1
|
Han Y, Yang H, Zhang Q, Jiao T. Enhancement of sulfate radicals degrading phenol in water by an external electric field: a study by DFT calculations. Phys Chem Chem Phys 2025; 27:8148-8157. [PMID: 40176470 DOI: 10.1039/d4cp04800h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
This study investigates the effect of an external electric field (EF) on the oxidative properties of sulfate radicals (SRs) generated from activated persulfate during the degradation of phenol by discharge plasma. In this paper, density functional theory (DFT) was employed to explore the variations in the reaction rate of phenol degradation by SRs under the influence of an external EF. Additionally, free energy barriers, spin densities, dipole moments (DMs), frontier molecular orbitals, and electrostatic potentials on van der Waals (vdW) surfaces were analyzed to elucidate the mechanisms driving the changes in reaction rate. It was found that discharge plasma with the +X-axis EF increased the degradation rate of phenol, while the degradation rate declines when the -X-axis EF is applied. As the strength of the +X-axis EF increased, a corresponding decrease in the free energy barrier and HOMO-LUMO gap was observed, alongside increases in the DM, spin density, and electrostatic potential. It can be concluded that the application of the +X-axis EF decreases the thermal stability of the phenol degradation system while enhancing electrostatic interactions, thereby leading to an increase in reactivity.
Collapse
Affiliation(s)
- Yong Han
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao Hebei 066004, P. R. China.
- School of Electrical Engineering, Yanshan University, Qinhuangdao Hebei 066004, P. R. China
| | - Huiqing Yang
- School of Electrical Engineering, Yanshan University, Qinhuangdao Hebei 066004, P. R. China
| | - Qingrui Zhang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao Hebei 066004, P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao Hebei 066004, P. R. China.
| |
Collapse
|
2
|
Wang J, Zhao P, Wang J, Li S, Ma Q. Responses of microbial communities in coastal sediments exposed to triclocarban and triclosan. MARINE POLLUTION BULLETIN 2025; 212:117530. [PMID: 39798524 DOI: 10.1016/j.marpolbul.2025.117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Triclocarban (TCC) and triclosan (TCS) are applied in a wide range of pharmaceutical and personal care products to prevent or reduce bacterial growth. Due to their extensive application, they are frequently detected in marine environments. In this study, marine sediment systems exposed to different concentrations of TCC and TCS were established to evaluate their effects on microbial communities. It was found that TCC and TCS increased catalase and protease activities on Day 1, but inhibited after 15 days. Microbial activity, as indicated by increased dehydrogenase activity and polysaccharide production, should be enhanced after a 15-day adaptation period. High-throughput sequencing revealed resilient α-diversity but significant shifts in community structures were observed, particularly on Day 15. Function prediction analysis confirmed that most functional profiles remained stable, and network analysis indicated that TCC and TCS enhanced the complexity of the microbial community. This study provides new insights into the impacts and risks of TCC and TCS on the marine environment.
Collapse
Affiliation(s)
- Jingwei Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Pan Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jiaxin Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shuzhen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Qiao Ma
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
3
|
Li Y, Yang G, Zhang W, He D, Yan Y, Jiang J. Understanding the low-temperature drying process of sludge with machine learning in a sewage-source heat pump drying system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124284. [PMID: 39854899 DOI: 10.1016/j.jenvman.2025.124284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/01/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Heat pump drying technology based on sewage heat source is an eco-friendly sludge drying method. It can effectively reduce the pollution of natural water bodies by waste heat while reducing energy consumption. However, the drying characteristics of sludge in this case remain unclear. Here, we proposed and constructed a novel sewage-source heat pump sludge low-temperature drying system, and combine sludge drying theory with machine learning algorithms to model and analyze the drying process. The results revealed that the performance of the machine learning models was significantly better than that of the existing numerical simulation models. After Bayesian optimization, the XGBoost model showed superior prediction effect. In addition, the interpretable analysis of the model indicated that in the constant rate stage, the drying rate is mainly influenced by external air parameters, with temperature being the most critical factor. When temperature exceeds 50 °C, the effect of relative humidity becomes significant. During the falling rate stage, the dominant factors begin to gradually shift from external air parameters to internal characteristics within the sludge itself, with dry basis moisture content becoming the new key factor. When air velocity exceeds 1.5 m/s, the response of drying rate to air velocity is significantly influenced by changes in dry basis moisture content. The results of this study indicated that it is feasible to use machine learning models for predicting and explaining the low-temperature drying process of sludge. This provides valuable insights for the application of machine learning models in the development and management of drying strategies.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China.
