemosphere.2023.139150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
The adverse effects of triazole fungicides (TFs) on the soil and the environmental damage caused by their residues have attracted the attention of the international community. To effectively prevent and control the above problems, this paper designed 72 substitutes of TFs with significantly better molecular functionality (>40%) using Paclobutrazol (PBZ) as the template molecule. Then, the comprehensive scores for environmental effects calculated after normalization by "extreme value method-entropy weight method-weighted average method" was the dependent variable, the structural parameters of TFs molecules was the independent variable (PBZ-214 was the template molecule) to construct the 3D-QSAR model of integrated environmental effects of TFs with high degradability, low bioenrichment, low endocrine disruption effects, and low hepatotoxicity and designed 46 substitutes of TFs with significantly better comprehensive environmental effects (>20%). After confirming the above effects of TFs and assessing human health risk and the universality of biodegradation and endocrine disruption, we screened PBZ-319-175 as the eco-friendly substitute of TF, which had high efficiency (improved functionality) and better environmental effects than those of the target molecule by 51.63% and 36.09%, respectively. Finally, the results of the molecular docking analysis showed that non-bonding interactions (hydrogen bonding, electrostatic, or polar force) predominantly affected the association between PBZ-319-175 and its biodegradable protein, and the hydrophobic effect of the amino acids distributed around PBZ-319-175 played a significant role. Additionally, we determined the microbial degradation path of PBZ-319-175 and found that the steric hindrance of the substituent group after molecular modification promoted its biodegradability. In this study, we enhanced molecular functionality twice and also reduce the major damage of TFs to the environment by performing iterative modifications. This paper provided theoretical support for the development and application of high-performance, eco-friendly substitutes of TFs.
Collapse
Affiliation(s)
- Jiaxuan Gao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Rui Fu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
6
|
Cui X, Zhao Y, Hao N, Zhao W. A multi-framework for bisphenols based on their high performance and environmental friendliness: Design, screening, and recommendations. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131709. [PMID: 37267645 DOI: 10.1016/j.jhazmat.2023.131709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Bisphenols (BPs) have gained significant attention due to their extensive use in the production of medical equipment, packaging materials, and everyday commodities. Urgent attention is required for assessing and identifying the risks associated with BP exposure to the environment and human health, as well as developing regulatory strategies. In this paper, 29 common BPs were selected as the research object, high-performance BP substitutes with environmental and human health friendliness characteristics were designed and screened. The above eight BP substitutes were considered as examples, and the first-level evaluation indicators of BPs and their substitutes were predicted using a random forest classification/regression model. Subsequently, the key indicators affecting the first-level evaluation indicators were ranked. The ranking results were environmental friendliness (64.30%) > human health risk (18.00%) > functionality (17.69%), indicating that environmental friendliness was the main influencing factor for the first-level evaluation indicators of BPs and their substitutes. Therefore, the study employed density functional theory (DFT) to simulate the biodegradation pathways of BPs and their substitutes in contaminated soil and landfill leachate, using Derivative-50 as an example. Furthermore, the environmental risk associated with the degradation products was evaluated, and regulatory recommendations based on risk identification were proposed.
Collapse
Affiliation(s)
- Xiran Cui
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Yao T, Sun P, Zhao W. Triazine Herbicides Risk Management Strategies on Environmental and Human Health Aspects Using In-Silico Methods. Int J Mol Sci 2023; 24:ijms24065691. [PMID: 36982765 PMCID: PMC10052965 DOI: 10.3390/ijms24065691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
As an effective herbicide, 1, 3, 5-Triazine herbicides (S-THs) are used widely in the pesticide market. However, due to their chemical properties, S-THs severely threaten the environment and human health (e.g., human lung cytotoxicity). In this study, molecular docking, Analytic Hierarchy Process—Technique for Order Preference by Similarity to the Ideal Solution (AHP-TOPSIS), and a three-dimensional quantitative structure-active relationship (3D-QSAR) model were used to design S-TH substitutes with high herbicidal functionality, high microbial degradability, and low human lung cytotoxicity. We discovered a substitute, Derivative-5, with excellent overall performance. Furthermore, Taguchi orthogonal experiments, full factorial design of experiments, and the molecular dynamics method were used to identify three chemicals (namely, the coexistence of aspartic acid, alanine, and glycine) that could promote the degradation of S-THs in maize cropping fields. Finally, density functional theory (DFT), Estimation Programs Interface (EPI), pharmacokinetic, and toxicokinetic methods were used to further verify the high microbial degradability, favorable aquatic environment, and human health friendliness of Derivative 5. This study provided a new direction for further optimizations of novel pesticide chemicals.
Collapse
|
8
|
Synthesis of Synthetic Musks: A Theoretical Study Based on the Relationships between Structure and Properties at Molecular Scale. Int J Mol Sci 2023; 24:ijms24032768. [PMID: 36769089 PMCID: PMC9917709 DOI: 10.3390/ijms24032768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Synthetic musks (SMs), as an indispensable odor additive, are widely used in various personal care products. However, due to their physico-chemical properties, SMs were detected in various environmental media, even in samples from arctic regions, leading to severe threats to human health (e.g., abortion risk). Environmentally friendly and functionally improved SMs have been theoretically designed in previous studies. However, the synthesizability of these derivatives has barely been proven. Thus, this study developed a method to verify the synthesizability of previously designed SM derivatives using machine learning, 2D-QSAR, 3D-QSAR, and high-throughput density functional theory in order to screen for synthesizable, high-performance (odor sensitivity), and environmentally friendly SM derivatives. In this study, three SM derivatives (i.e., D52, D37, and D25) were screened and recommended due to their good performances (i.e., high synthesizability and odor sensitivity; low abortion risk; and bioaccumulation ability in skin keratin). In addition, the synthesizability mechanism of SM derivatives was also analyzed. Results revealed that high intramolecular hydrogen bond strength, electrostatic interaction, qH+ value, energy gap, and low EHOMO would lead to a higher synthesizability of SMs and their derivatives. This study broke the synthesizability bottleneck of theoretically designed environment-friendly SM derivatives and advanced the mechanism of screening functional derivatives.
Collapse
|
9
|
Xue J, Chen X, Zhao Y, Li Y. Exposure to high-performance benzotriazole ultraviolet stabilizers: Advance in toxicological effects, environmental behaviors and remediation mechanism using in-silica methods. CHEMOSPHERE 2023; 315:137699. [PMID: 36608879 DOI: 10.1016/j.chemosphere.2022.137699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs), as light stabilizers, have attracted widespread attention because of their easy migration in the environment and their acute toxicity and biological toxicity effects, such as immunotoxicity and hepatotoxicity. Accordingly, the treatment and remediation mechanisms of high-performance, environmentally friendly, and low human health risk BUVS substitutes were analyzed. Firstly, the weights and the comprehensive effect (CE) values of migration and toxicity of BUVSs were determined by Topsis assisted by the coefficient of variation (CV) method. From this, a three-dimensional quantitative structure activity relationship (3D-QSAR) model based on the CE values of the 13 BUVSs was constructed. Secondly, EPI software was used to predict the functionality and environmental friendliness of BUVS substitutes, and a partial least squares regression machine learning (ML-PLSR) model was used to analyze the mechanism. Then, ADMET (absorption, distribution, metabolism, excretion, toxicity), TOPKAT, and exposure dose models were used to evaluate the ecological and human health risks of BUVSs and their substitutes. Finally, the key charge information affecting the UV-326 substitutes was deduced by time dependent density functional theory (TDDFT). Using UV-326 as an example, 15 UV-326 substitutes with reduced CE values were designed (reductions of 2.61%-23.18%). Compared with ML-PLSR models of acute toxicity, immunotoxicity, and hepatotoxicity, it was found that the decrease of DM and Qyy values and the increase of Qzz value could further decrease the toxicity of the UV-326 substitutes. Ecological and human health risk assessment showed that the exposure risks of the six UV-326 substitutes were within acceptable limits. TDDFT showed that the change of electron distribution and electron excitation type were the key factors affecting the performance of the UV-326 substitutes, and a charge transfer excitation type was more conducive to obtaining high-performance, environmentally friendly UV-326 substitutes. This study aims to alleviate the toxic damage to the ecological environment and human health caused by BUVS exposure.
