1
|
Ma P, Jin M, Zhang D, Lv L, Zhang G, Ren Z. Surface engineering-based S, N co-doped biochar for improved anaerobic digestion: Enhancing microbial-pollutant and inter-microbial electron transfer synergistic EPS protection. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136217. [PMID: 39437466 DOI: 10.1016/j.jhazmat.2024.136217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Enhancing extracellular electron transfer (EET) efficiency is crucial for improving the anaerobic digestion (AD) system's capability to treat recalcitrant wastewater. In this study, a novel S, N co-doped biochar (S-N-BC) was prepared through surface engineering to optimize EET within AD systems. The addition of S-N-BC significantly enhanced the performance of a mesophilic AD system treating Congo red wastewater, increasing the decolorization rate by 78 %, COD degradation rate by 82 %, and methane yield by 87 % compared to the control. Additionally, the shock resistance of anaerobic granular sludge was improved, as evidenced by the formation of the protective extracellular polymeric substances (EPS) barrier and the enhanced activities of the electron transport system. Mechanistic analysis revealed that adding S-N-BC did not alter the Congo red decolorization pathway but significantly enriched various electrochemically active bacteria and established EET pathways between microbial-pollutant and inter-microbial. This significantly accelerated EET efficiency within the AD system, ensuring stable and efficient operation under challenging conditions. This study proposed a novel approach using S-N-BC to simultaneously enhance "dual-pathway EET" between microbial-pollutant and inter-microbial while constructing an EPS protective barrier, addressing the issues of low efficiency and fragile stability of AD systems for treating recalcitrant wastewater.
Collapse
Affiliation(s)
- Peiyu Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Mengting Jin
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin 150086, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
2
|
Ji X, Zhang X, Ju T, Zhou L, Jin D, Wu P. Mechanisms of inhibition and recovery under multi-antibiotic stress in anammox: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122754. [PMID: 39366232 DOI: 10.1016/j.jenvman.2024.122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
With the escalating global concern for emerging pollutants, particularly antibiotics, microplastics, and nanomaterials, the potential disruption they pose to critical environmental processes like anaerobic ammonia oxidation (anammox) has become a pressing issue. The anammox process, which plays a crucial role in nitrogen removal from wastewater, is particularly sensitive to external pollutants. This paper endeavors to address this knowledge gap by providing a comprehensive overview of the inhibition mechanisms of multi-antibiotic on anaerobic ammonia-oxidizing bacteria, along with insights into their recovery processes. The paper dives deeply into the various ways antibiotics interact with anammox bacteria, focusing specifically on their interference with the bacteria's extracellular polymers (EPS) - crucial components that maintain the structural integrity and functionality of the cells. Additionally, it explores how anammox bacteria utilize quorum sensing (QS) mechanisms to regulate their community structure and respond to antibiotic stress. Moreover, the paper summarizes effective removal methods for these antibiotics from wastewater systems, which is crucial for mitigating their inhibitory effects on anammox bacteria. Finally, the paper offers valuable insights into how anammox communities can recuperate from multi-antibiotic stress. This includes strategies for reintroducing healthy bacteria, optimizing operational conditions, and using bioaugmentation techniques to enhance the resilience of anammox communities. In summary, this paper not only enriches our understanding of the complex interactions between antibiotics and anammox bacteria but also provides theoretical and practical guidance for the treatment of antibiotic pollution in sewage, ensuring the sustainability and effectiveness of wastewater treatment processes.
Collapse
Affiliation(s)
- Xu Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ting Ju
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
3
|
Zhang P, Xu L, Su J, Liu Y, Zhao B. Bioremediation of oligotrophic waters by iron-humus-containing bio-immobilized materials: Performance and possible mechanisms. WATER RESEARCH 2024; 268:122713. [PMID: 39488065 DOI: 10.1016/j.watres.2024.122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
The combined pollution and oligotrophic characteristics of surface water led to poor self-purification capacity of water bodies. In this study, humic acid (HA) and fulvic acid (FA) were used to promote the denitrification process of strain Zoogloea sp. ZP7. Subsequently, iron and different humus (HA and FA) composites were encapsulated by polyvinyl alcohol (PVA) and sodium alginate (SA) to prepare two biological immobilization (BI) carriers Fe-HA@PVA/SA (FHB) and Fe-FA@PVA/SA (FFB), which immobilized strain ZP7. The BI materials were added to the water remediation system model and operated for three stages (synthetic wastewater, actual polluted surface water, sediment-contaminated surface water) for 48 days. The results showed that FHB (FFB) could remove up to 89.7 % (88.6 %), 90.5 % (89.5 %), 82.2 % (81.5 %), and 90.4 % (80.8 %) of total nitrogen, nitrate, CODMn, and phosphate from the actual polluted surface water within 16 days of stage II. In addition, the incorporation of FHB and FFB was effective in controlling the release of organic matter and heavy metals from the sediments. Microbial community analysis showed that Zoogloea became the dominant species in actual water bodies. KEGG database analysis illustrated that the expression of genes related to denitrification and iron redox cycle was enhanced. This work provides a novel approach into the in-situ bioremediation of actual nutrient-poor water bodies.
