1
|
Chen X, Li M, He J, Wu Y, Sun J, Wen X. Waste cotton-based activated carbon with excellent adsorption performance towards dyes and antibiotics. CHEMOSPHERE 2025; 376:144292. [PMID: 40073735 DOI: 10.1016/j.chemosphere.2025.144292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
A novel adsorbent is prepared from waste cotton fiber by a simple pyrolysis-activation process, and it can efficiently adsorb many kinds of organic pollutants (cationic/anionic dyes and antibiotics etc.). The obtained cotton-based activated carbon (CAC) with large specific surface area (3709 m2 g-1) and suitable pore structure provide abundant active sites and fast channels for the adsorption of pollutant molecules. Its saturated adsorption capacities towards methylene blue, Congo Red and tetracycline hydrochloride at room temperature can reach to 2331, 7265 and 1250 mg g-1, respectively. In addition, the optimal sample also exhibits excellent adsorption ability towards Rhodamine B (1327 mg g-1), methyl orange (955 mg g-1) and ciprofloxacin hydrochloride (824 mg g-1). The adsorption involves a multi-process including pore filling, Van der Waals force interaction, electrostatic attraction, hydrogen bond formation, surface complexation and π-π stacking etc. The CAC adsorbent also exhibits excellent resistance to environmental disturbances (pH, coexisting ions and multicomponent systems etc.) and good regeneration/recycling performance. This study develops a high-efficiency biomass-based adsorbent with excellent adsorption performance and application generality, which has great potential in wastewater treatment.
Collapse
Affiliation(s)
- Xi Chen
- School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Ming Li
- School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jingjing He
- School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yang Wu
- School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jiahao Sun
- School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xiaogang Wen
- School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
2
|
Zhang Y, Wei H, Hua B, Hu C, Zhang W. Preparation and application of the thermo-/pH-/ ion-sensitive semi-IPN hydrogel based on chitosan. Int J Biol Macromol 2024; 258:128968. [PMID: 38154725 DOI: 10.1016/j.ijbiomac.2023.128968] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Chitosan based hydrogels with multiple stimulus responses have broad application prospects in many fields. Considering the advantages of semi interpenetrating network (IPN) technology and the special temperature and ion responsiveness of polymers containing zwitterionic groups, a semi-IPN hydrogel was prepared through in situ free radical polymerization of N,N-dimethyl acrylamide and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide with polyethylene glycol dimethacrylate as a crosslinker and carboxymethyl chitosan as filler. The gel mass fraction and swelling ratio were measured, and the preparation conditions were optimized. The result indicated that the hydrogel possessed a unique thermo-/pH-/ ion-sensitive behavior. The swelling ratio increased with the increase of temperature and ion concentration, and showed a decreasing trend with the increase in pH. In addition, the hydrogel was stable when the stimuli changed. Adsorption behavior of the hydrogel to Eosin Y (EY) was systematically investigated. The adsorption process can be described well by the pseudo-second-order kinetic model and Langmuir isotherm model, indicating that it was a chemical adsorption. The experiments indicated that the hydrogel exhibited good antifouling and reusability features. Therefore, the semi-IPN hydrogel with antifouling properties and thermo-/pH-/ion-sensitivity can be easily manufactured is expected to find applications in water treatment fields.
Collapse
Affiliation(s)
- Yaqi Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Bingya Hua
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Chunwang Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wenjing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
3
|
Zhang Y, Liu Y, Wei H, Hu C, Hua B, Wang G, Guo T. Preparation of thermal/
pH
‐sensitive semi‐interpenetrating network hydrogels from quaternary chitosan via an amino‐anhydride click reaction for efficient dye removal from aqueous solutions. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Affiliation(s)
- Yaqi Zhang
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Yuhua Liu
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Chunwang Hu
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Bingyan Hua
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Tao Guo
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| |
Collapse
|
4
|
Li SS, Liu M, Wen L, Xu Z, Cheng YH, Chen ML. Exploration of long afterglow luminescent materials composited with graphitized carbon nitride for photocatalytic degradation of basic fuchsin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:322-336. [PMID: 35902519 DOI: 10.1007/s11356-022-22097-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The frequent exposure of the widely used dye, basic fuchsin (BF), is seriously threatening the health of human central nervous system. Thus, removing the environmental pollution caused by BF is crucial, and photocatalytic technology recently has been used to degrade the pollutions dye. In this study, the binary composite SrAl2O4:Eu2+, Dy3+/g-C3N4 was prepared by high-temperature calcination and then applied in BF photodegradation. The results confirmed that the composite material had lower band gap value (Eg) and stronger visible light absorption ability. The photocatalytic capacity of the new composite materials was enhanced compared to that of the non-composite materials. By using the new binary-composited materials, 80% of BF could be degraded in 10 min, and the degradation ratio reached 100% in 30 min. More importantly, even the light source was removed, the photocatalytic reaction could continue due to the luminescence of SrAl2O4:Eu2+, Dy3+, and the degradation efficiency of BF could finally reach more than 90% within 3 h. By quenching experiments and electron spin resonance (ESR) spectra analysis, superoxide anion (·O2-) was verified to be the main active substance in this reaction process. Moreover, the excellent stability and recyclability of this catalyst was also proved. Furthermore, the new composite materials were utilized to degrade the BF aqueous solution and actual lake water, and the total organic matter contents (TOC) were measured. TOC values in these two systems decreased after photocatalytic reaction, which indicated that this catalyst has a great development prospect in the removal of organic matter in water. Our study confirmed a new kind of material of high performance with great significance for emergency treatment of water pollution in practical applications.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Min Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Yun-Hui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Mao-Long Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China.