Collapse
Affiliation(s)
- Jiaqi Xue
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Xinyi Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China; Zhejiang Institute of Mechanical & Electrical Engineering Co., Ltd, Hangzhou, 310051, China.
| | - Yuanyuan Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
10
|
Ren Z, Zhao Y, Han S, Li X. Regulatory strategies for inhibiting horizontal gene transfer of ARGs in paddy and dryland soil through computer-based methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159096. [PMID: 36181826 DOI: 10.1016/j.scitotenv.2022.159096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) have been regarded as emerging pollutants due to their potential risk of resistance. Horizontal gene transfer (HGT) is the main pathway for ARGs to lead to environmental threats. Therefore, the inhabitation of ARGs' HGT can effectively inhibit ARGs' potential drug resistance risk within a single strain. In this paper, the characteristics of ARGs' HGT in paddy and dryland soils were identified and regulated by a combination of ARGs' HGT feature identification, transfer mechanism analysis and transfer process regulation. The homology modeling algorithm was used to simulate the construction of the Tn5 plasmid transposase of Escherichia coli (E. coli) for identifying ARGs' HGT characteristics. The GCG (212.617 Å) was thus determined as the target codon. Through integrated computer-based methods, results showed that the most important environmental disturbance factors for the HGT of ARGs in the paddy and dryland soils were rough farmyard manure/sewage irrigation and mining pollution, respectively. Under the disturbance of key environmental factors, the inhibitory effect of HGT of ARGs in paddy and dryland soil was reduced by 35.01 % and 34.74 %, respectively. Results demonstrated that the proposed theoretical mechanism and control strategies could effectively inhibit the HGT of E. coli ARGs in the soil environment.
Collapse
Affiliation(s)
- Zhixing Ren
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Song Han
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Xixi Li
- Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's A1B 3X5, Canada.
| |
Collapse
|
11
|
Cantwell C, Song X, Li X, Zhang B. Prediction of adsorption capacity and biodegradability of polybrominated diphenyl ethers in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12207-12222. [PMID: 36109482 DOI: 10.1007/s11356-022-22996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants with strong toxicity concerns. Understanding the behaviors of PBDEs in soil is essential to evaluate their environmental impact. However, the limited, incoherent, and inaccurate data has challenged predicting the adsorption capacity and biodegradability of all 209 PBDE congeners in the soil. Moreover, there are minimal studies regarding the interactions between adsorption and biodegradation behaviors of PBDEs in the soil. Herein, in this study, we adopted quantitative structure-property relationship (QSAR) modeling to predict the adsorption behavior of 209 PBDE congeners by estimating their organic carbon-water partition coefficient (KOC) values. In addition, the biodegradability of commonly occurring PBDE congeners was evaluated by analyzing their affinity to extracellular enzymes responsible for biodegradation using molecular docking. The results highlight that the degree of bromination plays a significant role in both the absorption and biodegradation of PBDEs in the soil due to compound stability and molecular geometry. Our findings help to advance the knowledge on PBDE behaviors in the soil and facilitate PBDE remediation associated with a soil environment.
Collapse
Affiliation(s)
- Cuirin Cantwell
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Xing Song
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Xixi Li
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| |
Collapse
|
12
|
Sun S, Zuo Q, Du M, Li Y. Molecular Design and Mechanism Analysis of Phthalic Acid Ester Substitutes: Improved Biodegradability in Processes of Sewage Treatment and Soil Remediation. TOXICS 2022; 10:783. [PMID: 36548616 PMCID: PMC9781866 DOI: 10.3390/toxics10120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Phthalic acid esters (PAEs) have the characteristics of environmental persistence. Therefore, improving the biodegradability of PAEs is the key to reducing the extent of ecological harm realized. Firstly, the scoring function values of PAEs docking with various degrading enzymes in sewage treatment were calculated. Based on this, a 3D-quantitative structure-activity relationship (3D-QSAR) model for PAE biodegradability was built, and 38 PAE substitutes were created. By predicting the endocrine-disrupting toxicity and functions of PAE substitutes, two types of PAE substitutes that are easily degraded by microorganisms, have low toxicity, and remain functional were successfully screened. Meanwhile, the differences in the mechanism of molecular degradation difference before and after PAE modification were analyzed based on the distribution characteristics of amino acid residues in the molecular docking complex. Finally, the photodegradability and microbial degradability of the PAE substitutes in the soil environment was evaluated. From the 3D-QSAR model design perspective, the modification mechanism of PAE substitutes suitable for sewage treatment and soil environment degradation was analyzed. We aim to improve the biodegradability of PAEs at the source and provide theoretical support for alleviating the environmental hazards of using PAEs.
Collapse
Affiliation(s)
- Shuhai Sun
- School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, China
| | - Qilin Zuo
- School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, China
| | - Meijin Du
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
13
|
He W, Yang H, Pu Q, Li Y. Novel control strategies for the endocrine-disrupting effect of PAEs to pregnant women in traffic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158269. [PMID: 36029816 DOI: 10.1016/j.scitotenv.2022.158269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Traffic-related air pollution has become a global issue, and scientific regulation measures are urgently needed to reduce traffic pollution. Phthalates (PAEs) have been widely detected in the traffic environment; thus, they were chosen as target pollutants because of their endocrine-disrupting effects. The pathways of action and mechanisms of PAEs' endocrine-disrupting effects in pregnant women through inhalation were deduced. A novel whole-process 1C + 3D + 5R regulation system was developed to control the endocrine-disrupting effect of PAEs on pregnant women based on the cleaning production concept. (1) For source reduction, the 2D-QSAR model of endocrine-disrupting effects of PAEs in pregnant women was constructed to screen out the key influencing factors as hydrogen bond interaction and hydrophobic interaction. Based on this, a designed PAE substitute molecule with low volatility and endocrine-disrupting effects and no developmental toxicity was screened. The substitute molecule could reduce the volatilization amount of PAEs at the source by 41.76 %; (2) For process interception, selecting C-band UV light to eliminate PAEs molecules in the traffic environment can slow down 19.99 % of the endocrine-disrupting effect of PAEs molecules. The homology modeling method was used to design four kinds of green belt plant proteins with high PAEs absorption efficiency to absorb PAEs molecules in the traffic environment. Compared with the original green belt plant proteins, the absorption amount of PAEs increased by up to 96.08 %, and (3) For terminal prevention, dietary food schemes were designed to regulate PAEs' endocrine-disrupting effect on pregnant women. The optimal dietary food scheme was the simultaneous intake of glutamate, catechin and folic acid, which could reduce the adverse effect of PAEs on maternal and infants by 32.51 %. This study presents theoretical support for regulating PAE exposure to specific populations in the traffic environment and treating other pollutants in the future.