Collapse
Affiliation(s)
- Peng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Bolin Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Mu M, Li D, Lin S, Bi H, Liu X, Wang Z, Qian C, Ji J. Insights into the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox: Nitrogen removal performance, enzyme activity and microbial community. CHEMOSPHERE 2024; 365:143308. [PMID: 39265735 DOI: 10.1016/j.chemosphere.2024.143308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is an efficient and economical nitrogen removal process for treating ammonium-rich industrial wastewaters. However, Cu(Ⅱ) and Ni(Ⅱ) present in industrial wastewaters are toxic to anaerobic ammonium-oxidizing bacteria (AnAOB). Unfortunately, the effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox have not been thoroughly investigated, especially when Cu(Ⅱ) and Ni(Ⅱ) coexist. This work comprehensively investigated the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox and revealed the inhibitory mechanisms. With the influent NH4+-N and NO2--N concentration of 230 and 250 mg L-1, the inhibition thresholds on anammox are 2.00 mg L-1 Cu(Ⅱ), 1.00 mg L-1 Ni(Ⅱ) and 1.00 mg L-1 Cu(Ⅱ) + 1.00 mg L-1 Ni(Ⅱ), and higher Cu(Ⅱ) or Ni(Ⅱ) concentrations resulted in sharp deteriorations of nitrogen removal performance. The inhibition of Ni(Ⅱ) on anammox was mainly attributed to the adverse effect on NiR activity, while the inhibition mechanism of Cu(Ⅱ) seemed to be unrelated to the four functional enzymes, but associated with disruption of cellular and organellar membranes. The behavior of extracellular polymeric substances (EPS) contributed to the antagonistic effect between Cu(Ⅱ) and Ni(Ⅱ) on anammox. In addition, the niche of Candidatus Brocadia and Candidatus Jettenia shifted under the Cu(II) and Ni(II) stress, and Candidatus Jettenia displayed greater tolerance to Cu(II) and Ni(II) stress. In conclusion, this research clarified the combined effect and the inhibitory mechanism of multiple heavy metals on anammox, and provide the guidances for anammox process application in treating high-ammonium industrial wastewaters containing heavy metals.
Collapse
Affiliation(s)
- Minghao Mu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Dengzhi Li
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Shilin Lin
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Haisong Bi
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Xinqiang Liu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Zheng Wang
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Chengduo Qian
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
5
|
Zhou J, Yang L, Li X, Dai B, He J, Wu C, Pang S, Xia S, Rittmann BE. Biogenic Palladium Improved Perchlorate Reduction during Nitrate Co-Reduction by Diverting Electron Flow in a Hydrogenotrophic Biofilm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10644-10651. [PMID: 38832916 DOI: 10.1021/acs.est.4c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Microbial reduction of perchlorate (ClO4-) is emerging as a cost-effective strategy for groundwater remediation. However, the effectiveness of perchlorate reduction can be suppressed by the common co-contamination of nitrate (NO3-). We propose a means to overcome the limitation of ClO4- reduction: depositing palladium nanoparticles (Pd0NPs) within the matrix of a hydrogenotrophic biofilm. Two H2-based membrane biofilm reactors (MBfRs) were operated in parallel in long-term continuous and batch modes: one system had only a biofilm (bio-MBfR), while the other incorporated biogenic Pd0NPs in the biofilm matrix (bioPd-MBfR). For long-term co-reduction, bioPd-MBfR had a distinct advantage of oxyanion reduction fluxes, and it particularly alleviated the competitive advantage of NO3- reduction over ClO4- reduction. Batch tests also demonstrated that bioPd-MBfR gave more rapid reduction rates for ClO4- and ClO3- compared to those of bio-MBfR. Both biofilm communities were dominated by bacteria known to be perchlorate and nitrate reducers. Functional-gene abundances reflecting the intracellular electron flow from H2 to NADH to the reductases were supplanted by extracellular electron flow with the addition of Pd0NPs.