| | - Guangyu Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China
| | - Dan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China
| | - Yuting Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China
| | - Jie Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
4
|
Xia X, Mu H, Li Y, Hou Y, Li J, Zhao Z, Zhao Q, You S, Wei L. Which emerging micropollutants deserve more attention in wastewater in the post-COVID-19 pandemic period? Based on distribution, risk, and exposure analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175511. [PMID: 39147043 DOI: 10.1016/j.scitotenv.2024.175511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Aggravated accumulation of emerging micropollutants (EMs) in aquatic environments, especially after COVID-19, raised significant attention throughout the world for safety concerns. This article reviews the sources and occurrence of 25 anti-COVID-19 related EMs in wastewater. It should be pointed out that the concentration of anti-COVID-19 related EMs, such as antivirals, plasticizers, antimicrobials, and psychotropic drugs in wastewater increased notably after the pandemic. Furthermore, the ecotoxicity, ecological, and health risks of typical EMs before and after COVID-19 were emphatically compared and analyzed. Based on the environmental health prioritization index method, the priority control sequence of typical EMs related to anti-COVID-19 was identified. Lopinavir (LPV), venlafaxine (VLX), di(2-ethylhexyl) phthalate (DEHP), benzalkonium chloride (BAC), triclocarban (TCC), di-n-butyl phthalate (DBP), citalopram (CIT), diisobutyl phthalate (DIBP), and triclosan (TCS) were identified as the top-priority control EMs in the post-pandemic period. Besides, some insights into the toxicity and risk assessment of EMs were also provided. This review provides direction for proper understanding and controlling the EMs pollution after COVID-19, and is of significance to evaluate objectively the environmental and health impacts induced by COVID-19.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huizhi Mu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaqun Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanlong Hou
- The 404 Company Limited, CNNC, Lanzhou 732850, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zixuan Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Sonsuphab K, Toomsan W, Soontharo S, Supanchaiyamat N, Hunt AJ, Ngernyen Y, Nasompag S, Kiattisaksiri P, Ratpukdi T, Siripattanakul-Ratpukdi S. Integrated remediation and detoxification of triclocarban-contaminated water using waste-derived biochar-immobilized cells by long-term column experiments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124456. [PMID: 38942273 DOI: 10.1016/j.envpol.2024.124456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/16/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Triclocarban (TCC), an antibacterial agent commonly used in personal care products, is one of the top ten contaminants of emerging concern in various environmental media, including soil and contaminated water in vadose zone. This study aimed to investigate TCC-contaminated water remediation using biochar-immobilized bacterial cells. Pseudomonas fluorescens strain MC46 (MC46), an efficient TCC-degrading isolate, was chosen, whereas agro-industrial carbonized waste as biochar was directly used as a sustainable cell immobilization carrier. According to the long-term TCC removal performance results (160 d), the biochar-immobilized cells consistently exhibited high TCC removal efficiencies (84-97%), whereas the free MC46 removed TCC for 76-94%. At 100 days, the detachment of the MC46 cells from the immobilized cell column was observed. The micro-Fourier-transform infrared spectroscopy results indicated that extracellular polymeric substance (EPS) was produced, but polysaccharide and protein fractions were washed out of the column. The lipid fraction of EPS adhered to the biochar, promoting TCC sorption for long-term treatment. The shortening of MC46 cells improved the tolerance of TCC toxicity. The TCC-contaminated water was successfully detoxified by the biochar-immobilized MC46 cells. Overall, the waste-derived biochar-immobilized cell system proposed in this study for the removal of emerging contaminants, including TCC, is efficient, economical, and aligned with the sustainable development concept of value-added utilization of waste.
Collapse
Affiliation(s)
- Khuanchanok Sonsuphab
- Department of Environmental Engineering and Research Center for Environmental and Hazardous Substance Management, Faculty of Engineering, Khon Kaen University, 40002, Thailand.
| | - Wittawat Toomsan
- Department of Environmental Engineering and Research Center for Environmental and Hazardous Substance Management, Faculty of Engineering, Khon Kaen University, 40002, Thailand
| | - Somphong Soontharo
- Department of Environmental Engineering and Research Center for Environmental and Hazardous Substance Management, Faculty of Engineering, Khon Kaen University, 40002, Thailand
| | - Nontipa Supanchaiyamat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Andrew J Hunt
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yuvarat Ngernyen
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sawinee Nasompag
- Research Instrument Center (RIC), Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Thunyalux Ratpukdi
- Department of Environmental Engineering and Research Center for Environmental and Hazardous Substance Management, Faculty of Engineering, Khon Kaen University, 40002, Thailand
| | - Sumana Siripattanakul-Ratpukdi
- Department of Environmental Engineering and Research Center for Environmental and Hazardous Substance Management, Faculty of Engineering, Khon Kaen University, 40002, Thailand.