Collapse
Affiliation(s)
- Wei He
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
14
|
Zhao Y, Zheng M, Zhang Y, Li Y. Coupling strategies for ecotoxicological assessment of neonicotinoid insecticides based on their selective lethal effects: Design, screening, and regulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119514. [PMID: 35609840 DOI: 10.1016/j.envpol.2022.119514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The recently recognized adverse environmental and toxic effects of neonicotinoid insecticides (NNIs) on non-target organisms are alarming. A comprehensive design, screening, and regulatory system was developed to generate NNI derivatives and mutant receptors with selective-ecotoxicological effects to overcome such adverse effects. For ligand design, taking ACE-09 derivative as an example, the toxicity on non-target animals (aboveground: bees; underground: earthworms), plant absorption, and soil absorption decreased by 4.80% and 13.7%, 10.0%, and 121%, while the toxicity on target animals (aboveground: aphids; underground: B. odoriphagas), plant metabolism, and soil degradation increased by 70.2% and 51.7%, 5.08%, and 8.28%. For receptor modification, the ability of mutants to absorb ACE-09 derivative decreased by 31.0%, while the ability of mutants to metabolize ACE-09 derivative increased by 28.0% in scenario 2 (mainly plant selectivity); the ability of mutants to degrade ACE-09 derivative increased by 11.6% in scenario 3 (mainly soil selectivity). The above results indicated that the selective-ecotoxicological effects of ligand design and receptor modification were both improved. Additionally, the combined effects of the ACE-09 derivative on plant absorption and metabolic mutants improved by 31.1% and 31.4% in scenario 2, respectively, while the effect on microbial degradation mutant improved by 14.9%, indicating that there was a synergistic effect between ligand design and receptor modification. Finally, based on the interaction between the ACE-09 derivative and mutants, the optimal environmental factors that improved the selectivity of their ecotoxicological effects were determined. For example, alternate application of nitrogen and phosphorus fertilizers effectively reduced the oxidative damage to plants caused by NNI residues. The novel ligand-receptor joint modification method, combined with the regulation of environmental factors under multiple scenarios, can biochemically address the ecotoxicological concern and highlight the harmful effects of pesticides on the environment and non-target organisms.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Maosheng Zheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yimei Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China; Laboratory of Environmental Remediation and Functional Material, Suzhou Research Academy of North China Electric Power University, Suzhou, Jiangsu, 215213, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
15
|
Bio-Enhanced Degradation Strategies for Fluoroquinolones in the Sewage Sludge Composting Stage: Molecular Modification and Resistance Gene Regulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137766. [PMID: 35805422 PMCID: PMC9265465 DOI: 10.3390/ijerph19137766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023]
Abstract
The molecular/protein–protein docking and the index normalization method assisted by the entropy weight method were used to quantitatively evaluate the biodegradability of fluoroquinolones (FQs) under different biodegradation systems. Four biodegradability three-dimensional quantitative structure–activity relationship (3D-QSAR) models of FQs were constructed to design FQ derivatives with improved biodegradability. Through the evaluation of the environmental friendliness and functional properties, the FQ derivatives with high biodegradability, improved functionality, and environmental friendliness were screened. Moreover, four bio-enhanced degradation scenarios of FQs were set up according to the different temperatures and carbon–nitrogen ratio (C/N) in the sewage sludge composting stage, and the molecular dynamic (MD) simulation assisted by protein–protein docking was used to screen the external environmental factors that promote the degradation of FQs by thermophilic bacteria or group under different scenarios. Finally, MD simulation assisted by sampling method was used to validate and screen the application scheme of field measures to enhance the expression of antibacterial resistance of FQ derivatives in an agricultural soil environment after activated sludge land use. This study aims to provide theoretical support for the development of highly biodegradable FQ derivatives and the mitigation of potential risks that FQs may pose to the environment and humans through the food chain.
Collapse
|
16
|
van Dijk J, Flerlage H, Beijer S, Slootweg JC, van Wezel AP. Safe and sustainable by design: A computer-based approach to redesign chemicals for reduced environmental hazards. CHEMOSPHERE 2022; 296:134050. [PMID: 35189194 DOI: 10.1016/j.chemosphere.2022.134050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Persistency of chemicals in the environment is seen a pressing issue as it results in accumulation of chemicals over time. Persistent chemicals can be an asset in a well-functioning circular economy where products are more durable and can be reused or recycled. This objective can however not always be fulfilled as release of chemicals from products into the environment can be inherently coupled to their use. In these situations, chemicals should be designed for degradation. In this study, a systematic and computer-aided workflow was developed to facilitate the chemical redesign for reduced persistency. The approach includes elements of Essential Use, Alternatives Assessment and Green and Circular Chemistry and ties into goals recently formulated in the context of the EU Green Deal. The organophosphate chemical triisobutylphosphate (TiBP) was used as a case study for exploration of the approach, as its emission to the environment was expected to be inevitable when used as a flame retardant. Over 6.3 million alternative structures were created in silico and filtered based on QSAR outputs to remove potentially non-readily biodegradable structures. With a multi-criteria analysis based on predicted properties and synthesizability a top 500 of most desirable structures was identified. The target structure (di-n-butyl (2-hydroxyethyl) phosphate) was manually selected and synthesized. The approach can be expanded and further verified to reach its full potential in the mitigation of chemical pollution and to help enable a safe circular economy.
Collapse
Affiliation(s)
- Joanke van Dijk
- Copernicus Institute of Sustainable Development, Utrecht University, 3584, CB, Utrecht, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, GE, 1090, Amsterdam, the Netherlands.
| | - Hannah Flerlage
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, GE, 1090, Amsterdam, the Netherlands; Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, GD, 1090, Amsterdam, the Netherlands.
| | - Steven Beijer
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, GD, 1090, Amsterdam, the Netherlands.
| | - J Chris Slootweg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, GD, 1090, Amsterdam, the Netherlands.
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, GE, 1090, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Cheng Z, Chen Q, Liu S, Liu Y, Ren Y, Zhang X, Shen Z. The investigation of influencing factors on the degradation of sulfonamide antibiotics in iron-impregnated biochar-activated urea-hydrogen peroxide system: A QSAR study. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128269. [PMID: 35158249 DOI: 10.1016/j.jhazmat.2022.128269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Iron-impregnated biochar-activated urea-hydrogen peroxide (FB-activated UHP) is a potential in-situ technology for simultaneously reducing soil sulfonamide antibiotic contaminants and improving soil fertility. To better understand the degradation of sulfonamide antibiotics by FB-activated UHP, a two-dimensional quantitative structure-activity relationship (2D-QSAR) model based on quantum chemical parameters and a three-dimensional QSAR (3D-QSAR) model based on molecular force field were developed to investigate the factors influencing the removal efficiencies (Re%). The optimal 2D-QSAR model was Re%= 0.858-8.930 E-5 EB3LYP-0.175 f(+)x with the evaluation indices of R2= 0.732, q2= 0.571, and Qext2= 0.673. The given 2D-QSAR model indicated that the molecular size (EB3LYP) and Fukui index with respect to nucleophilic attack (f(+)) were intrinsic factors influencing Re%. Three degradation pathways were subsequently proposed based on the f(+) distribution. Compared to the 2D-QSAR model, the developed 3D-QSAR model exhibited a better predictive ability, with the evaluation indices of R2= 0.989, q2= 0.696, and SEE= 0.001. The analysis of field contribution rates suggested that electrostatic field (48.2%), hydrophobic field (25.3%), and hydrogen-bond acceptor field (12.7%) were the main factors influencing Re%. These findings generated critical information for evaluating the degradation mechanisms/rules and provided theoretical bases for initially estimating the Re% of sulfonamide antibiotics undergoing FB-activated UHP process.
Collapse
Affiliation(s)
- Zhiwen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Qincheng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Shiqiang Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yawei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yuanyang Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, PR China.
| |
Collapse
|
18
|
Zhao Y, Zhang J, Gouda M, Zhang C, Lin L, Nie P, Ye H, Huang W, Ye Y, Zhou C, He Y. Structure analysis and non-invasive detection of cadmium-phytochelatin2 complexes in plant by deep learning Raman spectrum. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128152. [PMID: 35033726 DOI: 10.1016/j.jhazmat.2021.128152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Plants synthesize phytochelatins to chelate in vivo toxic heavy metal ions and produce nontoxic complexes for tolerating the stress. Detection of the complexes would simplify the identification of high phytoremediation cultivars, as well as assessment of plant food for safe consumption. Thus, a confocal Raman spectroscopy combined with density functional theory and deep learning was used for characterizing phytochelatin2 (PC2), and Cd-PC2 mixtures. Results showed the PC2 chelate Cd2+ in a 2:1 ratio to produce Cd(PC2)2; Cd-S bonds of the Cd(PC2)2 have signature Raman vibrations at 305 and 610 cm-1 which are the most distinctive spectral signatures for varieties of Cd-PCs complexes. The PC2 was used as a natural probe to stabilize the chemical status of Cd, and to enrich and magnify Raman signature of the trace Cd for deep learning models which enabled condition of the Cd(PC2)2 in pak choi leaf to be visualized, quantified, and classified by directly using raw spectra of the leaf. This study provides a general protocol by using Raman information for structure analysis and non-invasive detection of heavy metal-PCs complexes in plants and provides a novel idea for simplifying identification of high phytoremediation cultivars, as well as assessment of heavy metal related food safeties.