Collapse
Affiliation(s)
- Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ben Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Junxia He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chengyang Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Si Pang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
6
|
Zhou N, Xiao Z, Chen D. Formation/characterization of humin-mediated anaerobic granular sludge and enhanced methanogenic performance. BIORESOURCE TECHNOLOGY 2024; 399:130603. [PMID: 38499204 DOI: 10.1016/j.biortech.2024.130603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
This study presents a novel method for accelerating the granulation of methanogenic anaerobic granular sludge (AnGS) in an upflow anaerobic sludge blanket (UASB) reactor using solid-phase humin (HM). The results demonstrated that HM-mediated AnGS (HM-AnGS) formed rapidly within 50 days. The increase in particle size, settling velocity and mechanical strength was attributed to the rapid granulation of the HM-AnGS. The maximum methane yield of the HM-AnGS was 5-fold higher than that of the control group. This is consistent with the findings, which showed that HM-AnGS had 3.2-3.4 times more methyl-coenzyme M reductase (Mcr) activity and 2.4-2.9 times more adenosine triphosphate (ATP) than control groups. Molecular analyses indicate that HM most likely accelerated interspecies electron transfer (IET) in HM-AnGS (e.g., from Enterococcus to Methanosaeta). Furthermore, the HM-AnGS was effective in recovering energy from actual slaughterhouse wastewater.
Collapse
Affiliation(s)
- Ningli Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China
| | - Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
7
|
Wang Y, Wang H, Chen H, Dai X. Metatranscriptome analysis unveils the mechanisms of zero-valent iron enhancing reactivation of starvation hydrolysis acidification sludge by inducing high-level gene expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165696. [PMID: 37482355 DOI: 10.1016/j.scitotenv.2023.165696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Hydrolysis acidification (HA) is a promising method for wastewater treatment and resource recovery. However, the extended time required for bacterial reactivation after starvation or a change in living conditions often poses a challenge to the efficient operation of the system. Although the addition of zero-valent iron (ZVI) could enhance HA performance, its effects on sludge reactivation in the HA process are not fully understood. In this study, ZVI was employed to accelerate sludge reactivation and its involved genetic mechanisms were unveiled. The results demonstrated that ZVI addition activated the sludge within 35 days with stable HA performance. Sludge characteristics revealed that ZVI improved active biomass, enzyme activity (by 11.4 % ∼ 26.7 %), ETS activity (by 566 %), and cell viability, with a higher concentration of MLVSS, live cells, more microbial byproducts in EPS, and relative abundance of HA bacteria (63.41 %). Moreover, metatranscriptome analysis showed that ZVI upregulated the expression of genes related to key enzymes in carbohydrate degradation metabolism, biosynthesis of electron transfer media such as heme and ubiquinone, and biosynthesis of vital cofactors like vitamin B12 and folate during microbial growth and metabolism. These findings suggest that ZVI enhanced electron transfer, bacterial growth, and metabolism, resulting in effective starch conversion and VFAs generation. Overall, these results deepen our understanding of the mechanism by which ZVI enhanced HA sludge reactivation, providing valuable information for addressing sludge starvation issues in HA systems.
Collapse
Affiliation(s)
- Yanqiong Wang
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongwu Wang
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China.
| | - Hongbin Chen
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Liu Y, Han Y, Guo T, Guo J, Hou Y, Song Y, Li H, Zhang X. Insights to Fe(II) on the fate of humic acid and humic acid Fe complex with biogeobattery effect in simultaneous partial nitritation, anammox and denitrification (SNAD) system. BIORESOURCE TECHNOLOGY 2023; 374:128782. [PMID: 36828222 DOI: 10.1016/j.biortech.2023.128782] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The role of Fe(II) on the humic acid (HA) transformation and the effects of humic acid Fe (HA-Fe) on simultaneous partial nitrification, anammox and denitrification (SNAD) system were investigated. After adding Fe(II), the HA content decreased and the HA inhibition on the SNAD system was released. Results showed that Fe(II) and HA formed the lower water-soluble HA-Fe, promoting the HA removal. HA-Fe with stronger electron transfer capacity constituted the interface with microorganisms to forming the biogeobattery effect. This accelerated the microbial electron transfer, as well as improved the key enzymes and ATP, indicating that HA-Fe stimulated the microbial activity of the SNAD system. Microbial community and quorum sensing analysis further demonstrated that HA-Fe enhanced the mutual symbiosis between electroactive and nitrogen removal bacteria, to ensure the stability of the SNAD system. The study provided references for efficient HA removal and revealed the biogeobattery effect of HA-Fe in the SNAD system.