| |
Collapse
|
6
|
Yan Y, Qian J, Liu Y, Hu J, Lu B, Zhao S, Jin S, He Y, Xu K. Short-term exposure to triclocarban alters microbial community composition and metabolite profiles in freshwater biofilms. CHEMOSPHERE 2024; 362:142674. [PMID: 38908443 DOI: 10.1016/j.chemosphere.2024.142674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/22/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Triclocarban (TCC), an emerging contaminant in water environments, its effects on freshwater biofilms remain insufficiently understood. This study investigates the effects of TCC exposure (at concentrations of 10 μg L-1 and 10 mg L-1) on mature freshwater biofilms. TCC was found to inhibit biofilm activity as evidenced by changes in surface morphology and the ratio of live/dead cells. Moreover, both concentrations of TCC were observed to modify the structure of the biofilm community. Metabolomics analysis revealed an overlap in the toxicity mechanisms and detoxification strategies triggered by various concentrations of TCC in biofilms. However, the higher toxicity induced by 10 mg L-1 TCC resulted from the downregulation of proline betaine, disrupting the homeostasis of cellular osmotic pressure regulation in biofilms. Notably, lipid and lipid-like molecules showed high sensitivity to different concentrations of TCC, indicating their potential as biomarkers for TCC exposure. Annotation of the differential metabolites by KEGG revealed that alterations in amino acid and carbon metabolism constituted the primary response mechanisms of biofilms to TCC. Moreover, the biofilm demonstrated enhanced nucleic acid metabolism, which bolstered resistance against TCC stress and heightened tolerance. Furthermore, elevated TCC concentrations prompted more robust detoxification processes for self-defense. Overall, short-term exposure to TCC induced acute toxicity in biofilms, yet they managed to regulate their community structure and metabolic levels to uphold oxidative homeostasis and activity. This research contributes to a deeper comprehension of TCC risk assessment and policy control in aquatic environments.
Collapse
Affiliation(s)
- Yitong Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jing Hu
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Shasha Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Shuai Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Kailin Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
7
|
Nakamura H, Matsui T, Shinozawa T. Triclocarban induces lipid droplet accumulation and oxidative stress responses by inhibiting mitochondrial fatty acid oxidation in HepaRG cells. Toxicol Lett 2024; 396:11-18. [PMID: 38631510 DOI: 10.1016/j.toxlet.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Mitochondrial fatty acid oxidation (mtFAO) plays an important role in hepatic energy metabolism. Severe mtFAO injury leads to nonalcoholic fatty liver disease (NAFLD) and liver failure. Several drugs have been withdrawn owing to safety issues, such as induction of fatty liver disease through mtFAO disruption. For instance, the antimicrobial triclocarban (TCC), an environmental contaminant that was removed from the market due to its unknown safety in humans, induces NAFLD in rats and promotes hepatic FAO in mice. Therefore, there are no consistent conclusions regarding the effects of TCC on FAO and lipid droplet accumulation. We hypothesized that TCC induces lipid droplet accumulation by inhibiting mtFAO in human hepatocytes. Here, we evaluated mitochondrial respiration in HepaRG cells to investigate the effects of TCC on fatty acid-driven oxidation in cells, electron transport chain parameters, lipid droplet accumulation, and antioxidant genes. The results suggest that TCC increases oxidative stress gene expression (GCLM, p62, HO-1, and NRF2) through lipid droplet accumulation via mtFAO inhibition in HepaRG cells. The results of the present study provide further insights into the effect of TCC on human NAFLD through mtFAO inhibition, and further in vivo studies could be used to validate the mechanisms.
Collapse
Affiliation(s)
- Hitoshi Nakamura
- Global Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited
| | - Toshikatsu Matsui
- Global Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited
| | - Tadahiro Shinozawa
- Global Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited.