Collapse
Affiliation(s)
- Yinglei Zhao
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, 310000 Hangzhou, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| | - Jinnuo Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Nutrition & Food Science, National Research Centre, Dokki, 12622 Giza, Egypt
| | - Chenghao Zhang
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, 310000 Hangzhou, China
| | - Lei Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| | - Hongbao Ye
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, 310000 Hangzhou, China
| | - Wei Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yunxiang Ye
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, 310000 Hangzhou, China
| | - Chengquan Zhou
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, 310000 Hangzhou, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China.
| |
Collapse
|
19
|
Deng Z, Ren Z, Sun S, Wang Y. Theoretical design and process control of neonicotinoids insecticides suitable for synergistic degradation with the rubisco enzyme from rhizobia and carbon-fixing bacteria in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12355-12376. [PMID: 34564815 DOI: 10.1007/s11356-021-16531-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, we studied and developed the modification schemes of environmentally friendly substitutes of neonicotinoid insecticides (NNIs) along with the regulatory measures that effectively enhanced the synergistic degradation of NNIs by soil rhizobia and carbon-fixing bacteria. Firstly, the binding ability of NNIs to the two key proteins was characterized by molecular docking; secondly, the mean square deviation decision method, which is a comprehensive evaluation method, was used to investigate the binding ability of NNI molecules with the two Rubisco rate-limiting enzymes. The three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established for the synergistic degradation and single effect of rhizobia and carbon-fixing bacteria. Finally, after combining the 3D-QSAR model with a contour map analysis of the synergistic degradation effect of soil rhizobia and carbon-fixing bacteria, 102 NNI derivatives were designed. Flonicamid-36 and other four NNI derivatives passed the functional and environmentally friendly evaluation. Taguchi orthogonal experiment and factorial experiment-assisted molecular dynamics method were used to simulate the effects of 32 regulation schemes on the synergistic degradation of NNIS and its derivatives by rhizobia and carbon fixing bacteria. The synergistic degradation capacity of soil rhizobia and carbon-fixing bacteria was increased to 33.32% after right nitrogen supplementation. This indicated that supplementing the correct amount of nitrogen in the soil environment was beneficial to the microbial degradation of NNIs and their derivatives.
Collapse
Affiliation(s)
- Zhengyang Deng
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Zhixing Ren
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Shuhai Sun
- School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun, 130012, China.
| | - Yujun Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
20
|
Xiao J, Li Y. Screening of benzophenone ultraviolet absorbers with high-efficiency light absorption capacity, low-permeability and low-toxicity by 3D-QSAR model. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Li X, Zhao Y, Chen B, Zhu Z, Kang Q, Husain T, Zhang B. Inhalation and ingestion of Synthetic musks in pregnant women: In silico spontaneous abortion risk evaluation and control. ENVIRONMENT INTERNATIONAL 2022; 158:106911. [PMID: 34619532 DOI: 10.1016/j.envint.2021.106911] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Synthetic musks (SMs) are odor additives commonly used in the personal care products. Their wide existence in the environment and the recently reported adverse impact on the production and activity of progesterone and estrogen have raised pregnancy red flags and even lead to a pregnancy loss. Apart from the suggestion of limiting SM contact and exposure, effective abortion risk control measures for SMs remain to be blank. Facing the above challenges, this study tried to establish a new theoretical circumvention strategy to reduce the abortion risk of SMs to pregnant women by designing the supplementary diet plan and environmentally friendly SMs derivatives using molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) models. According to the supplementary diet plan, the diet combination of vitamin E, vitamin B2, niacin, vitamin A, and vitamin B6 were confirmed to not only provide essential nutrients for human health, but also reduce the abortion risk in pregnant women in daily life. The multi-activity (binding ability of SMs with progesterone-estrogen) 3D-QSAR model was constructed to screen SMs derivatives. The LibDock score, a parameter reflecting the binding ability between SMs' Derivative-24 with progesterone-estrogen, decreased as much as 137.67% compared with its precursor galaxolide (HHCB). The 3D-QSAR models assisted screening indicated that Derivative-24 had lower environmental impacts (i.e., bioconcentration and mobility) and improved functional properties (odor stability, musky scent, and odor intensity). The integration of the optimum candidate, Derivative-24, with optimum three supplementary diet plans exhibited a much lower abortion risk than HHCB, demonstrating the effectiveness of the proposed theoretical circumvention strategy as a comprehensive abortion risk control measure. It also shed light on the design of new pharmaceutical and personal care products using advanced computing tools.
Collapse
Affiliation(s)
- Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Qiao Kang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Tahir Husain
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
22
|
Li X, Hou Y, Li Q, Gu W, Li Y. Molecular design of high-efficacy and high drug safety Fluoroquinolones suitable for a variety of aerobic biodegradation bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113628. [PMID: 34461464 DOI: 10.1016/j.jenvman.2021.113628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The present study attempted to improve the biodegradation removal rate of Fluoroquinolones (FQs) in sewage treatment plants. The similarity index analysis (CoMSIA) model for combined biodegradability was constructed, and 33 kinds of molecular derivatives of FQs suitable for a variety of aerobic biodegradation microorganisms were designed. Further, derivative-20 and derivative-28, with high drug efficiency, drug safety, and environmental friendliness were selected through pharmacokinetics (ADMET), toxicokinetics (TOPKAT), FQs functional characteristics, and environmental friendliness evaluations. Compared with the target molecules, the combined biodegradability of the above two FQ-derivative molecules were increased by 193.57 % and 205.07 %, respectively, while their environment-friendly characteristics were improved to a certain degree. Through molecular docking and molecular dynamic simulation analysis, it showed that van der Waals force (decreased by 2.73 %-61.74 %) was the main factor influencing the binding ability of the modified FQ molecules to the receptor proteins. In addition, the relationship among the non-bonding interaction resultant force, the binding effect of the FQ-derivative molecules, and the receptor protein-related amino acid residues were studied for the first time. It was observed that the higher the value of the non-bonding interaction resultant force, the better was the binding effect, which demonstrating the significantly improved biodegradability of the designed FQ-derivative molecules.
Collapse
Affiliation(s)
- Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yilin Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Wenwen Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
23
|
Li X, Li G, Chen B, Lin W, Zhang B. 3D-QSAR-aided toxicity assessment of synthetic musks and their transformation by-products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57530-57542. [PMID: 34089451 DOI: 10.1007/s11356-021-14672-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Synthetic musks (SMs) are fragrance additives widely used in personal care products. SMs and their transformation by-products may reach the environment even after wastewater treatment, resulting in ecological and health concerns. The identification and toxicity assessment of SM by-products generated from different chemical and biological treatment processes have been rarely studied. This study established a 3D-QSAR model based on SMs' molecular structures (independent variable) and their lethal concentration (LC50) of mysid (dependent variable). The developed model was further used to predict the LC50 of SMs transformation by-products. Fifty-eight by-products of six common SMs (i.e., galaxolide (HHCB), tonalide (AHTN), phantolide (PHAN), traseolide (TRASE), celestolide (ADBI), and musk ketone (MK)) generated from biodegradation, photodegradation, advanced oxidation, and chlorination were identified through literature review and lab experiment as the model inputs. Predicted LC50 results indicated that the toxicity of 40% chlorination by-products is higher than their precursors. Biodegradation is an effective method to treat AHTN. The advanced oxidation may be the best way to treat HHCB. This is the first study on biotoxicity of SM transformation by-products predicted by the 3D-QSAR model. The research outputs helped to provide valuable reference data and guidance to improve management of SMs and other emerging contaminants.
