1
|
Shin Y, Lee J, Ryu H, Boo C, Hong S. Performance and stability evaluation of thin-film composite nanofiltration membranes under extreme oxidation conditions: Implications for reclamation of semiconductor waste solutions. WATER RESEARCH 2025; 283:123790. [PMID: 40349598 DOI: 10.1016/j.watres.2025.123790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 05/04/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
The semiconductor industry consumes large quantities of ultra-pure water and high-value chemicals that turn into hazardous waste streams. Proper treatment and recovery of these waste streams are imperative for cost savings and environmental protection. In this study, we evaluated the performance and stability of thin-film composite nanofiltration (NF) membranes under exposure to strong oxidizing chemicals to assess their applicability in treatment of semiconductor waste solutions. Water flux and divalent cation (Mg2+) rejection of commercial acid-resistant NF membranes with three different selective layer chemistries-XUS (fully-aromatic polyamide), Duracid (polysulfonamide), and Hydracore (sulfonated-polyethersulfone)-were evaluated for 3 weeks under exposure to high concentration sulfuric acid (10 wt%) and hydrogen peroxide (1 wt%) solutions, and a mixture of the two (piranha solution). We found that all three NF membranes exhibited reasonable resistance to H2SO4, but they experienced significant performance deterioration when subjected to attack by H2O2, especially in flow-through operation mode. The changes in physical and chemical properties of the NF membranes were extensively characterized to elucidate the oxidative degradation mechanisms. We also discussed the potential and the need for developing NF membranes that are resistant to a broad range of oxidizing chemicals commonly used in high-tech industries.
Collapse
Affiliation(s)
- Yeojin Shin
- Department of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, , Republic of Korea
| | - Jaewon Lee
- Department of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, , Republic of Korea
| | - Hoyoung Ryu
- Samsung Electronics, 1-1, Samsungjeonja-ro, Hwaseong-si, 18448, Gyeonggi, Republic of Korea
| | - Chanhee Boo
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Seungkwan Hong
- Department of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, , Republic of Korea.
| |
Collapse
|
2
|
Wo J, Wang D, Zhang T, Shi C, Zhou Z, Wang A, Wang W. Chemically functionalized manufactured sand as the novel additive for enhancing the properties of cement-based composites. RSC Adv 2023; 13:8398-8408. [PMID: 36926007 PMCID: PMC10012416 DOI: 10.1039/d3ra00373f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
The extensive applications of manufactured sand (AS) in cement-based composites were restricted because of its coarse surface texture, poor gradation and inevitable agglomeration. In this paper, a specifically designed polycarboxylate superplasticizer (PCE) decorated manufactured sand (AS-PCE) composite was synthesized via radical polymerization. The AS-PCE composite was characterized by FTIR, TGA, XPS and SEM. The load of PCE on the surface of AS was ∼12 wt%. Our results show that AS-PCE can promote cement hydration reaction and refine the microstructure of a cement-based material, thus, reinforcing its mechanical strength. Meanwhile, the fluidity of cement mortar with 1 wt% AS-PCE particles was increased by 35% after 1 h hydration, due to the steric hindrance effect provided by polycarboxylate superplasticizer affiliated with AS-PCE. The AS-PCE can also significantly enhance the mechanical strength (especially, the flexural strength was about 25% increased after curing for 28 days) of mortar. The excellent improvements result from the synergistic effects of AS-PCE including superb dispersibility, promotion of cement hydration reaction and the repair of interfacial defects between AS particles and the cementitious material. The research provides a promising method for the AS application in cement-based materials.
