1
|
Li C, Tiraferri A, Tang P, Ma J, Liu B. Current status, potential assessment, and future directions of biological treatments of unconventional oil and gas wastewater. WATER RESEARCH 2025; 275:123217. [PMID: 39947014 DOI: 10.1016/j.watres.2025.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
Unconventional oil and gas (UOG) extraction techniques typically involve the production of large volumes of so-called flowback and produced water (FPW), a site-specific wastewater stream characterized by complex organic and inorganic composition. Sustainable and cost-effective management of FPW, as well as mitigation of its environmental risks and impacts, represents substantial challenges for governments, industries, and societies worldwide. Among various treatment technologies, biological processes have gained interest due to their low installation and operational costs. However, the interaction of FPW's complex composition with microorganisms poses challenging scientific and engineering questions. This review examines the water quality characteristics and sources of FPW from twelve UOG extraction sites in China and North America, revealing strong spatio-temporal heterogeneity of organic, inorganic, and microbial components across different reservoirs. The complex and variable water quality, large wastewater volumes, and high treatment demands have driven the exploration of biological treatments for FPW. This work systematically reviews and analyzes the operating conditions, treatment efficiency, and technical applicability of suspended sludge reactors, attached sludge reactors, mixed systems, and resource/energy recovery systems. Developing skid-mounted equipment based on suspended sludge reactors to handle variations in wastewater quantity and innovating the form of attached sludge reactors, especially in enriching salt-tolerant microbes for in-situ FPW treatment, are deemed essential. The dominant microorganisms playing a key role in the biological treatment are also discussed, with focus on two different inoculation sources (activated sludge and FPW). Roseovarius from FPW and Pseudomonas from activated sludge have strong adaptability to different reactors. The review further underscores the need to integrate biological treatments with complementary technologies. Finally, it advocates for the establishment of robust and scalable biological treatments through research in three main directions: (i) exploring microbial resources in original FPW; (ii) using omics technologies to elucidate microbial function and species interaction; (iii) pre-designing environmental and operational conditions to optimize treatment efficiency.
Collapse
Affiliation(s)
- Chaoyang Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Peng Tang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Baicang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
2
|
Nabi M, Liang H, Zhou Q, Cao J, Gao D. In-situ membrane fouling control and performance improvement by adding materials in anaerobic membrane bioreactor: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161262. [PMID: 36586290 DOI: 10.1016/j.scitotenv.2022.161262] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) is a promising treatment technique for various types of wastewaters, and is preferred over other conventional aerobic and anaerobic methods. However, membrane fouling is considered a bottleneck in AnMBR system, which technically blocks membrane pores by numerous inorganics, organics, and other microbial substances. Various materials can be added in AnMBR to control membrane fouling and improve anaerobic digestion, and studies reporting the materials addition for this purpose are hereby systematically reviewed. The mechanism of membrane fouling control including compositional changes in extracellular polymeric substances (EPSs) and soluble microbial products (SMPs), materials properties, stimulation of antifouling microbes and alteration in substrate properties by material addition are thoroughly discussed. Nonetheless, this study opens up new research prospects to control membrane fouling of AnMBR, engineered by material, including compositional changes of microbial products (EPS and SMP), replacement of quorum quenching (QQ) by materials, and overall improvement of reactor performance. Regardless of the great research progress achieved previously in membrane fouling control, there is still a long way to go for material-mediated AnMBR applications to be undertaken, particularly for materials coupling, real scale application and molecular based studies on EPSs and SMPs, which were proposed for future researches.