Collapse
Affiliation(s)
- Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Guangzhu Li
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun, 130012, Jilin, China
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Weiyun Lin
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada.
| |
Collapse
|
24
|
Ren Z, Wang S, Liu D, Yu J, Zhang X, Zhao P, Sun Y, Han S. Control strategies for the vertical gene transfer of quinolone ARGs in Escherichia coli through molecular modification and molecular dynamics. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126667. [PMID: 34329116 DOI: 10.1016/j.jhazmat.2021.126667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
This study investigates the regulation of the vertical gene transfer of quinolones' antibiotic resistance genes (ARGs) through a combination of source modification and process control. In source prevention, 29 Escherichia coli (E. coli) DNA gyrase subunit A mutant proteins were constructed, the B-G mutant protein displayed the greatest reduction in binding effect (-25.98%). Based on this, a 3D-QSAR model was constructed, and LEV-2 and LEV-9 QNs derivatives were designed based on Levofloxacin (LEV), and their binding effect with B-G mutant protein was found be increased by 13.24% and 19.40%. The drug resistance mechanism of E. coli was explored based on molecular docking technology and protein hydrophobic interaction theory. Most of the amino acid resistance mutations changed from hydrophilic to lipophilic, which inhibited the binding of QNs to mutant protein A subunit, and further reduced the bactericidal effect of QNs. In process control, Huoxiang-Zhengqi, stroke-physiological saline solution (SPSS), and Lycium barbarum (L. barbarum) was found to be 164.82% higher than that of the blank control group. The purpose of this study is to provide a theoretical support for the joint regulation of QNs' ARGs in organisms and the research and development on green alternatives to QNs compounds.
Collapse
Affiliation(s)
- Zhixing Ren
- College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.
| | - Shen Wang
- College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.
| | - Dong Liu
- College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.
| | - Jie Yu
- College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.
| | - Xiaoyuan Zhang
- College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.
| | - Pingnan Zhao
- College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.
| | - Yuxuan Sun
- College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.
| | - Song Han
- College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
25
|
Sun P, Zhao W. Strategies to Control Human Health Risks Arising from Antibiotics in the Environment: Molecular Modification of QNs for Enhanced Plant-Microbial Synergistic Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10610. [PMID: 34682354 PMCID: PMC8536065 DOI: 10.3390/ijerph182010610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/30/2022]
Abstract
In the present work, a comprehensive screening and evaluation system was established to improve the plant-microbial synergistic degradation effects of QNs. The study included the construction of a 3D-QSAR model, the molecular modification, environmental friendliness and functional evaluation of drugs, degradation pathway simulation, and human health risk assessment. Molecular dynamics was applied to quantify the binding capacity of QNs toward the plant degradation enzyme (peroxidase) and microbial degradation enzymes (manganese peroxidase, lignin peroxidase, and laccase). The fuzzy comprehensive evaluation method was used in combination with the weighted average method for normalization and assigning equal weights to the plant and microbial degradation effect values of the QNs. Considering the synergistic degradation effect value as the dependent variable and the molecular information of the QNs as the independent variable, a 3D-QSAR model was constructed for the plant-microbial synergistic degradation effect of QNs. The constructed model was then employed to conduct the molecular modification, environmental friendliness and functional evaluation, degradation pathway simulation, and human health risk assessment of transformation products using pharmacokinetics and toxicokinetics. The results revealed that the synergistic degradation effect 3D-QSAR (CoMSIA) model exhibited good internal and external prediction ability, fitting ability, stability, and no overfitting phenomenon. Norfloxacin (NOR) was used as the target molecule in the molecular modification. A total of 35 NOR derivatives with enhanced plant-microbial synergistic degradation effect (1.32-21.51%) were designed by introducing small-volume, strongly electronegative, and hydrophobic hydrogen bond receptor groups into the active group of the norfloxacin structure. The environment-friendliness and the functionality of NOR were evaluated prior to and after the modification, which revealed seven environment-friendly FQs derivatives exhibiting moderate improvement in stability and bactericidal efficacy. The simulation of the NOR plant and microbial degradation pathways prior to and after the modification and the calculation of the reaction energy barrier revealed Pathway A (D-17 to D-17-2) and Pathway B (D-17 to D-17-4) as the most prone degradation pathways in plants and Pathway A (D-17 to D-17-1) and Pathway B (D-17 to D-17-4) as the most prone degradation pathways in microorganisms. This demonstrated that the degradation of the modified NOR derivatives was significantly enhanced, with the hydroxylation and piperazine ring substitution reaction playing an important role in the degradation process. Finally, the parameters, including hepatotoxicity, mutagenicity, and rodent carcinogenicity, among others, predicted using the pharmacokinetics and toxicokinetics analyses revealed a significant reduction in the human health risk associated with the modified NOR, along with a considerable reduction in the toxicity of its transformation products, implying that the human health risk associated with the transformation products was reduced remarkably. The present study provides a theoretical basis for novel ideas and evaluation programs for improving the plant-microbial synergistic degradation of the QNs antibiotics for source control and drug design, thereby reducing the residues of these antibiotics and the associated hazard in the complex plant-soil environment, ultimately decreasing the potential risks to human health.
Collapse
Affiliation(s)
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China;
| |
Collapse
|
26
|
Li X, Gu W, Chen B, Zhu Z, Zhang B. Functional modification of HHCB: Strategy for obtaining environmentally friendly derivatives. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126116. [PMID: 34492911 DOI: 10.1016/j.jhazmat.2021.126116] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Galaxolide (HHCB), one of the most widely used synthetic musks in personal care products (PCPs), has been recognized as an emerging contaminant with potential human health concerns. To overcome such adverse effects, a systematic molecular design, screening and performance evaluation approach was developed to generate functionally improved and environmentally friendly HHCB derivatives. Among the 90 designed HHCB derivatives, 15 were screened with improved functional properties (i.e., odor stability and intensity) and less environmental impacts (i.e., lower bio-toxicity, bio-accumulation ability, and mobility) using 3D-QSAR models and density functional theory methods. Their human health risks were then assessed by toxicokinetic analysis, which narrowed the candidates to four. Derivative 7, the designed molecule with the least dermal adsorption potential, was evaluated for its interaction with other PCPs additives (i.e., anti-photosensitivity materials and moisturizer) and such impacts on human health risks using molecular docking and molecular dynamic simulation. The environmental fate of Derivative 7 after transformation (i.e., photodegradation, biotransformation, and chlorination) was also discussed. Biotransformation and chlorination were recognized as optimum options for Derivative 7 mitigation. This study provided the theoretical basis for the design of functionally improved and environmentally friendly HHCB alternatives and advanced the understanding of their environmental behaviors and health risks.
Collapse
Affiliation(s)
- Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, Canada A1B 3X5.
| | - Wenwen Gu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, Canada A1B 3X5.