Collapse
Affiliation(s)
- Jiangang Wo
- School of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 230009 China
| | - Di Wang
- School of Materials and Chemical Engineering, Anhui Jianzhu University Hefei 230009 China
| | - Ting Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 230009 China
| | - Chengfang Shi
- School of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 230009 China
| | - Zhengfa Zhou
- School of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 230009 China
| | - Aiguo Wang
- School of Materials and Chemical Engineering, Anhui Jianzhu University Hefei 230009 China
| | - Wenping Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 230009 China
| |
Collapse
|
3
|
Cheng L, Yang XA, Liu XN, Zhang WB. A novel electrooxidation vapor generation technique for the direct analysis of trace Os in ore/water samples. Anal Chim Acta 2022; 1230:340378. [DOI: 10.1016/j.aca.2022.340378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/01/2022]
|
4
|
Ebratkhahan M, Zarei M, Babaei T, Hosseini MG, Hosseini MM, Fathipour Z. Efficient electrochemical removal of 5-fluorouracil pharmaceutical from wastewater by mixed metal oxides via anodic oxidation process. CHEMOSPHERE 2022; 296:134007. [PMID: 35181426 DOI: 10.1016/j.chemosphere.2022.134007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the entry of organic compounds into water resources is one of the leading global concerns due to the lack of water resources and rapid population growth. In this research, anodic oxidation (AO) method was used to remove 5-fluorouracil (5-FU) from aqueous solutions via Ni/RuO2 and Ti/IrO2-TiO2-RuO2 electrodes as cathode and anode, respectively. For this purpose, the characterization analysis of the electrodes, including X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, and atomic force microscopy were performed. The electrochemical performance of the anode was investigated via cyclic voltammetry analysis. Then, the effect of operational variables, including applied current (mA), initial pH of the solution, initial 5-FU concentration (mg/L), and process time (min) on the 5-FU removal efficiency under the AO process was evaluated via artificial neural network (ANN) modeling. The results revealed that the maximum 5-FU removal efficiency was 96.96%. The applied current intensity, pH, initial 5-FU concentration, and process time were 300 mA, 5, 20 mg/L, and 140 min, respectively. Moreover, the investigation of 5-FU removal by-products and mineralization efficiency of the AO process was carried out via gas chromatography-mass spectrometry and total organic carbon analysis, respectively. The total organic carbon mineralization efficiency was 84.80% after 6 h of reaction time. The reusability and stability of the Ti/IrO2-TiO2-RuO2 anode on 5-FU removal efficiency were measured and showed an approximately 5% decay in 5-FU removal efficiency after eight consecutive runs. The overall results and analysis confirmed this method is capable of removing 5-FU through Ti/IrO2-TiO2-RuO2 anode and Ni/RuO2 cathode from aqueous medium.
Collapse
Affiliation(s)
- Masoud Ebratkhahan
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mahmoud Zarei
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Tala Babaei
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mir Ghasem Hosseini
- Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry Faculty, University of Tabriz, Tabriz, Iran.
| | - Mir Majid Hosseini
- Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry Faculty, University of Tabriz, Tabriz, Iran.
| | - Zahra Fathipour
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
5
|
Ji W, Xiong Y, Wang Y, Zhang TC, Yuan S. Multilayered TNAs/SnO 2/PPy/β-PbO 2 anode achieving boosted electrocatalytic oxidation of As(III). JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128449. [PMID: 35176698 DOI: 10.1016/j.jhazmat.2022.128449] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Dealing with arsenic pollution has been of great concern owing to inherent toxicity of As(III) to environments and human health. Herein, a novel multilayered SnO2/PPy/β-PbO2 structure on TiO2 nanotube arrays (TNAs/SnO2/PPy/β-PbO2) was synthesized by a multi-step electrodeposition process as an efficient electrocatalyst for As(III) oxidation in aqueous solution. Such TNAs/SnO2/PPy/β-PbO2 electrode exhibited a higher charge transfer, tolerable stability, and high oxygen evolution potential (OEP). The intriguing structure with a SnO2, PPy, and β-PbO2 active layers provided a larger electrochemical active area for electrocatalytic As(III) oxidation. The as-synthesized TNAs/SnO2/PPy/β-PbO2 anode achieved drastically enhanced As(Ⅲ) conversion efficiency of 90.72% compared to that of TNAs/β-PbO2 at circa 45.4%. The active species involved in the electrocatalytic oxidation process included superoxide radical (•O2-), sulfuric acid root radicals (•SO4-), and hydroxyl radicals (•OH). This work offers a new strategy to construct a high-efficiency electrode to meet the requirements of favorable electrocatalytic oxidation properties, good stability, and high electrocatalytic activity for As(III) transformation to As(V).
Collapse
Affiliation(s)
- Wenlan Ji
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuanjie Xiong
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tian C Zhang
- Civil and Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Yu N, Wei J, Gu Z, Sun H, Guo Y, Zong J, Li X, Ni P, Han E. Electrocatalysis degradation of coal tar wastewater using a novel hydrophobic benzalacetone modified lead dioxide electrode. CHEMOSPHERE 2022; 289:133014. [PMID: 34864013 DOI: 10.1016/j.chemosphere.2021.133014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Coal tar wastewater is hard to degrade by traditional methods because of its toxic pollutant constituents and high concentration of aromatic hydrocarbons, especially phenolic substances. A new type of hydrophobic benzacetone modified PbO2 anode (BA-PbO2 electrodes) was used for the electrocatalytic treatment of coal tar wastewater in a continuous cycle reactor. The surface morphology, structure, valences of elements, hydrophobicity, hydroxyl radical (·OH) produced capacity, electrochemical properties and stability of BA-PbO2 electrodes were characterized by SEM (scanning electron microscopy), XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), contact angle, a fluorescence probe test, an electrochemical workstation and accelerated life test, respectively. The BA-PbO2 electrodes exhibited a compact structure and finely dispersed crystallize size of 4.6 nm. The optimum degradation conditions of coal tar wastewater were as follows: current density of 90 mA cm-2, electrode gap of 1 cm and temperature at 25 °C with flow velocity of 80 L h-1. The chemical oxygen demand (COD) removal efficiency reached 92.39% after 240 min of degradation under the optimized conditions and the after-treatment COD value was 379.51 mg L-1 which was lower than the centralized emission standard (less than 400 mg L-1). These findings demonstrated the feasibility and efficiency of electrocatalytically degrading coal tar wastewater by BA-PbO2 electrodes. The possible mechanism and pathway for phenol a specific pollutant in coal tar wastewater were investigated by quantum chemistry calculations (Multiwfn) and gas chromatography-mass spectrometry (GC-MS). The toxicity of each intermediate was predicted by the ECOSAR program.
