1
|
Xia C, Yue L, Wang Y, Li C, Ma G, Ju Y, Wang P, Wang J, Jiang X, Wang X, Chen F. Gut microbiota's role in the enhancement of type 2 diabetes treatment by a traditional Chinese herbal formula compared to metformin. Microbiol Spectr 2025:e0241224. [PMID: 40162751 DOI: 10.1128/spectrum.02412-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a rapidly increasing metabolic disorder that poses a significant threat to global public health. Recent evidence suggests that targeting the gut microbiota through dietary and pharmaceutical interventions can effectively manage T2DM. In this study, we developed a novel Chinese herbal formula, CCM, specifically for T2DM, composed of Coptis rhizoma, Cinnamomi cortex, and Mume fructus. To evaluate CCM's efficacy and explore its underlying mechanisms, particularly the role of the gut microbiota, diabetic C57/db/db mice were administered different doses of CCM (low, medium, high) for 4 weeks, with normal C57 mice as healthy controls and metformin as a positive control. Comprehensive clinical indicators of T2DM were measured before and after treatment. High-throughput sequencing was used to assess changes in gut microbiome composition and function. Our results showed that CCM treatment, especially at medium and high doses, resulted in more significant improvements in blood glucose, lipid profiles, and body weight compared to metformin. The CCM-treated group also exhibited more significant changes in the microbial community structure compared to the metformin group, notably enriching three beneficial microbes (>40%): Bacteroidetes spp., Akkermansia spp., and Parabacteroides spp., which correlated with improved diabetic parameters. Further analysis identified that all four microbial metabolic pathways linked to lowering blood glucose were exclusively enriched in the CCM-treated group. Of the 10 pathways related to improved blood lipid levels, five were unique to CCM. These unique pathways enriched by CCM may explain its superior therapeutic effects, indicating its distinct mechanisms in modulating gut microbiota.IMPORTANCEOur study demonstrates that CCM outperforms metformin in managing key clinical indicators in type 2 diabetes mellitus (T2DM) model mice and induces more significant alterations in gut microbiota composition and function. Notably, the uniquely enriched beneficial microbes and microbial metabolic pathways in the CCM samples may explain its enhanced therapeutic effects compared to metformin. Consequently, these findings suggest that CCM offers a promising therapeutic strategy for T2DM, and further provide valuable insights into potential probiotic candidates (such as Bacteroidetes spp., Akkermansia spp., and Parabacteroides spp.) and newly identified functional pathways (such as chondroitin sulfate degradation, geraniol degradation, biotin biosynthesis, colonic acid building blocks biosynthesis, and the biosynthesis of vancomycin group antibiotics) that could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Chengdong Xia
- Department of Endocrinology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Liya Yue
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yinyu Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Cuidan Li
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Guannan Ma
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yingjiao Ju
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peihan Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyuan Jiang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xiaotong Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fei Chen
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| |
Collapse
|
2
|
Zulfiqar M, Singh V, Steinbeck C, Sorokina M. Review on computer-assisted biosynthetic capacities elucidation to assess metabolic interactions and communication within microbial communities. Crit Rev Microbiol 2024; 50:1053-1092. [PMID: 38270170 DOI: 10.1080/1040841x.2024.2306465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Microbial communities thrive through interactions and communication, which are challenging to study as most microorganisms are not cultivable. To address this challenge, researchers focus on the extracellular space where communication events occur. Exometabolomics and interactome analysis provide insights into the molecules involved in communication and the dynamics of their interactions. Advances in sequencing technologies and computational methods enable the reconstruction of taxonomic and functional profiles of microbial communities using high-throughput multi-omics data. Network-based approaches, including community flux balance analysis, aim to model molecular interactions within and between communities. Despite these advances, challenges remain in computer-assisted biosynthetic capacities elucidation, requiring continued innovation and collaboration among diverse scientists. This review provides insights into the current state and future directions of computer-assisted biosynthetic capacities elucidation in studying microbial communities.