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, Canada A1B 3X5.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, Canada A1B 3X5.
| |
Collapse
|
27
|
Wu T, Li Y, Xiao H, Fu M. Molecular Modifications and Control of Processes to Facilitate the Synergistic Degradation of Polybrominated Diphenyl Ethers in Soil by Plants and Microorganisms Based on Queuing Scoring Method. Molecules 2021; 26:3911. [PMID: 34206860 PMCID: PMC8271410 DOI: 10.3390/molecules26133911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, a combination of modification of the source and regulation of the process was used to control the degradation of PBDEs by plants and microorganisms. First, the key proteins that can degrade PBDEs in plants and microorganisms were searched in the PDB (Protein Data Bank), and a molecular docking method was used to characterize the binding ability of PBDEs to two key proteins. Next, the synergistic binding ability of PBDEs to the two key proteins was evaluated based on the queuing integral method. Based on this, three groups of three-dimensional quantitative structure-activity relationship (3D-QSAR) models of plant-microbial synergistic degradation were constructed. A total of 30 PBDE derivatives were designed using BDE-3 as the template molecule. Among them, the effect on the synergistic degradation of six PBDE derivatives, including BDE-3-4, was significantly improved (increased by more than 20%) and the environment-friendly and functional evaluation parameters were improved. Subsequently, studies on the synergistic degradation of PBDEs and their derivatives by plants and microorganisms, based on the molecular docking method, found that the addition of lipophilic groups by modification is beneficial to enhance the efficiency of synergistic degradation of PBDEs by plants and microorganisms. Further, while docking PBDEs, the number of amino acids was increased and the binding bond length was decreased compared to the template molecules, i.e., PBDE derivatives could be naturally degraded more efficiently. Finally, molecular dynamics simulation by the Taguchi orthogonal experiment and a full factorial experimental design were used to simulate the effects of various regulatory schemes on the synergistic degradation of PBDEs by plants and microorganisms. It was found that optimal regulation occurred when the appropriate amount of carbon dioxide was supplied to the plant and microbial systems. This paper aims to provide theoretical support for enhancing the synergistic degradation of PBDEs by plants and microorganisms in e-waste dismantling sites and their surrounding polluted areas, as well as, realize the research and development of green alternatives to PBDE flame retardants.
Collapse
Affiliation(s)
- Tong Wu
- College of Environment, Energy of South China University of Technology, Guangzhou 510006, China; (T.W.); (H.X.)
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hailin Xiao
- College of Environment, Energy of South China University of Technology, Guangzhou 510006, China; (T.W.); (H.X.)
| | - Mingli Fu
- College of Environment, Energy of South China University of Technology, Guangzhou 510006, China; (T.W.); (H.X.)
| |
Collapse
|
28
|
Hou Y, Li Q, He W, Li M, Xue J, Li X, Li Y. Enhanced biodegradation of modified fluoroquinolone for aerobic, facultative, and anaerobic processes using quantitative structure-activity relationship, molecular docking, and molecular dynamics. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Gu W, Li X, Li Q, Hou Y, Zheng M, Li Y. Combined remediation of polychlorinated naphthalene-contaminated soil under multiple scenarios: An integrated method of genetic engineering and environmental remediation technology. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124139. [PMID: 33092886 DOI: 10.1016/j.jhazmat.2020.124139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
This study explored the types of polychlorinated naphthalene (PCN)-contaminated soil and determined the practicable scheme of combined remediation using an integrated method of genetic engineering and environmental remediation technology. A multi-scenario comprehensive evaluation system of a plant-microbial combined bioremediation of PCN-contaminated soil was established using the intelligent integration of analytic hierarchy process and formula evaluation methods based on the current situation of PCN contamination in China, which showed the bioremediation of PCN-contaminated soil by the plant-microbial system could be divided into four scenarios. QSAR models were constructed to quantify the remediation mechanism that electronic parameter ∆E was the key factor changing the efficiency of combined bioremediation. Moreover, the macro-control scheme of PCN-contaminated soil was established, which indicated that four new multifunctional proteins promoted the absorption, degradation, and mineralization of PCNs in specific soil pollution types significantly, were obtained through cross gene recombination. The molecular dynamics (MD) simulation results showed the efficiency of the plant-microbial combined bioremediation were increased by 15.45% (Scenario 1, 2, 3) and 20.02% (Scenario 4) under the optimal regulation scheme. The findings will be helpful to realize the regional control of PCN-contaminated soil.
Collapse
Affiliation(s)
- Wenwen Gu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Qing Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yilin Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
30
|
Li M, Du M, Sun R, Zhang W, Hou Y, Li Y. Application of a 2D-QSAR with a sine normalization method for the biodegradation of fluoroquinolones to poison cyanobacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11302-11316. [PMID: 33118068 DOI: 10.1007/s11356-020-11366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacteria are photosynthetic autotrophic aquatic prokaryotes. One of the methods for controlling cyanobacterial blooms is to destroy the phycobiliproteins required for photosynthesis. In this study, to improve the biodegradation of the fluoroquinolones through inhibit cyanobacteria, the molecular docking scores of 32 fluoroquinolones (FQs) with four categories of phycobiliproteins from cyanobacteria were calculated after sine normalization to characterize the binding ability between them. A two-dimensional quantitative structure-activity relationship (2D-QSAR) model was constructed based on the comprehensive scores. Danofloxacin (DAN) with the highest comprehensive score was chosen for molecular modification. When docking with four categories of phycobiliproteins from cyanobacteria, the docking values of DAN-11 and DAN-16 were increased up to 35.75%. Moreover, their functional characteristics and environmentally friendly predictive values were improved. When the DAN-11 and DAN-16 molecules docked with the other cyanobacterial phycobiliproteins, indicating that the designed DAN derivatives had general applicability to poison cyanobacteria, the weak interaction forces might increase the binding ability between the DAN derivatives and the receptor phycobiliprotein compared with the target molecule.
Collapse
Affiliation(s)
- Minghao Li
- The Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Meijin Du
- The Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Ruihao Sun
- The Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Wenhui Zhang
- The Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Yilin Hou
- The Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Yu Li
- The Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
31
|
Sun P, Zhao Y, Yang L, Ren Z, Zhao W. Environmentally Friendly Quinolones Design for a Two-Way Choice between Biotoxicity and Genotoxicity through Double-Activity 3D-QSAR Model Coupled with the Variation Weighting Method. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9398. [PMID: 33333906 PMCID: PMC7765274 DOI: 10.3390/ijerph17249398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
Quinolone (QN) antibiotics are widely used, which lead to their accumulation in soil and toxic effects on ryegrass in pasture. In this study, we employed ryegrass as the research object and selected the total scores of 29 QN molecules docked with two resistant enzyme structures, superoxide dismutase (SOD, PDB ID: 1B06) and proline (Pro, PPEP-2, PDB ID: 6FPC), as dependent variables. The structural parameters of QNs were used as independent variables to construct a QN double-activity 3D-QSAR model for determining the biotoxicity on ryegrass by employing the variation weighting method. This model was constructed to determine modification sites and groups for designing QNs molecules. According to the 3D contour map of the model, by considering enrofloxacin (ENR) and sparfloxacin (SPA) as examples, 23 QN derivatives with low biotoxicity were designed, respectively. The functional properties and environmental friendliness of the QN derivatives were predicted through a two-way selection between biotoxicity and genotoxicity before and after modification; four environmentally friendly derivatives with low biotoxicity and high genotoxicity were screened out. Mixed toxicity index and molecular dynamics methods were used to verify the combined toxicity mechanism of QNs on ryegrass before and after modification. By simulating the combined pollution of ENR and its derivatives in different soils (farmland, garden, and woodland), the types of combined toxicity were determined as partial additive and synergistic. Binding energies were calculated using molecular dynamics. The designed QN derivatives with low biotoxicity, high genotoxicity, and environmental friendliness can highly reduce the combined toxicity on ryegrass and can be used as theoretic reserves to replace QN antibiotics.
Collapse
Affiliation(s)
- Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China; (P.S.); (L.Y.)
| | - Yuanyuan Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China;
| | - Luze Yang
- College of New Energy and Environment, Jilin University, Changchun 130012, China; (P.S.); (L.Y.)
| | - Zhixing Ren
- College of Forestry, Northeast Forestry University, Harbin 150040, China;
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China; (P.S.); (L.Y.)
| |
Collapse
|
32
|
Environmentally Friendly Fluoroquinolone Derivatives with Lower Plasma Protein Binding Rate Designed Using 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186626. [PMID: 32932916 PMCID: PMC7560044 DOI: 10.3390/ijerph17186626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023]
Abstract
Comparative molecular similarity index analysis (CoMSIA) was used to establish a three-dimensional quantitative structure–activity relationship (3D-QSAR) model with structural parameters of quinolones as the independent variables and plasma protein binding rate (logfb) as the dependent variable to predict the logfb values of remaining quinolones in this study. In addition, the mono-substituted and bis-substituted reaction schemes that significantly influenced the plasma protein binding rate of quinolones were determined through an analysis of the 3D-QSAR contour maps. It was found that the replacement of small groups, hydrophobic groups, electronegative groups, or hydrogen bond acceptor groups at the substitution sites significantly reduce the logfb values of quinolone derivatives. Furthermore, the mechanism of decrease in binding rate between trovafloxacin (TRO) derivatives and plasma protein was revealed qualitatively and quantitatively based on molecular docking and molecular dynamics simulation. After modification of the target molecule, 11 TRO derivatives with low plasma protein binding rates were screened (reduced by 0.50–24.18%). Compared with the target molecule, the molecular genotoxicity and photodegradability of the TRO derivatives was higher (genotoxicity increased by 4.89–21.36%, and photodegradability increased by 9.04–20.56%), and their bioconcentration was significantly lower (by 36.90–61.41%).