Collapse
Affiliation(s)
- Naichuan Yu
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin, 300130, China; Tianjin Vocational Institute, School of Biological and Environmental Engineering, Tianjin, 300410, China.
| | - Jingyu Wei
- Tianjin Vocational Institute, School of Biological and Environmental Engineering, Tianjin, 300410, China; Tianjin Jinsheng Environmental Protection Consulting Service Co., LTD, Tianjin, 300308, China
| | - Zhensheng Gu
- Tianjin Vocational Institute, School of Biological and Environmental Engineering, Tianjin, 300410, China; Tianjin Jinsheng Environmental Protection Consulting Service Co., LTD, Tianjin, 300308, China
| | - Hailong Sun
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin, 300130, China
| | - Yong Guo
- Tianjin Vocational Institute, School of Biological and Environmental Engineering, Tianjin, 300410, China
| | - Jun Zong
- Tianjin Vocational Institute, School of Biological and Environmental Engineering, Tianjin, 300410, China
| | - Xi Li
- Tianjin Vocational Institute, School of Biological and Environmental Engineering, Tianjin, 300410, China
| | - Pan Ni
- Tianjin Petroleum Vocational and Technical College, Department of Petroleum Engineering, Tianjin, 301607, China
| | - Enshan Han
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin, 300130, China.
| |
Collapse
|
7
|
Zhou Q, Liu D, Yuan G, Tang Y, Cui K, Jiang S, Xia Y, Xiong W. Efficient degradation of phenolic wastewaters by a novel Ti/PbO2-Cr-PEDOT electrode with enhanced electrocatalytic activity and chemical stability. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Valdez-Salas B, Beltrán-Partida E. Feasibility of Using H 3PO 4/H 2O 2 in the Synthesis of Antimicrobial TiO 2 Nanoporous Surfaces. Bioinorg Chem Appl 2021; 2021:6209094. [PMID: 34931122 PMCID: PMC8684504 DOI: 10.1155/2021/6209094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Ti6Al4V alloys are the primary materials used for clinical bone regeneration and restoration; however, they are substantially susceptible to biomaterial-related infections. Therefore, in the present work, we applied a controllable and stable oxidative nanopatterning strategy by applying H3PO4, a weaker dissociating acid, as a substitute for H2SO4 in the classical piranha reaction. The results suggest that our method acted as a concomitant platform to develop reproducible diameter-controlled TiO2 nanopores (NPs). Interestingly, our procedure illustrated stable temperature reactions without exothermic responses since the addition of mixture preparation to the nanopatterning reactions. The reactions were carried out for 30 min (NP14), 1 h (NP7), and 2 h (NP36), suggesting the formation of a thin nanopore layer as observed by Raman spectroscopy. Moreover, the antimicrobial activity revealed that NP7 could disrupt active microbial colonization for 2 h and 6 h. The phenotype configuration strikingly showed that NP7 does not alter the cell morphology, thus proposing a disruptive adhesion pathway instead of cellular lysis. Furthermore, preliminary assays suggested an early promoted osteoblasts viability in comparison to the control material. Our work opens a new path for the rationale design of nanobiomaterials with "intelligent surfaces" capable of decreasing microbial adhesion, increasing osteoblast viability, and being scalable for industrial transfer.
Collapse
Affiliation(s)
- Benjamín Valdez-Salas
- Departamento de Corrosión y Materiales Avanzados, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Nomal S/N, Mexicali B.C. 21040, Mexico
| | - Ernesto Beltrán-Partida
- Departamento de Corrosión y Materiales Avanzados, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Nomal S/N, Mexicali B.C. 21040, Mexico
| |
Collapse
|