Collapse
Affiliation(s)
- Mahnoor Zulfiqar
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Vinay Singh
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Data Science and Artificial Intelligence, Research and Development, Pharmaceuticals, Bayer, Berlin, Germany
| |
Collapse
|
3
|
Yu M, Shao H, Wang P, Ren L. Metagenomic analysis reveals the mechanisms of biochar supported nano zero-valent iron in two-phase anaerobic digestion of food waste: microbial community, CAZmey, functional genes and antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121763. [PMID: 38972194 DOI: 10.1016/j.jenvman.2024.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The mechanisms of biochar supported nano zero-valent iron (BC/nZVI) on two-phase anaerobic digestion of food waste were investigated. Results indicated that the performance of both acidogenic phase and methanogenic phase was effectively facilitated. BC/nZVI with the amount of 120 mg/L increased methane production by 32.21%. In addition, BC/nZVI facilitated direct interspecies electron transfer (DIET) between Geobacter and methanogens. Further analysis showed that BC/nZVI increased the abundance of most CAZymes in acidogenic phase. The study also found that BC/nZVI had positive effects on metabolic pathways and related functional genes. The abundances of acdA and ackA in acidogenic phase were increased by 151.75% and 36.26%, respectively, and the abundances of pilA and TorZ associated with DIET were also increased. Furthermore, BC/nZVI mainly removed IMP-12, CAU-1, cmeB, ErmR, MexW, ErmG, Bla2, vgaD, MuxA, and cpxA from this system, and reduced the antibiotic resistance genes for antibiotic inactivation resistance mechanisms.
Collapse
Affiliation(s)
- Miao Yu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Hailin Shao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Pan Wang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lianhai Ren
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
4
|
Xiang Y, Lan J, Dong Y, Zhou M, Hou H, Huang BT. Pollution control performance of solidified nickel-cobalt tailings on site: Bioavailability of heavy metals and microbial response. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134295. [PMID: 38631253 DOI: 10.1016/j.jhazmat.2024.134295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
There has been increasing attention given to nickel-cobalt tailings (NCT), which pose a risk of heavy metal pollution in the field. In this study, on site tests and sampling analysis were conducted to assess the physical and chemical characteristics, heavy metal toxicity, and microbial diversity of the original NCT, solidified NCT, and the surrounding soil. The research results show that the potential heavy metal pollution species in NCT are mainly Ni, Co, Mn, and Cu. Simultaneous solidification and passivation of heavy metals in NCT were achieved, resulting in a reduction in biological toxicity and a fivefold increase in seed germination rate. The compressive strength of the original tailings was increased by 20 times after solidification. The microbial diversity test showed that the abundance of microbial community in the original NCT was low and the population was monotonous. This study demonstrates, for the first time, that the use of NCT for solidification in ponds can effectively solidification of heavy metals, reduce biological toxicity, and promote microorganism diversity in mining areas (tended to the microbial ecosystem in the surrounding soil). Indeed, this study provides a new perspective for the environmental remediation of metal tailings.
Collapse
Affiliation(s)
- Yuwei Xiang
- School of Resource and Environmental Sciences, Wuhan University, 430072, China.
| | - Jirong Lan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Yiqie Dong
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Min Zhou
- School of Resource and Environmental Sciences, Wuhan University, 430072, China
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, 430072, China.
| | - Bo-Tao Huang
- Institute of Advanced Engineering Structures, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Reis PCJ, Correa-Garcia S, Tremblay J, Beaulieu-Laliberté A, Muench DG, Ahad JME, Yergeau E, Comte J, Martineau C. Microbial degradation of naphthenic acids using constructed wetland treatment systems: metabolic and genomic insights for improved bioremediation of process-affected water. FEMS Microbiol Ecol 2023; 99:fiad153. [PMID: 38012121 PMCID: PMC10710301 DOI: 10.1093/femsec/fiad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/27/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023] Open
Abstract
Naphthenic acids (NAs) are a complex mixture of organic compounds released during bitumen extraction from mined oil sands that are important contaminants of oil sands process-affected water (OSPW). NAs can be toxic to aquatic organisms and, therefore, are a main target compound for OSPW. The ability of microorganisms to degrade NAs can be exploited for bioremediation of OSPW using constructed wetland treatment systems (CWTS), which represent a possible low energy and low-cost option for scalable in situ NA removal. Recent advances in genomics and analytical chemistry have provided insights into a better understanding of the metabolic pathways and genes involved in NA degradation. Here, we discuss the ecology of microbial NA degradation with a focus on CWTS and summarize the current knowledge related to the metabolic pathways and genes used by microorganisms to degrade NAs. Evidence to date suggests that NAs are mostly degraded aerobically through ring cleavage via the beta-oxidation pathway, which can be combined with other steps such as aromatization, alpha-oxidation, omega-oxidation, or activation as coenzyme A (CoA) thioesters. Anaerobic NA degradation has also been reported via the production of benzoyl-CoA as an intermediate and/or through the involvement of methanogens or nitrate, sulfate, and iron reducers. Furthermore, we discuss how genomic, statistical, and modeling tools can assist in the development of improved bioremediation practices.