Collapse
Affiliation(s)
- Yinuo Liu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yi Han
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Tingting Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Xu Zhang
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
9
|
Sun Y, Su J, Ali A, Huang T, Zhang S, Min Y. Enhanced nitrate and cadmium removal performance at low carbon to nitrogen ratio through immobilized redox mediator granules and functional strains in a bioreactor. CHEMOSPHERE 2023; 312:137255. [PMID: 36402354 DOI: 10.1016/j.chemosphere.2022.137255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The coexistence of multiple pollutants and lack of carbon sources are challenges for the biological treatment of wastewater. To achieve simultaneous removal of nitrate (NO3--N) and cadmium (Cd2+) at low carbon to nitrogen (C/N) ratios, 2-hydroxy-1,4-naphthoquinone (HNQ) was selected from three redox mediators as an accelerator for denitrification of heterotrophic strain Pseudomonas stutzeri sp. GF2 and autotrophic strain Zoogloea sp. FY6. Then, halloysite nanotubes immobilized with 2-hydroxy-1,4-naphthoquinone (HNTs-HNQ) were prepared and a bioreactor was constructed with immobilized redox mediator granules (IRMG) as the carrier, which was immobilized with HNTs-HNQ and inoculated with the two strains. The immobilized HNQ and the inoculated strains jointly improved the removal ability of NO3--N and Cd2+ and the removal efficiency of NO3--N (25.0 mg L-1) and Cd2+ (5.0 mg L-1) were 92.81% and 93.94% at C/N = 1.5 and hydraulic retention time (HRT) = 4 h. The Cd2+ was removed by adsorption of iron oxides (FeO(OH) and Fe3O4) and IRMG. The electron transport system activity (ETSA) of bacteria was improved and the composition of dissolved organic matter in the effluent was not affected by HNQ. The HNQ promoted the production of FeO(OH) and up-regulated the proportion of Zoogloea (54.75% in the microbial community), indicating that Zoogloea sp. FY6 was dominant in the microbial community. In addition, HNQ influenced the metabolic pathways and improved the relative abundance of some genes involved in nitrogen metabolism and the iron redox cycle.
Collapse
Affiliation(s)
- Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
10
|
Li Q, Huang M, Shu S, Chen X, Gao N, Zhu Y. Quinone-mediated Sb removal from sulfate-rich wastewater by anaerobic granular sludge: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156217. [PMID: 35623523 DOI: 10.1016/j.scitotenv.2022.156217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Antimony (Sb) is a typical pollutant in sulfate-rich industrial wastewater. This study investigated the Sb removal efficiency in sulfate-rich water by anaerobic granular sludge (AnGS) and the stimulation of amended anthraquinone-2-sulfonate (AQS). Results showed that 89.0% of 5 mg/L Sb(V) was reduced by AnGS within 24 h, along with the observed first accumulation (up to 552.2 μg/L) and then precipitation of Sb(Ш); coexistence of 2 g/L sulfate inhibited the removal of Sb(V) by 71.4% within 24 h, along with gradual accumulation of Sb(Ш) by 3257.4 μg/L, indicating the potential competition of adsorption sites and electron donors between Sb(V) and sulfate. Amendment of 31 mg/L AQS successfully removed the inhibition from sulfate, contributing to 99.5% Sb(V) removal and minimum Sb(Ш) accumulation in Sb(V) + sulfate+AQS group. Further test results suggested that Sb(V) removal by AnGS was mainly through dissimilatory reduction instead of bio-sorption, while Sb(Ш) removal mainly relied on instant bio-sorption by AnGS followed by precipitation in the form of Sb2O3 and Sb2S3. Extracellular Polymeric Substances (EPS) characterization showed that AQS promoted the accumulation of Sb(V) and Sb(Ш) in EPS. High-throughput sequencing analysis showed the enrichment of sulfate-reducing bacteria (SRB) in Sb(V) + sulfate group and suppressed SRB growth in Sb(V) + sulfate+AQS group.