| |
Collapse
|
8
|
Liang J, Zhang L, Li C, Mo Z, Ye M, Zhu Z, Sun S, Wong JWC. Triclocarban transformation and removal in sludge conditioning using chalcopyrite-triggered percarbonate treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132944. [PMID: 37951173 DOI: 10.1016/j.jhazmat.2023.132944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
Herein, a facile combination approach of chalcopyrite and sodium percarbonate (CuFeS2+ SPC) was established to augment both TCC removal efficiency and sludge dewatering. Results showed that utilizing the CuFeS2 dosage of 600 mg/g total solids (TS) under the optimal condition, along with the SPC dosage of 12.5 mg/g TS, an initial pH of 4.0, and a reaction duration of 40 min, led to a substantial reduction of 53.9% in the TCC content within the sludge, accompanied by a notable decrease of 36.9% in the water content. Compared to well-studied iron-based advanced oxidation processes, CuFeS2 + SPC treatment proved to be more cost-effective and environmentally friendly. Mechanistic findings demonstrated that •OH oxidation played a significant role in TCC removal, with O2•- and 1O2 acting as secondary factors. During the CuFeS2 + SPC process, the received •OH, O2•-, and 1O2 destroyed the main binding sites of extracellular polymeric substances to TCC, including tryptophan-like protein, amide, CO stretch, and -COO- functional groups. As a result, approximately 50% of TCC was partially degraded within the solid sludge phase after the attack of radicals. Meanwhile, the decreased macromolecular organic compounds in solid sludge attenuated the binding efficacy of TCC, giving rise to the transfer of partial TCC to the liquid phase. Ultimately, the TCC in sludge was successfully removed, and five transformation products were identified. This study significantly contributes to our understanding regarding TCC transformation and removal in the sludge conditioning process.
Collapse
Affiliation(s)
- Jialin Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Lei Zhang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chengjian Li
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhihua Mo
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Maoyou Ye
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhi Zhu
- Institute of the Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang 212000, China
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China
| |
Collapse
|
9
|
Wang H, Liu X, Zhao C, Yan J, Wang Z, Dahlgren RA, Qian Q, Wang X. Interference of gut-brain-gonad axis originating from triclocarban exposure to parent zebrafish induces offspring embryonic development abnormality by up-regulation of maternal circSGOL1. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106782. [PMID: 38071900 DOI: 10.1016/j.aquatox.2023.106782] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 01/02/2024]
Abstract
Triclocarban (TCC) is a widely used antibacterial ingredient possessing acute toxicity effects; however, its chronic toxicity and underlying molecular mechanisms remain uncertain. Herein, we demonstrated that chronic TCC exposure affects the growth and development of adult zebrafish through inducing an intestinal flora disorder in the gut. The imbalance of intestinal flora caused functional barriers within the intestinal-brain-gonadal axis. This resulted in a series of anomalous nerve and motor behaviors, and reproductive toxicity as reflected in pathological damage to parental gonads and F1-larval developmental malformations. Abnormal development of F1 larvae was attributed to apoptosis induced by the up-regulation of circSGOL1. This up-regulation affected the activity and localization of the hnRNP A1 protein, which then promoted overexpression of pro-apoptotic related genes that ultimately lead to apoptosis during early embryonic development. Overall, these novel findings systematically elucidated the TCC toxicity mechanism in parent-offspring dyads, and provide important theoretical guidance for early risk warning and control of chronic TCC toxicity.
Collapse
Affiliation(s)
- Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; College of Publich Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xingcheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chenxi Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, UC 95616, USA
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuedong Wang
- College of Publich Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Qin M, Lei H, Song Y, Wu M, Chen C, Cao Z, Zhang C, Du R, Zhang C, Wang X, Zhang L. Triclocarban exposure aggravates dextran sulfate sodium-induced colitis by deteriorating the gut barrier function and microbial community in mice. Food Chem Toxicol 2023; 178:113908. [PMID: 37385329 DOI: 10.1016/j.fct.2023.113908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
Triclocarban (TCC) is an antibacterial component widely used in personal care products with potential toxicity possessing public health issues. Unfortunately, enterotoxicity mechanisms of TCC exposure remain largely unknown. Using a combination of 16S rRNA gene sequencing, metabolomics, histopathological and biological examinations, this study systematically explored the deteriorating effects of TCC exposure on a dextran sulfate sodium (DSS)-induced colitis mouse model. We found that TCC exposure at different doses significantly aggravated colitis phenotypes including shortened colon length and altered colonic histopathology. Mechanically, TCC exposure further disrupted intestinal barrier function, manifested by significant downregulation of the number of goblet cells, mucus layer thickness and expression of junction proteins (MUC-2, ZO-1, E-cadherin and Occludin). The gut microbiota composition and its metabolites such as short-chain fatty acids (SCFAs) and tryptophan metabolites were also markedly altered in DSS-induced colitis mice. Consequently, TCC exposure markedly exacerbated colonic inflammatory status of DSS-treated mice by activating NF-κB pathway. These findings provided new evidence that TCC could be an environmental hazards for development of IBD or even colon cancer.