| |
Collapse
|
5
|
Eliwa EM, Elgammal WE, Belal A, Abourehab MAS, Abd El-Gilil SM, Mehany ABM, Elhagali GAM. Cu(II)-Promoted the Chemical Synthesis of New Azines-Based Naphthalene Scaffold as In Vitro Potent Mushroom Tyrosinase Inhibitors and Evaluation of Their Antiproliferative Activity. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Essam M. Eliwa
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Walid E. Elgammal
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Shimaa M. Abd El-Gilil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Egypt
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Gameel A. M. Elhagali
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
6
|
Sobarzo PA, Jessop IA, Pérez Y, Hauyon RA, Velázquez‐Tundidor MV, Medina J, González A, García LE, González‐Henríquez CM, Coll D, Ortiz PA, Tundidor‐Camba A, Terraza CA. Synthesis of dimethyl‐ and diphenylsilane‐based oligo(azine)s: Thermal, optical, electronic, and morphological properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Patricio A. Sobarzo
- Research Laboratory for Organic Polymers (RLOP), Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile Santiago Chile
| | - Ignacio A. Jessop
- Laboratory of Organic and Polymeric Materials, Department of Chemistry Universidad de Tarapacá Arica Chile
| | - Yasmín Pérez
- Laboratory of Organic and Polymeric Materials, Department of Chemistry Universidad de Tarapacá Arica Chile
| | - René A. Hauyon
- Research Laboratory for Organic Polymers (RLOP), Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile Santiago Chile
| | - María V. Velázquez‐Tundidor
- Research Laboratory for Organic Polymers (RLOP), Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile Santiago Chile
| | - Jean Medina
- Research Laboratory for Organic Polymers (RLOP), Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile Santiago Chile
| | - Alexis González
- Research Laboratory for Organic Polymers (RLOP), Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile Santiago Chile
| | - Luis E. García
- Research Laboratory for Organic Polymers (RLOP), Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile Santiago Chile
| | - Carmen M. González‐Henríquez
- Laboratory of Nanotechnology and Advanced Materials (LNnMA), Chemistry Department Universidad Tecnológica Metropolitana Santiago Chile
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi) Universidad Tecnológica Metropolitana Santiago Chile
| | - Deysma Coll
- Centro de Nanotecnología Aplicada, Facultad de Ciencias Universidad Mayor Santiago Chile
- Núcleo de Química y Bioquímica, Facultad de Estudios Interdisciplinarios Universidad Mayor Santiago Chile
| | - Pablo A. Ortiz
- Centro de Nanotecnología Aplicada, Facultad de Ciencias Universidad Mayor Santiago Chile
- Núcleo de Química y Bioquímica, Facultad de Estudios Interdisciplinarios Universidad Mayor Santiago Chile
| | - Alain Tundidor‐Camba
- Research Laboratory for Organic Polymers (RLOP), Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile Santiago Chile
- UC Energy Research Center Pontificia Universidad Católica de Chile Santiago Chile
| | - Claudio A. Terraza
- Research Laboratory for Organic Polymers (RLOP), Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile Santiago Chile
- UC Energy Research Center Pontificia Universidad Católica de Chile Santiago Chile
| |
Collapse
|
7
|
Lignin-inspired porous polymer networks as high-performance adsorbents for the efficient removal of malachite green dye. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Wang H, Wang H, Yan Q. Peroxymonosulfate activation by algal carbocatalyst for organic dye oxidation: Insights into experimental and theoretical. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151611. [PMID: 34774953 DOI: 10.1016/j.scitotenv.2021.151611] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/27/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Preparation of nitrogen-doped algal carbocatalyst (NC) for peroxymonosulfate (PMS) activation to oxidative degrade methylene blue (MB), and the mechanism of radical and nonradical pathway in N-C/PMS system are investigated. Firstly, a series of N-doped carbonaceous materials (NC) were prepared using nitrogen-rich Taihu blue algae biomass as precursor at different annealing temperatures. It was found that the NC prepared by annealing at 800 °C (N-C-8) showed an optimal MB degradation performance of over 99% after 60 min. Confirmed by electron paramagnetic resonance (EPR) analyses and radical quenching experiments, radical and nonradical pathway (1O2 oxidation and electron-transfer) are both involved in MB degraded process. Moreover, both graphitic N derived from the intrinsic Taihu blue algae, and nitrogen vacancy evolved from nitrogen dopants decomposition exhibited high correlation with the MB removal rate in the N-C/PMS system. Finally, three possible degradation pathways of MB were proposed based on the Density Functional Theory (DFT) calculation and identified intermediates. Overall, this work provides a new insight into the intrinsic roles of nitrogen-dopants and nitrogen vacancies on the as-prepared carbocatalyst for PMS activation, and advances the understanding of the resource utilization of algal biomass.