Collapse
|
33
|
Gu W, Zhao Y, Li Q, Li Y. Plant-microorganism combined remediation of polychlorinated naphthalenes contaminated soils based on molecular directed transformation and Taguchi experimental design-assisted dynamics simulation. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122753. [PMID: 32339881 DOI: 10.1016/j.jhazmat.2020.122753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The molecular directed transformation procedure was adopted by combining molecular docking and homology modeling to reconstruct the proteins, which are involved in the absorption, degradation, and mineralization of polychlorinated naphthalenes (PCNs). A comprehensive evaluation system for developing new proteins that are responsible for the absorption (aquaporin: 1Z98), degradation (peroxidase: 1ATJ), and mineralization (lignin peroxidase: 1B85) of PCNs was established using the Rank Sum Ratio (RSR) and weighted average methods. The Taguchi experimental design-assisted dynamics simulation was used to determine the optimal external stimulus conditions of plant-microorganism combined remediation system to absorb, degrade, and mineralize PCNs. Results showed that a total of 60 amino acid sequences were designed, and 19 new proteins (increasing amplitude: 66.67%-500.00%) were significantly higher than those of target proteins through the screening of comprehensive evaluation system. Additionally, 10 new proteins improved the efficiency of absorption, degradation, and mineralization of PCNs in a real environment which were simulated under the optimal external stimulus conditions. Moreover, remediation efficiency was significantly enhanced when the template proteins was replaced with a combination of 1Z98-9, 1ATJ-7, and 1B85-20 in plant-microorganism systems, and the van der Waals force and polar solvation were the main factors affecting the absorption, degradation, and mineralization of PCNs.
Collapse
Affiliation(s)
- Wenwen Gu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Qing Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
34
|
A Modified 3D-QSAR Model Based on Ideal Point Method and Its Application in the Molecular Modification of Plasticizers with Flame Retardancy and Eco-Friendliness. Polymers (Basel) 2020; 12:polym12091942. [PMID: 32872093 PMCID: PMC7564064 DOI: 10.3390/polym12091942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
The addition of plasticizers makes plastics flammable, and thus, poses a potential risk to the environment. In previous researches, plasticizers with flame retardancy had been synthesized, but their eco-friendliness had not been tested or described. Thus, in this paper, eco-friendliness plasticizers with flame retardancy were designed based on phthalic acid esters (PAEs), which are known as common plasticizers and major plastic additives. For a comprehensive analysis, such as flammability, biotoxicity, and enrichment effects, 17 PAEs’ comprehensive evaluation values were calculated based on the ideal point method. Further, a multi-effect three-dimensional quantitative structure-activity relationship (3D-QSAR) model of PAEs’ flammability, biotoxicity and enrichment effects was constructed. Thus, 18 dimethyl phthalate (DMP) derivatives and 20 diallyl phthalate (DAP) derivatives were designed based on three-dimensional contour maps. Through evaluation of eco-friendliness and flammability, six eco-friendly PAE derivatives with flame retardancy were screened out. Based on contour maps analysis, it was confirmed that the introduction of large groups and hydrophobic groups was beneficial to the simultaneous improvement of PAEs’ comprehensive effects, and multiple effects. In addition, the group properties were correlated significantly with improved degrees of the comprehensive effects of corresponding PAE derivatives, confirming the feasibility of the comprehensive evaluation method and modified scheme.
Collapse
|
35
|
Kamerlin N, Delcey MG, Manzetti S, van der Spoel D. Toward a Computational Ecotoxicity Assay. J Chem Inf Model 2020; 60:3792-3803. [PMID: 32648756 DOI: 10.1021/acs.jcim.0c00574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thousands of anthropogenic chemicals are released into the environment each year, posing potential hazards to human and environmental health. Toxic chemicals may cause a variety of adverse health effects, triggering immediate symptoms or delayed effects over longer periods of time. It is thus crucial to develop methods that can rapidly screen and predict the toxicity of chemicals to limit the potential harmful impacts of chemical pollutants. Computational methods are being increasingly used in toxicity predictions. Here, the method of molecular docking is assessed for screening potential toxicity of a variety of xenobiotic compounds, including pesticides, pharmaceuticals, pollutants, and toxins derived from the chemical industry. The method predicts the binding energy of pollutants to a set of carefully selected receptors under the assumption that toxicity in many cases is related to interference with biochemical pathways. The strength of the applied method lies in its rapid generation of interaction maps between potential toxins and the targeted enzymes, which could quickly yield molecular-level information and insight into potential perturbation pathways, aiding in the prioritization of chemicals for further tests. Two scoring functions are compared: Autodock Vina and the machine-learning scoring function RF-Score-VS. The results are promising, although hampered by the accuracy of the scoring functions. The strengths and weaknesses of the docking protocol are discussed, as well as future directions for improving the accuracy for the purpose of toxicity predictions.
Collapse
Affiliation(s)
- Natasha Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Mickaël G Delcey
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Sergio Manzetti
- Institute for Science and Technology, Fjordforsk A.S., Midtun, 6894 Vangsnes, Norway
| | - David van der Spoel
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
36
|
Cheng Z, Chen Q, Cervantes S, Tang Q, Gao X, Tan Y, Liu S, Ma Y, Shen Z. Two-dimensional and Three-dimensional quantitative structure-activity relationship models for the degradation of organophosphate flame retardants during supercritical Water oxidation. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:121811. [PMID: 32200234 DOI: 10.1016/j.jhazmat.2019.121811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been increasingly utilized as flame retardants in various fields due to the phasing out of polybrominated diphenyl ethers. To achieve a better understanding of the degradation of OPFRs undergoing supercritical water oxidation (SCWO) process, two-dimensional and three-dimensional quantitative structure-activity relationship (2D-QSAR and 3D-QSAR) models were established to investigate the factors influencing the total carbon degradation rates (kTOC). Results of the QSAR models demonstrated reliable results to estimate the kTOC values, but varied in the influencing factors. Two distinct degradation mechanisms were subsequently proposed based on the distribution of LUMO in molecules for the 2D-QSAR model. CoMFA and CoMSIA methods were applied to develop the 3D-QSAR models. Steric fields were observed to influence kTOC values more than electrostatic fields in the CoMFA model with the contribution rates of 87.2% and 12.8%, respectively. In the CoMSIA model, influence on kTOC values varies between different types of fields with the hydrophobic field being the most influential at 62.1%, followed by the steric field at 25.7% and then the electrostatic field at 10.8%. Results from this study generated critical knowledge of influencing factors on OPFRs degradation and yielded theoretical basis for estimating removal behaviors of OPFRs undergoing SCWO process.