Collapse
Affiliation(s)
- Mengyu Qin
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wu
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Du
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Wang
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Taweetanawanit P, Therdkiattikul N, Sonsuphab K, Sucharitpwatskul S, Suriyawanakul J, Radpukdee T, Ratpukdi T, Siripattanakul-Ratpukdi S. Triclocarban-contaminated wastewater treatment by innovative hybrid moving entrapped bead activated sludge reactor (HyMER): Continuous performance and computational dynamic simulation analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163037. [PMID: 37001270 DOI: 10.1016/j.scitotenv.2023.163037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Triclocarban (TCC) has been used in consumer products and is a widespread contaminant in municipal wastewater treatment systems that ultimately accumulates in natural receiving water and soil. This work aims to apply an innovative hybrid moving entrapped bead activated sludge reactor (named "HyMER") that integrates entrapped TCC-degrading microbes and freely suspended activated sludge to treat TCC-contaminated wastewater. A previously isolated TCC-degrading bacterium (Pseudomonas fluorescens strain MC46, called MC46) and barium alginate entrapment were applied. The synthetic TCC-contaminated wastewater treatment (with TCC concentration of 10 mg/L) was performed using 20-cycle fed-batch reactor operation with feeding times of 12 and 24 h and cycle times of 13 and 25 h. The results indicated that the HyMER effectively reduced chemical oxygen demand by up to 80 and 95 % and TCC by up to 53 and 83 %, respectively, with feeding times of 12 and 24 h. Three TCC degradation intermediate products were found-3,4-dichloroaniline, 4-chloroaniline, and aniline. Scanning electron microscopic analysis revealed shorter cells and bacterial appendage development as cell adaptations against TCC and its intermediates. The live/dead assay indicated high survival of entrapped MC46 in toxic conditions, with up to 84 % viable cells. Based on computational fluid dynamic analysis, no entrapped cell agglomeration showed in the reactor, indicating the potential application of HyMER for real wastewater treatment. These results exhibit the feasibility of HyMER and its applicability for future toxic wastewater treatment.
Collapse
Affiliation(s)
- Pongsatorn Taweetanawanit
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nakharin Therdkiattikul
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khuanchanok Sonsuphab
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sedthawatt Sucharitpwatskul
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jarupol Suriyawanakul
- Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thana Radpukdee
- Department of Industrial Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thunyalux Ratpukdi
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Sumana Siripattanakul-Ratpukdi
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand.
| |
Collapse
|
12
|
Sun S, Meng F, Qi H. Simultaneous determination of fourteen pharmaceuticals in sewage sludge using online solid-phase extraction-liquid chromatography-tandem mass spectrometry combined with accelerated solvent extraction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62522-62531. [PMID: 36943570 DOI: 10.1007/s11356-023-26072-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/18/2023] [Indexed: 05/10/2023]
Abstract
An online solid-phase extraction (SPE) liquid chromatography tandem mass spectrometry method (HPLC-MS/MS) combined with accelerated solvent extraction (ASE) was developed for simultaneous determination of 14 pharmaceuticals in sludge. In the online SPE procedures, ultrapure water with no additives was used as the loading solvent. In addition, low molecular weight targets such as atenolol were difficult to retain on SPE column after acetone was added to the washing solvent. The response signal of analytes can be greatly improved by adding 0.2% formic acid to the mobile phase. Under the optimized conditions, the recoveries of all the analytes ranged between 75.1 and 112%. Moreover, the limit of detections ranged from 1.8 to 7.9 ug/kg. The precision of analytical data was determined with relative standard deviation (RSD) ≤ 4.87%. This method was successfully applied to determine the concentration of pharmaceuticals in sludge.
Collapse
Affiliation(s)
- Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan, 056038, China
| | - Fan Meng
- Key Laboratory of Urban Water Resource and Environment, & School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong Qi
- Key Laboratory of Urban Water Resource and Environment, & School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
13
|
Wang X, Cui X, Fang C, Yu F, Zhi J, Mašek O, Yan B, Chen G, Dan Z. Agent-assisted electrokinetic treatment of sewage sludge: Heavy metal removal effectiveness and nutrient content characteristics. WATER RESEARCH 2022; 224:119016. [PMID: 36113240 DOI: 10.1016/j.watres.2022.119016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/31/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Sewage sludge (SS) is rich in nutrient elements such as phosphorus (P), nitrogen (N), and potassium (K), and therefore a candidate material for use in agriculture. But high content of heavy metals (HMs) can be a major obstacle to its further utilization. Therefore, an appropriate HM removal technology is required before its land application. In this study, an innovative biodegradable agent (citric acid, FeCl3, ammonium hydroxide, tetrasodium iminodisuccinate (IDS), and tea saponin) assisted electrokinetic treatment (EK) was performed to investigate the HM removal efficiency (RHMs) and nutrient transportation. Citric acid, IDS, and FeCl3-assisted EK showed a preferable average RHMs (Rave) reduction of 52.74-59.23%, with low energy consumption. After treatment, the content of Hg (0.51 mg kg-1), Ni (13.23 mg kg-1), and Pb (26.45 mg kg-1) elements met the criteria of national risk control standard, in all cases. Following the treatment, most HMs in SS had a reduced potential to be absorbed by plants or be leached into water systems. Risk assessment indicated that the Geoaccumulation index (Igeo) value of HMs has decreased by 0.28-2.40, and the risk of Pb (Igeo=-0.74) reduced to unpolluted potential. Meanwhile, no excessive nutrient loss in SS occurred as a result of the treatment, on the contrary, there was a slight increase in P content (18.17 mg g-1). These results indicate that agent-assisted EK treatment could be an environmentally-friendly method for RHMs and nutrient element recovery from SS, opening new opportunities for sustainable SS recycling and its inclusion into circular economy concepts.