Collapse
Affiliation(s)
- Paula C J Reis
- Centre Eau Terre Environnement, Institut national de la recherche scientifique, QC, Canada
| | - Sara Correa-Garcia
- Centre Armand Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Québec city, QC G1K 9A9, Canada
| | - Julien Tremblay
- Centre Armand Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Québec city, QC G1K 9A9, Canada
- Energy, Mining and Environment, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Aurélie Beaulieu-Laliberté
- Centre Eau Terre Environnement, Institut national de la recherche scientifique, QC, Canada
- Groupe de recherche interuniversitaire en limnologie (GRIL), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada, Québec city, QC G1K 9A9, Canada
| | - Etienne Yergeau
- Energy, Mining and Environment, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Jérôme Comte
- Centre Eau Terre Environnement, Institut national de la recherche scientifique, QC, Canada
- Groupe de recherche interuniversitaire en limnologie (GRIL), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Christine Martineau
- Laurentian Forestry Centre, Natural Resources Canada, Québec city, QC G1V 4C7, Canada
| |
Collapse
|
6
|
Wu Z, Liu G, Ji Y, Li P, Yu X, Qiao W, Wang B, Shi K, Liu W, Liang B, Wang D, Yanuka-Golub K, Freilich S, Jiang J. Electron acceptors determine the BTEX degradation capacity of anaerobic microbiota via regulating the microbial community. ENVIRONMENTAL RESEARCH 2022; 215:114420. [PMID: 36167116 DOI: 10.1016/j.envres.2022.114420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic degradation is the major pathway for microbial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) under electron acceptor lacking conditions. However, how exogenous electron acceptors modulate BTEX degradation through shaping the microbial community structure remains poorly understood. Here, we investigated the effect of various exogenous electron acceptors on BTEX degradation as well as methane production in anaerobic microbiota, which were enriched from the same contaminated soil. It was found that the BTEX degradation capacities of the anaerobic microbiota gradually increased along with the increasing redox potentials of the exogenous electron acceptors supplemented (WE: Without exogenous electron acceptors < SS: Sulfate supplement < FS: Ferric iron supplement < NS: Nitrate supplement), while the complexity of the co-occurring networks (e.g., avgK and links) of the microbiota gradually decreased, showing that microbiota supplemented with higher redox potential electron acceptors were less dependent on the formation of complex microbial interactions to perform BTEX degradation. Microbiota NS showed the highest degrading capacity and the broadest substrate-spectrum for BTEX, and it could metabolize BTEX through multiple modules which not only contained fewer species but also different key microbial taxa (eg. Petrimonas, Achromobacter and Comamonas). Microbiota WE and FS, with the highest methanogenic capacities, shared common core species such as Sedimentibacter, Acetobacterium, Methanobacterium and Smithella/Syntrophus, which cooperated with Geobacter (microbiota WE) or Desulfoprunum (microbiota FS) to perform BTEX degradation and methane production. This study demonstrates that electron acceptors may alter microbial function by reshaping microbial community structure and regulating microbial interactions and provides guidelines for electron acceptor selection for bioremediation of aromatic pollutant-contaminated anaerobic sites.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Guiping Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Xin Yu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Wenjing Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wenzhong Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Dong Wang
- Jiangsu Academy of Environmental Science and Technology Co., Ltd, Nanjing, 210095, China
| | - Keren Yanuka-Golub
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
7
|
Zhang J, Yue Z, Zhou Z, Ding C, Zhang T, Kamran M, Wan L, Wang X. Key microbial clusters and environmental factors affecting the removal of antibiotics in an engineered anaerobic digestion system. BIORESOURCE TECHNOLOGY 2022; 348:126770. [PMID: 35091038 DOI: 10.1016/j.biortech.2022.126770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
To identify the key microbial clusters and influencing factors involved in antibiotic removal from engineered anaerobic digestion (AD) systems, the dynamic characteristics of antibiotics, physiochemical factors, microbial communities and functional genes were investigated by 16S rRNA and metagenome sequencing. The results showed that antibiotic removal occurred mainly in the first 21 days, and sulfonamides had the highest removal rate. The key microbial clusters related to the biodegradation of antibiotics consisted mainly of Firmicutes and Bacteroidetes. The key enzymes consisted of deaminases, peptidases, C-N ligases, decarboxylases and alkyl-aryl transferases. Structural equation modelling indicated that low concentrations of propionic acid promoted the biodegradation activities of key microbial clusters in the first 21 days, but their activities were inhibited by the accumulated propionic acid after 21 days. Thus, propionic acid should be regulated in engineered AD systems to prevent the adverse effect of acid inhibition on antibiotic-degrading bacteria.