Collapse
Affiliation(s)
- Zhiwen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Qincheng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Sheila Cervantes
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
| | - Qingli Tang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Xiaoping Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Yujia Tan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Shiqiang Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Yuning Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
37
|
Gu W, Li Q, Li Y. Environment-friendly PCN derivatives design and environmental behavior simulation based on a multi-activity 3D-QSAR model and molecular dynamics. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122339. [PMID: 32135364 DOI: 10.1016/j.jhazmat.2020.122339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/02/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
A multi-activity three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established based on the comprehensive evaluation index (CEI) of polychlorinated naphthalenes (PCNs). The CEI values were calculated using the vector analysis method in combination with the following parameters: biological toxicity (predicted by logEC50), bioconcentration (predicted by logKow), long-distance migration (predicted by logPL), and biodegradation (predicted by total-score). Additionally, sixty-four CN-70 derivatives with lower CEI values were designed, among which three derivatives with reduced CEI values were selected for verification based on an evaluation of their persistent organic pollutant properties and practicability. Finally, an environmental behavior simulation was conducted via molecular dynamics simulation aided by the Taguchi experimental design by considering the degradation characteristics of the three aforementioned CN-70 derivatives as an example. Only two of the selected CN-70 derivatives were observed to be more easily degraded when compared with the CN-70 molecule (ascending range: 11.57 %-13.57 %) in a real-world setting, which was consistent with the biodegradability prediction results (ascending range: 14.94 %-22.49 %) obtained through the molecular docking studies. The multi-activity 3D-QSAR model established in this study overcame the limitations of generating molecular designs based on single-effect models from the source because it focused on the multiple effects of the pollutants.
Collapse
Affiliation(s)
- Wenwen Gu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Qing Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
38
|
Li X, Zhang B, Huang W, Cantwell C, Chen B. Integration of Fuzzy Matter-Element Method and 3D-QSAR Model for Generation of Environmentally Friendly Quinolone Derivatives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093239. [PMID: 32384726 PMCID: PMC7246649 DOI: 10.3390/ijerph17093239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022]
Abstract
The environmental pollution of quinolone antibiotics (QAs) has caused rising public concern due to their widespread usage. In this study, Gaussian 09 software was used to obtain the infrared spectral intensity (IRI) and ultraviolet spectral intensity (UVI) of 24 QAs based on the Density Functional Theory (DFT). Rather than using two single-factor inputs, a fuzzy matter-element method was selected to calculate the combined effects of infrared and ultraviolet spectra (CI). The Comparative Molecular Field Analysis (CoMFA) was then used to construct a three-dimensional quantitative structure–activity relationship (3D-QSAR) with QAs’ molecular structure as the independent variable and CI as the dependent variable. Using marbofloxacin and levofloxacin as target molecules, the molecular design of 87 QA derivatives was carried out. The developed models were further used to determine the stability, functionality (genetic toxicity), and the environmental effects (bioaccumulation, biodegradability) of these designed QA derivatives. Results indicated that all QA derivatives are stable in the environment with their IRI, UVI, and CI enhanced. Meanwhile, the genetic toxicity of the 87 QA derivatives increased by varying degrees (0.24%–29.01%), among which the bioaccumulation and biodegradability of 43 QA derivatives were within the acceptable range. Through integration of fuzzy matter-element method and 3D-QSAR, this study advanced the QAs research with the enhanced CI and helped to generate the proposed environmentally friendly quinolone derivatives so as to aid the management of this class of antibiotics.
Collapse
|
39
|
Hou Y, Zhao Y, Li Q, Li Y. Highly biodegradable fluoroquinolone derivatives designed using the 3D-QSAR model and biodegradation pathways analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110186. [PMID: 31954922 DOI: 10.1016/j.ecoenv.2020.110186] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established based on molecular structures and docking scores (representing the biodegradability); the scores were obtained for 23 fluoroquinolones (FQs) and the oxidoreductase (PDB ID: 1YZP) of Phanerochaete chrysosporium in the aerobic process of municipal wastewater treatment plants. In the Comparative Molecular Field Analysis (CoMFA) model, q2 was 0.516 and r2pred was 0.727, which showed that the model was reliable and robust. The modification information obtained by the contour maps showed that introducing electronegative, bulky or electropositive groups at different active sites could increase the biodegradability of fluoroquinolone derivatives. Using levofloxacin (LEV) as a modified molecule, 35 fluoroquinolone derivatives with higher biodegradability than LEV were designed. After the evaluation of genotoxicity, bioconcentration and photodegradation, Derivative-15, with higher biodegradability (increased by 27.85%), higher genotoxicity, higher photodegradation and lower bioconcentration, was identified as the most environmentally friendly fluoroquinolone derivative. The 2D-QSAR model of FQ biodegradability was established through the quantization parameters, and q+ was identified as the main parameter affecting the biodegradability of FQs through sensitivity analysis. In addition, the docking results of LEV and Derivative-15 with the oxidoreductase in P. chrysosporium showed that the electrostatic field force between Derivative-15 and the amino acid residues promoted the binding of the donor to the receptor protein, thereby increasing the biodegradability of Derivative-15. Additionally, molecular dynamics simulations revealed that the enhancement of the electrostatic field force with Derivative-15 could promote the binding of the ligand to the receptor, which was basically consistent with the conclusion of molecular docking. Finally, the three microbial degradation pathways of LEV and Derivative-15 were also proposed. The total energy barrier value of the pathway with the lowest total energy barrier of biodegradation was reduced by 32.07%, which was basically consistent with the enhancement of biodegradability of Derivative-15.
Collapse
Affiliation(s)
- Yilin Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yuanyuan Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
40
|
Gu W, Li Q, Li Y. Law and mechanism analysis of biodegradability of polychlorinated naphthalenes based on principal component analysis, QSAR models, molecular docking and molecular dynamics simulation. CHEMOSPHERE 2020; 243:125427. [PMID: 31778917 DOI: 10.1016/j.chemosphere.2019.125427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
The quantization parameters, infrared and Raman spectra of 75 polychlorinated naphthalenes (PCNs) and 42 environmentally friendly CN-56 (CN-56: No. 56 PCN molecule; 1, 2, 3, 7, 8-PentaCN) molecules that are easier to degrade were first calculated via the density functional theory (DFT) method, and the structural characteristics of the molecules were analysed to obtain the substituent characteristics. The principal component analysis method was used to systematically analyse and summarize the effects of macroscopic substituent characteristics, microscopic quantitative parameters and spectral information on the biodegradability of PCNs and 42 environmentally friendly CN-56 molecules, and then the quantitative structure-activity relationship (QSAR), molecular docking and molecular dynamics simulation methods were used to further investigate the biodegradation mechanism from the perspective of molecules and protein receptors. The results showed that PCNs and new PCNs extracted 5 and 6 principal components from 21 kinds of original parameter indicators, respectively, which can effectively explain the original variable information. Besides that, electrostatic activity is the primary factor affecting the degradation of PCNs; reducing the para-substitution logarithm or increasing the total number of substituents and introducing electrostatic groups in the ortho or meta position of PCN molecules can design new PCN derivatives with higher degradability; enhancing the irradiation of Raman light or reducing the irradiation of infrared light properly can increase the biodegradation rate of PCN molecules.
Collapse
Affiliation(s)
- Wenwen Gu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Qing Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
41
|
Gu W, Li Q, Li Y. Fuzzy risk assessment of modified polychlorinated naphthalenes for enhanced degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25142-25153. [PMID: 31254193 DOI: 10.1007/s11356-019-05816-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
The three-dimensional quantitative structure-activity relationship (3D-QSAR) model is established for polychlorinated naphthalenes (PCNs) using the biological degradability (total score) results to modify CN-56 to design 37 new derivatives with higher degradability (increased by 14.55-38.79%). Furthermore, five new CN-56 derivatives are selected through evaluation of their persistent organic pollutant properties (toxicity, bioconcentration, long-range transport) and practicability (stability, insulativity, flame retardancy) using 3D-QSAR, density functional theory (DFT) and molecular docking methods. Environmental and health-based risk assessments are conducted using the multimedia fugacity model and fuzzy theory for complete screening of the new CN-56 derivatives. Whereas CN-56 is classed as high risk, three new derivatives can be classed as medium risk. The biodegradability mechanism analysis of the PCNs indicates that the electrostatic property is the main factor that affects the degradability, which provides a favorable theoretical reference to obtain environmentally friendly fire retardant and insulating materials.
Collapse
Affiliation(s)
- Wenwen Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|