Collapse
Affiliation(s)
- Xutong Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Cheng Fang
- School of Science, Tibet University, Lhasa, Tibet Autonomous Region 850012, China
| | - Fan Yu
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jun'ao Zhi
- School of Science, Tibet University, Lhasa, Tibet Autonomous Region 850012, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK.
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
| | - Zeng Dan
- School of Science, Tibet University, Lhasa, Tibet Autonomous Region 850012, China
| |
Collapse
|
14
|
Cheng Z, Zhang C, Jiang W, Zhai W, Gao J, Wang P. Effects of the presence of triclocarban on the degradation and migration of co-occurring pesticides in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119840. [PMID: 35963390 DOI: 10.1016/j.envpol.2022.119840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Triclocarban (TCC), a bactericide widely used in personal care products, is frequently detected in soil and surface water, which may affect the environmental behavior of other environmental pollutants by changing the community structure of environmental microorganisms. This work evaluated the effects of TCC on the degradation and migration of seven herbicides and five fungicides in soil under co-occurrence conditions. TCC significantly increased the persistence of the pesticides in soil, and this effect increased with TCC concentration. For example, the half-life of metolachlor, atrazine, metribuzin, and metamitron increased 44%, 38%, 153%, and 33%, respectively, with 10 mg/kg TCC and increased 60%-640% with 100 mg/kg TCC. After 90 days, the residue of the pesticides in soil treated with TCC was significantly elevated relative to the control. TCC treatment could also increase the potential leaching risk of the herbicides in the soil, as indicated by an increased Groundwater Ubiquity Score (GUS) index. The reduced abundance of soil bacteria by TCC might be an essential reason for the impacts on the environmental behavior of the pesticides. This study confirmed that TCC could slow down the degradation of pesticides in soil, increase their persistence and even affect the leaching behavior, thus influencing the risks of the pesticides to the environment.
Collapse
Affiliation(s)
- Zheng Cheng
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Chuntao Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Wenqi Jiang
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Wangjing Zhai
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Jing Gao
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Peng Wang
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
15
|
Occurrence and Fate of Triclosan and Triclocarban in Selected Wastewater Systems across Durban Metropolis, KwaZulu-Natal, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116769. [PMID: 35682351 PMCID: PMC9180842 DOI: 10.3390/ijerph19116769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 01/23/2023]
Abstract
Triclosan (TCS) and triclocarban (TCC) are antimicrobial agents that have been used in personal care and consumer products in the past decades. In this study, influent, effluent, and sludge samples collected in selected wastewater treatment plants across the Durban metropolis were qualitatively and quantitatively investigated. It was revealed that the concentration of TCS ranged from 1.906 to 73.462 µg/L, from 1.732 to 6.980 µg/L, and from 0.138 to 2.455 µg/kg in influent, effluent, and sludge samples, respectively. The concentrations of TCC were found to be between 0.320 and 45.261 µg/L, <LOQ−1.103 µg/L, and from 0.107 to 8.827 µg/kg in the influent, effluent, and sludge samples, respectively. Higher concentrations of TCS as compared with TCC were observed in the aqueous samples. However, the concentrations of TCC in the sludge samples were significantly higher than the level of TCS. More water solubility of TCS could be responsible for the observed trend in the influent and effluent samples, while the trend observed in the sludge could be due to the more hydrophobicity character of TCC. The results of this study indicated that substantial amounts of TCS and TCC are been removed during the treatment process which could be a major reason for the decline in the levels recorded in the effluent samples, therefore, reducing the amount of the TCS and TCC that would eventually end up in the surface rivers. Qualitative analyses of the samples indicated the presence of caffeine, tert-butylhydroquinone, chloroxylenol, phenol, 4-(1,1,3,3-tetramethyl butyl), and dimethyl-bisphenol A. Further investigative ecological risk assessment studies are crucial due to the potential threat the contaminants may pose to aquatic lives and humans.