Collapse
Affiliation(s)
- Jing Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengfu Yue
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigao Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changfeng Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taolin Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Kamran
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Wan
- Jiangxi Zhenghe Ecological Agriculture Company Limited, Xinyu 338008, China
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangxi Zhenghe Ecological Agriculture Company Limited, Xinyu 338008, China.
| |
Collapse
|
8
|
Genome Sequence of Litorilinea aerophila, an Icelandic Intertidal Hot Springs Bacterium. Microbiol Resour Announc 2022; 11:e0120621. [PMID: 35084223 PMCID: PMC8793728 DOI: 10.1128/mra.01206-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The hot springs bacterium Litorilinea aerophila PRI-4131T (= ATCC BAA-2444T) was found in Isafjardardjup, in northwest Iceland. In this paper, we present a draft genome sequence for the type strain, with a total predicted genome length of 6,043,010 bp, 4,608 protein-coding sequences, 54 RNAs, 9 CRISPR arrays, and a G+C content of 64.61%.
Collapse
|
9
|
Yin M, Chen H. Unveiling the dual faces of chitosan in anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2022; 344:126182. [PMID: 34710600 DOI: 10.1016/j.biortech.2021.126182] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, the roles of chitosan (CTS) in anaerobic digestion of Waste activated sludge (WAS) were investigated. The results show that the methane production potential of WAS is positively correlated with the CTS content. The presence of 30 g/kg total suspended solids CTS increased the cumulative methane production from 215 ± 1.52 to 272 ± 1.83 mL/g volatile suspended solids. The positively charged amino groups in CTS neutralize the hydroxyl and carboxyl groups of extracellular polymeric substances, which reduces the negative charge on the surface of sludge and promotes sludge agglomeration, thereby inhibiting the release of organic matter. CTS also inhibits hydrolysis and acidification by immobilizing hydrolases and acidulase enzymes. However, CTS flocculates humus to avoid its interference with electron transfer, thereby enhancing the activity of coenzyme F420 and methanogenesis. In addition, CTS increases the abundance of methanogens, which also contributes to methane production.
Collapse
Affiliation(s)
- Mengyu Yin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
10
|
Ma Y, Zhao H, Shan Q, Xu Y, Yu M, Cui J, Liu T, Qiao L, He X. K-strategy species plays a pivotal role in the natural attenuation of petroleum hydrocarbon pollution in aquifers. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126559. [PMID: 34252660 DOI: 10.1016/j.jhazmat.2021.126559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The natural attenuation of petroleum hydrocarbons is inseparable from the action of microorganisms, while the degradation methods and ecological strategies of microorganisms in petroleum-contaminated aquifers are still under debate. In the present study, 16 S rRNA sequencing and quantitative real-time polymerase chain reaction were used to assess the potential microbial degradation of petroleum hydrocarbons, and the ecological strategy of microorganisms under petroleum stress was analyzed through a co-occurrence network. The results showed that the microbial community in sediments exhibit higher efficiency and stability and stronger ecological function than that in groundwater. Keystone species coordinated with the community to execute ecosystem processes and tended to choose a K-strategy to survive, with the aquifer sediment being the main site of petroleum hydrocarbon degradation. Under natural conditions, the presence of petroleum hydrocarbons at concentrations higher than 126 μg kg-1 and 5557 μg kg-1 was not conducive to the microbial degradation of polycyclic aromatic hydrocarbons and alkanes, respectively. These results can be used as a reference for an enhanced bioremediation of contaminated groundwater. Overall, these findings provide support to managers for developing environmental management strategies.
Collapse
Affiliation(s)
- Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Hangzheng Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qianjuan Shan
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqiu Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Minda Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jun Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tong Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Longkai Qiao
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|