Collapse
Affiliation(s)
- Mohammad Nabi
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Qixiang Zhou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jiashuo Cao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
3
|
Vatanpour V, Ağtaş M, Abdelrahman AM, Erşahin ME, Ozgun H, Koyuncu I. Nanomaterials in membrane bioreactors: Recent progresses, challenges, and potentials. CHEMOSPHERE 2022; 302:134930. [PMID: 35568222 DOI: 10.1016/j.chemosphere.2022.134930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The use of nanomaterials (NMs) in the fabrication and modification of membranes as well as the coupling of nanomaterial-based processes with membrane processes have been attracted many researchers today. The NMs due to a wide range of types, different chemistry, the possibility of various kinds of functionality, different properties like antibacterial activity, hydrophilicity, and large surface area were applied to enhance the membrane properties. In the membrane bioreactors (MBRs) as a highly successful process of membrane technology in wastewater treatment, the NMs have been applied for improving the efficiency of MBR process. This review assessed the application of NMs both as the modifiers of membrane and as the effective part of hybrid techniques with MBR system for wastewater treatment. The efficiency of NMs blended membranes in the MBR process has been reviewed in terms of antifouling and antibacterial improvement and removal performance of the pollutants. Novel kinds of NMs were recognized and discussed based on their properties and advantages. The NMs-based photocatalytic and electrochemical processes integrated with MBR were reviewed with their benefits and drawbacks. In addition, the effect of the presence of mobilized NPs in the sludge on MBR performance was surveyed. As a result of this review, it can be concluded that nanomaterials generally improve MBR performance. The high flux and antifouling properties can be obtained by adding nanomaterials with hydrophilic and antibacterial properties to the membrane, and further studies are required for photocatalytic NMs applications. In addition, this review shows that the low amounts of NMs in the membrane structure could have an effective influence on the MBR process. Besides, since many studies in the literature are carried out at the laboratory scale, it is thought that pilot and real-scale studies should be carried out to obtain more reliable data.
Collapse
Affiliation(s)
- Vahid Vatanpour
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Meltem Ağtaş
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Amr Mustafa Abdelrahman
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mustafa Evren Erşahin
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Hale Ozgun
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
4
|
Mao Z, Cheng L, Liu D, Li T, Zhao J, Yang Q. Nanomaterials and Technology Applications for Hydraulic Fracturing of Unconventional Oil and Gas Reservoirs: A State-of-the-Art Review of Recent Advances and Perspectives. ACS OMEGA 2022; 7:29543-29570. [PMID: 36061652 PMCID: PMC9434759 DOI: 10.1021/acsomega.2c02897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The application of hydraulic fracturing stimulation technology to improve the productivity of unconventional oil and gas reservoirs is a well-established practice. With the increasing exploration and development of unconventional oil and gas resources, the associated geological conditions and physical properties are gradually becoming more and more complex. Therefore, it is necessary to develop technologies that can improve the development benefits to meet these challenges. In recent years, improving the effect of hydraulic fracturing stimulation in unconventional oil and gas reservoirs through the use of nanomaterials and technologies has attracted increasing attention. In this paper, we review the current status and research progress of the application of nanomaterials and technologies in various aspects of hydraulic fracturing in unconventional oil and gas reservoirs, expound the mechanism and advantages of these nanomaterials and technologies in detail, and provide future research directions. The reviewed literature indicates that nanomaterials and technologies show exciting potential applications in the hydraulic fracturing of unconventional reservoirs; for example, the sand-carrying and rheological properties of fracturing fluids can be significantly enhanced through the addition of nanomaterials. The use of nanomaterials to modify proppants can improve their compressive strength, thus meeting the needs of different reservoir conditions. The fracturing flowback fluid treatment efficiency and purification effect can be improved through the use of nanophotocatalysis and nanomembrane technologies, while degradable fracturing completion tools developed based on nanomaterials can effectively improve the efficiency of fracturing operations. Nanorobots and magnetic nanoparticles can be used to more efficiently monitor hydraulic fracturing and to accurately map the hydraulic fracture morphology. However, due to the complex preparation process and high cost of nanomaterials, more work is needed to fully investigate the application mechanisms of nanomaterials and technologies, as well as to evaluate the economic feasibility of these exciting technologies. The main research objective of this review is to comprehensively summarize the application and research progress of nanomaterials and technologies in various aspects of hydraulic fracturing in unconventional oil and gas reservoirs, analyze the existing problems and challenges, and propose some targeted forward-looking recommendations, which may be helpful for future research and applications.