Collapse
|
16
|
Silva RDS, Jalal A, Nascimento REND, Elias NC, Kawakami KC, Abreu-Junior CH, Oliveira FC, Jani AD, He Z, Zhao F, Teixeira Filho MCM, Rossetto R, Capra GF, Nogueira TAR. Composted Sewage Sludge Application in a Sugarcane Seedling Nursery: Crop Nutritional Status, Productivity, and Technological Quality Implications. SUSTAINABILITY 2022; 14:4682. [DOI: 10.3390/su14084682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Composted sewage sludge (CSS) contains large amounts of organic matter and nutrients and can be used as an organic fertilizer to improve growth, yield, and quality of sugarcane. However, there is a lack of information regarding the impact of CSS application on sugarcane seedling performance in nursery environments. A field study was conducted using a randomized complete block design to evaluate the development, nutritional status, productivity, and technological quality of sugarcane seedlings after CSS application with or without mineral fertilizer. Morphological variables (stem height, diameter, and number, as well as leaf area), technological attributes (total recoverable sugar: ATR; quantity of sucrose in sugarcane juice: Pol; Brix: percentage (weight/weight) of soluble solids contained in juice; TAH: tons of sugar per hectare), nutritional status, and sugarcane productivity were evaluated. Treatments did not influence morphological and technological variables except for TAH but did positively alter nutritional status and seedling productivity. The application rates of 5.0 and 7.5 Mg ha−1 of CSS with or without mineral fertilizers (MF) provided the greatest increase in crop productivity. Our results indicate that CSS can be a sustainable nutritional management option in sugarcane seedling nurseries, resulting in greater crop productivity at lower mineral fertilization rates.
Collapse
Affiliation(s)
- Rafael dos Santos Silva
- School of Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Arshad Jalal
- School of Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | | | - Nathércia Castro Elias
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
| | - Karen Cossi Kawakami
- School of Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Cassio Hamilton Abreu-Junior
- Center for Nuclear Energy in Agriculture (CENA), Universidade de São Paulo (USP), Piracicaba 13416-000, SP, Brazil
| | | | - Arun Dilipkumar Jani
- Department of Biology and Chemistry, California State University, Monterey Bay, Seaside, CA 93955, USA
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Fengliang Zhao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | | | - Raffaella Rossetto
- São Paulo’s Agency for Agribusiness Technology APTA-SAA, Piracicaba 13416-310, SP, Brazil
| | - Gian Franco Capra
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Polo Bionaturalistico, Via Piandanna n° 4, 07100 Sassari, Italy
| | - Thiago Assis Rodrigues Nogueira
- School of Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
| |
Collapse
|
17
|
Yu B, Chen T, Zheng G, Yang J, Huang X, Fu L, Cai L. Water-heat balance characteristics of the sewage sludge bio-drying process in a full-scale bio-drying plant with circulated air. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:220-230. [PMID: 35149478 DOI: 10.1016/j.wasman.2022.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Sewage sludge bio-drying technology has attracted considerable attention in recent years. In this study, we explored the water-heat balance under two ventilation strategies for the first time in bio-drying plants with circulated air, and examined the influence of air circulation on water removal and heat recovery. We want to obtain the relationships of pile temperature, ventilation, and water removal. Then, it provides support for optimizing the bio-drying process conditions and improving the efficiency through analysis of the water-heat relationship. In the low-ventilation and high-ventilation trials, water removed was mainly on Days 9-12 and 1-4, respectively. Ventilation and pile temperature jointly determine the water removed during the bio-drying process. Water balance indicated that more than 30% of the water was removed under the nonventilated process. More organic matter was degraded to maintain a higher pile temperature under low-ventilation than under high-ventilation, which also led to more radiation heat being lost. High-ventilation trial input less energy (3.36 MJ/kg water removed) but obtained a higher bio-drying index I (7.04) and heat utilization efficiency Qeffic (94.1%). Heat balance showed that lower energy consumption by dry air (Qdryair) was obtained due to circulation air with high temperature. Circulation air also has a higher carried capacity of water vapor but carries more water into the pile due to higher humidity.