Collapse
Affiliation(s)
- Qi Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shihu Shu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092, China
| | - Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
11
|
Zhao S, Li H, Guo J, Zhang Y, Zhao J, Song Y, Lu C, Han Y, Zhang D, Hou Y. Formation of anaerobic granular sludge (AnGS) to treat high-strength perchlorate wastewater via anaerobic baffled reactor (ABR) system: Electron transfer characteristic, bacterial community and positive feedback mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154531. [PMID: 35292321 DOI: 10.1016/j.scitotenv.2022.154531] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic granular sludge (AnGS) was cultured to treat high-strength perchlorate (reaching to 4800 mg/L) wastewater by an anaerobic baffled reactor (ABR) system with five equal-volume compartments (C1-C5 compartments). Inoculated sludge completely granulated on day 104 with granule size of 0.50-0.75 mm and perchlorate removal efficiency reaching to 97% (influent perchlorate of 2000-4800 mg/L). The Cyclic voltammetry (CV) capacitance increased from 487.5, 465.8 and 407.8 μF to 576.5, 552.4, 549.6 μF in C1, C3 and C5 compartments of ABR system, respectively, suggesting the electron transfer capacity was enhanced under high-strength perchlorate stress. Meanwhile, adenosine triphosphate (ATP) value and electron transport system activity (ETSA) increased to 25.05, 22.87, 20.43 and 6.22, 4.87, 3.95 of C1, C3 and C5 compartments, respectively. The results suggested that high-strength perchlorate stress improved the microbial metabolic activity, which promoted secretion of extracellular polymeric substances (EPS). The more EPS could facilitate the formation and stability of AnGS under high-strength perchlorate stress. In addition, more reasonable metabolic division of labor in functional bacterial (Thauera and Comamonas) was beneficial to AnGS formation, which achieved high-strength perchlorate efficient removal. Finally, a positive feedback mechanism between AnGS formation and high-strength perchlorate removal was established through EPS, microbial metabolic activity and electron transfer characteristic in ABR system. However, excessive perchlorate (5800 mg/L) would exceed the treatment capacity of AnGS, which resulted in the deterioration of removal performance. This work provided an effective information for AnGS application to treat high-strength perchlorate wastewater.
Collapse
Affiliation(s)
- Shiqi Zhao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Haibo Li
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China
| | - Yuxiang Zhang
- Jinzhou Electromechanical Engineering School, Tianshan Road 17, Jinzhou 121007, Liaoning, China
| | - Jianhai Zhao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yuanyuan Song
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Caicai Lu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yi Han
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Daohong Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yanan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|
12
|
Torres-Rojas F, Muñoz D, Pía Canales C, Vargas IT. Bioprospecting for electrochemically active perchlorate-reducing microorganisms. Bioelectrochemistry 2022; 147:108171. [DOI: 10.1016/j.bioelechem.2022.108171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
|
13
|
Pilot-Scale Anaerobic Treatment of Printing and Dyeing Wastewater and Performance Prediction Based on Support Vector Regression. FERMENTATION 2022. [DOI: 10.3390/fermentation8030099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Printing and dyeing wastewater is characterized with complex water quality and poor biodegradability. In this study, a pilot-scale anaerobic baffled reactor (ABR) with packing was verified to effectively degrade the complex organic pollutants in the wastewater through the hydrolysis and acidification of anaerobic microorganisms. At a hydraulic retention time (HRT) of 12 h and an organic loading rate (OLR) of 2.0–2.5 kg COD/(m3·d), the ABR stabilized the fluctuation range of pH and achieved an average colority removal rate of 10.5%, which provided favorable conditions for subsequent aerobic treatment. During the early operation period, the reactor increased the alkalinity of the wastewater; after 97 days of operation, the volatile fatty acid (VFA) content in the wastewater decreased. To demonstrate the suitability of the support vector regression (SVR) technology in predicting the performance of the reactor, two SVR algorithms with three kernel functions were employed to relate the chemical oxygen demand (COD) removal rate to its influencing factors, and the predictions of both the training and validation groups agreed with the measurements. The results obtained from this study can contribute to the design and optimal operation of the anaerobic treatment project of the industrial wastewater treatment plant.
Collapse
|