Collapse
Affiliation(s)
- Zheng Mao
- College
of Petroleum Engineering, Yangtze University, Wuhan 430100, China
- Key
Laboratory of Oil and Gas Resources and Exploration Technology, Ministry of Education, Wuhan 430100, China
- Key
Laboratory of Drilling and Production Engineering for Oil and Gas, Hubei province, Wuhan 430100, China
| | - Liang Cheng
- College
of Petroleum Engineering, Yangtze University, Wuhan 430100, China
- Key
Laboratory of Oil and Gas Resources and Exploration Technology, Ministry of Education, Wuhan 430100, China
- Key
Laboratory of Drilling and Production Engineering for Oil and Gas, Hubei province, Wuhan 430100, China
| | - Dehua Liu
- College
of Petroleum Engineering, Yangtze University, Wuhan 430100, China
- Key
Laboratory of Oil and Gas Resources and Exploration Technology, Ministry of Education, Wuhan 430100, China
- Key
Laboratory of Drilling and Production Engineering for Oil and Gas, Hubei province, Wuhan 430100, China
| | - Ting Li
- College
of Petroleum Engineering, Yangtze University, Wuhan 430100, China
- Key
Laboratory of Oil and Gas Resources and Exploration Technology, Ministry of Education, Wuhan 430100, China
- Key
Laboratory of Drilling and Production Engineering for Oil and Gas, Hubei province, Wuhan 430100, China
| | - Jie Zhao
- College
of Petroleum Engineering, Yangtze University, Wuhan 430100, China
| | - Qi Yang
- China
United Coal-bed Methane Co., Ltd., Beijing 100020, China
| |
Collapse
|
5
|
Wang X, Dai C, Zhao M, Wang X, Guo X, Liu P, Qu Y. A novel property enhancer of clean fracturing fluids: deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Shahcheraghi N, Golchin H, Sadri Z, Tabari Y, Borhanifar F, Makani S. Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech 2022; 12:65. [PMID: 35186662 PMCID: PMC8828840 DOI: 10.1007/s13205-021-03108-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology is one of the most emerging fields of research within recent decades and is based upon the exploitation of nano-sized materials (e.g., nanoparticles, nanotubes, nanomembranes, nanowires, nanofibers and so on) in various operational fields. Nanomaterials have multiple advantages, including high stability, target selectivity, and plasticity. Diverse biotic (e.g., Capsid of viruses and algae) and abiotic (e.g., Carbon, silver, gold and etc.) materials can be utilized in the synthesis process of nanomaterials. "Nanobiotechnology" is the combination of nanotechnology and biotechnology disciplines. Nano-based approaches are developed to improve the traditional biotechnological methods and overcome their limitations, such as the side effects caused by conventional therapies. Several studies have reported that nanobiotechnology has remarkably enhanced the efficiency of various techniques, including drug delivery, water and soil remediation, and enzymatic processes. In this review, techniques that benefit the most from nano-biotechnological approaches, are categorized into four major fields: medical, industrial, agricultural, and environmental.
Collapse
Affiliation(s)
- Nikta Shahcheraghi
- Department of Engineering, University of Science and Culture, Tehran, Iran
| | - Hasti Golchin
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Zahra Sadri
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Yasaman Tabari
- Faculty of Sciences and Advanced Technologies, Science and Culture University, 1461968151 Tehran, Iran
| | - Forough Borhanifar
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| |
Collapse
|
7
|
Tang P, Xie W, Tiraferri A, Zhang Y, Zhu J, Li J, Lin D, Crittenden JC, Liu B. Organics removal from shale gas wastewater by pre-oxidation combined with biologically active filtration. WATER RESEARCH 2021; 196:117041. [PMID: 33774348 DOI: 10.1016/j.watres.2021.117041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Biological treatment technology is increasingly explored in shale gas wastewater (SGW) treatment owing to its cost effectiveness and requires efforts to improve its efficacy. In this work, ozone and ferrate(VI) oxidation pre-treatment were evaluated to enhance the performance of the subsequent biologically active filtration (BAF) in the removal of organic contaminants. The oxidation improved the SGW biodegradability and organic composition under relative high salinity (~20 g/L). Due to the degradation activity of microorganisms, the organics removal efficiency in the BAF system was observed to gradually improve and then reaching stability in long-term continuous-mode operation. The removal rate of dissolved organic carbon (DOC) of the ozone-BAF (O3-BAF) and the ferrate(VI)-BAF (Fe(VI)-BAF) systems was 83.2% and 82.8% , respectively, higher than that of BAF alone (80.9%). This increase was attributed to higher activity and content of microorganisms in O3-BAF and Fe(VI)-BAF systems. Two uncultured bacterial species with high abundance of 7.2-21.0% and 2.24-22.31% in genus Rehaibacterium and genus Methyloversatilis were significantly correlated with DOC removal and fluorescent organics removal, respectively. More research is needed to understand whether the species were new and their specific function. This study provides valuable suggestions for extracting safe water from SGW with an efficient treatment train.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Wancen Xie