Collapse
Affiliation(s)
- Bao Yu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Greentech Group Co. Ltd., Beijing 100080, China
| | - Lili Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Greentech Group Co. Ltd., Beijing 100080, China
| | - Lu Cai
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
18
|
Wang Z, Gao J, Wang S, Zhao Y, Dai H, Li D, Cui Y, Li Z. Triclocarban shifted the microbial communities and promoted the spread of antibiotic resistance genes in nitrifying granular sludge system. BIORESOURCE TECHNOLOGY 2022; 347:126429. [PMID: 34838974 DOI: 10.1016/j.biortech.2021.126429] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Triclocarban (TCC) is in great market demand especially after the outbreak of COVID-19 pandemic, becoming an emerging pollutant. However, the impacts of TCC on the performance of nitrifying granular sludge system and the occurrence of antibiotic resistance genes (ARGs) were still unknown. This work explored the impacts of different concentrations of TCC on nitrifying granular sludge. Results showed that TCC suppressed the activities of ammonia-oxidizing microorganisms and decreased the abundance of Nitrospira. Adsorption was the main way for the removal of TCC and the biodegradation efficiency of TCC increased to 28.00% under 19.70 mg/L TCC addition. TCC enriched the ARGs and promoted the risks of their transferring in microorganisms. Pseudomonas might not only have strong resistance to TCC, but also propagate ARGs. The removal process of TCC and bacterial communities were important factors to promote the spread of ARGs. Thus, the existence of TCC presented a great environmental risk.
Collapse
Affiliation(s)
- Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Shijie Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ziqiao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
19
|
Patidar R, Srivastava VC. Ultrasound-assisted electrochemical treatment of cosmetic industry wastewater: Mechanistic and detoxification analysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126842. [PMID: 34416687 DOI: 10.1016/j.jhazmat.2021.126842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
This study aims to investigate the mineralization of cosmetics producing industrial wastewater (CW) using sono-electrochemical (US-EC) treatments. The influence of operating parameters such as current density (j), electrolyte (Na2SO4) concentration (m), initial pH (pHo), and ultrasonic power was investigated using Ti/RuO2 dimensionally stable electrodes. The results demonstrated 80.9% chemical oxygen demand (COD) removal efficiency, 433.5 kWh (kg COD removed)-1 of specific energy consumption at the optimum conditions of P = 100 W, j = 213 A m-2, pHo= 7.6 (natural pH), and m = 1.5 g L-1. With the application of ultrasound, COD removal efficiency increases from 60.2% to 80.9%, with a synergistic effect of 1.1. Kinetics study analysis confirms that mineralization follows the nth order kinetics model. In the presence of ultrasound, the performance of electrochemical treatment gets enhanced due to higher electron transfer, the enhanced production of •OH radicals, and sulfate radicals (SO4•-). The pathway for the degradation of the compound was suggested by quadrupole time of flight mass spectroscopy (QToF-MS). The operating cost of the process was also evaluated to establish the applicability of the US-EC process at the industrial scale.
Collapse
Affiliation(s)
- Ritesh Patidar
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
20
|
You M, Hu Y, Yan Y, Yao J. Speciation Characteristics and Ecological Risk Assessment of Heavy Metals in Municipal Sludge of Huainan, China. Molecules 2021; 26:molecules26216711. [PMID: 34771118 PMCID: PMC8587855 DOI: 10.3390/molecules26216711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
In order to fully understand the morphological characteristics and pollution status of heavy metals in the dewatered sludge of Huainan Municipal sewage treatment plant, the physical and chemical properties were analyzed, and the content and occurrence forms of heavy metals (As, Cu, Zn, Pb, Cd, Cr, and Ni) in the sludge were studied using the geological accumulation method (Igeo), risk assessment coding method (RAC), and potential ecological risk index method to evaluate the ecological risk. The results showed that the municipal sludge in Huainan was rich in nutrients, with good prospects for agricultural utilization. There were differences in the morphological distributions of different heavy metals. The Igeo values for Ni, As, Cr, and Pb were below 0. The results of RAC indicated that the risk level of Cr in sludge was a low risk, and those of other heavy metals were moderate risks. The potential ecological risk of Cd had the highest potential ecological risk, and the other six metals were of low ecological risk. This conclusion can provide basic data and a theoretical reference for the comprehensive utilization of sludge in sewage treatment plants.
Collapse
Affiliation(s)
- Mu You
- National Center of Coal Chemical Products Quality Supervision & Inspection (Anhui), Huainan 232001, China; (M.Y.); (J.Y.)
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232001, China;
| | - Yunhu Hu
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232001, China;
| | - Yule Yan
- National Center of Coal Chemical Products Quality Supervision & Inspection (Anhui), Huainan 232001, China; (M.Y.); (J.Y.)
- Correspondence: ; Tel.: +86-0554-2686992
| | - Jie Yao
- National Center of Coal Chemical Products Quality Supervision & Inspection (Anhui), Huainan 232001, China; (M.Y.); (J.Y.)
| |
Collapse
|