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Yongli Zhang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China
| | - Jin Zhu
- Petro China Southwest Oil & Gasfield Company, No.5 Fuqing Rd., Chengdu, Sichuan 610051, PR China
| | - Jing Li
- Petro China Southwest Oil & Gasfield Company, No.5 Fuqing Rd., Chengdu, Sichuan 610051, PR China
| | - Dong Lin
- Petro China Southwest Oil & Gasfield Company, No.5 Fuqing Rd., Chengdu, Sichuan 610051, PR China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, North Ave. NW, Atlanta, Georgia, 30332, USA
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
8
|
Gkantzou E, Chatzikonstantinou AV, Fotiadou R, Giannakopoulou A, Patila M, Stamatis H. Trends in the development of innovative nanobiocatalysts and their application in biocatalytic transformations. Biotechnol Adv 2021; 51:107738. [PMID: 33775799 DOI: 10.1016/j.biotechadv.2021.107738] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
The ever-growing demand for cost-effective and innocuous biocatalytic transformations has prompted the rational design and development of robust biocatalytic tools. Enzyme immobilization technology lies in the formation of cooperative interactions between the tailored surface of the support and the enzyme of choice, which result in the fabrication of tremendous biocatalytic tools with desirable properties, complying with the current demands even on an industrial level. Different nanoscale materials (organic, inorganic, and green) have attracted great attention as immobilization matrices for single or multi-enzymatic systems. Aiming to unveil the potentialities of nanobiocatalytic systems, we present distinct immobilization strategies and give a thorough insight into the effect of nanosupports specific properties on the biocatalysts' structure and catalytic performance. We also highlight the development of nanobiocatalysts for their incorporation in cascade enzymatic processes and various types of batch and continuous-flow reactor systems. Remarkable emphasis is given on the application of such nanobiocatalytic tools in several biocatalytic transformations including bioremediation processes, biofuel production, and synthesis of bioactive compounds and fine chemicals for the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Elena Gkantzou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Alexandra V Chatzikonstantinou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Renia Fotiadou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Archontoula Giannakopoulou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Michaela Patila
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
9
|
Tang P, Li J, Li T, Tian L, Sun Y, Xie W, He Q, Chang H, Tiraferri A, Liu B. Efficient integrated module of gravity driven membrane filtration, solar aeration and GAC adsorption for pretreatment of shale gas wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124166. [PMID: 33087288 DOI: 10.1016/j.jhazmat.2020.124166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Low-cost and efficient treatment processes are urgently needed to manage highly decentralized shale gas wastewater, which seriously threatens the environment if not properly treated. We propose a simple integrated pretreatment process for on-site treatment, whereby gravity driven membrane filtration is combined with granular activated carbon (GAC) adsorption and solar aeration. The rationale of exploitment of sustainable solar energy is that most shale gas production areas are decentralized and located in desert/rural areas characterized by relatively scarce transportation and power facilities but also by abundant sunshine. In this study, GAC and aeration significantly increased the stable flux (170%) and improved effluent quality. Specifically, the dissolved organic carbon removal rate of the integrated system was 44.9%. The high stable flux was attributed to a reduction of extracellular polymeric substances accumulated on the membrane, as well as to the more porous and heterogeneous biofilm formed by eukaryotes with stronger active predation behavior. The prevailing strains, Gammaproteobacteria (35.5%) and Alphaproteobacteria (56.5%), played an important active role in organic carbon removal. The integrated system has great potential as pretreatment for shale gas wastewater due to its low energy consumption, low operational costs, high productivity, and effluent quality.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, PR China
| | - Jialin Li
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, PR China
| | - Tong Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, PR China
| | - Lun Tian
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, PR China
| | - Yu Sun
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, PR China
| | - Wancen Xie
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, PR China
| | - Qiping He
- Chuanqing Drilling Engineering Company Limited, Chinese National Petroleum Corporation, Chengdu 610081, PR China
| | - Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, PR China
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, PR China.
| |
Collapse
|