Collapse
Affiliation(s)
- He Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, PR China.
| |
Collapse
|
9
|
Zhang F, Liu J, Wu Y, Jin L, Wang Y, Xu Z. Study on the adsorption properties of multiple-generation hyperbranched collagen fibers towards isolan-series acid dyes. RSC Adv 2022; 12:6855-6868. [PMID: 35424590 PMCID: PMC8981992 DOI: 10.1039/d1ra08845a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/07/2022] [Indexed: 12/03/2022] Open
Abstract
In the present study, collagen fibers derived from leather solid wastes were used and modified as insoluble vectors and successfully employed as adsorbents for the removal of acid dyes. A “one-step” method was applied to synthesis effective adsorbents, which provided a sustainable way to reuse leather solid wastes via multifunctional modification. The adsorption properties of amino-terminated hyperbranched polymer (HBPN)-modified collagen fibers for the removal of different kinds of acid dyestuff from aqueous solutions were studied. The adsorption capacities of the second generation of modified collagen fibers (CF-HBPN-II) toward Isolan Black 2S-LD, Supralan Yellow, Isolan Grey K-PBL 02, Isolan Dark Blue 2S-GL 03, and Isolan Brown NHF-S were determined to be 224.87, 340.14, 287.36, 317.80, and 251.25 mg g−1, respectively. Three kinetic models, namely, pseudo-first-order, pseudo-second-order and intraparticle diffusion, were used to analyze the kinetic data. The fitting result indicated that the adsorption process of Isolan Black 2S-LD on CF-HBPN-II followed a pseudo-second-order rate model. The adsorption equilibrium of amino-terminated hyperbranched polymer-modified collagen fibers (CF-HBPN) was analyzed using the Langmuir, Freundlich and Temkin isotherm models. The Langmuir isotherm was suitable to describe the adsorption process of Isolan Black 2S-LD. RL was observed to be in the range of 0–1. The values of ΔH, ΔS and ΔG suggest that adsorption is an endothermic and spontaneous process. The adsorbed dye from the modified collagen fiber was successfully desorbed by 0.1 M NaOH. This research provides theoretical guidance for the engineering and recycling application of bio-based adsorbents. Collagen fibers extracted from leather wastes were modified by amino-terminated hyperbranched polymers to prepare CF-HBPN-I and CF-HBPN-II. The adsorption process of CF-HBPN-II toward Isolan Black 2S-LD is in accordance with the pseudo-second-order and Langmuir model.![]()
Collapse
Affiliation(s)
- Feifei Zhang
- Faculty of Light Industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China .,Key Laboratory for Green Leather Manufacture Technology of China National Light Industry Council, Faculty of light industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China
| | - Jie Liu
- Faculty of Light Industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China .,Key Laboratory for Green Leather Manufacture Technology of China National Light Industry Council, Faculty of light industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China
| | - Yuwei Wu
- Faculty of Light Industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China .,Key Laboratory for Green Leather Manufacture Technology of China National Light Industry Council, Faculty of light industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China
| | - Liqiang Jin
- Faculty of Light Industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China .,Key Laboratory for Green Leather Manufacture Technology of China National Light Industry Council, Faculty of light industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China
| | - Yulu Wang
- Faculty of Light Industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China .,Key Laboratory for Green Leather Manufacture Technology of China National Light Industry Council, Faculty of light industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China
| | - Zhou Xu
- Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province Yibin 644000 China
| |
Collapse
|
10
|
Duan C, Wang J, Liu Q, Zhou Y, Zhou Y. Efficient removal of Salbutamol and Atenolol by an electronegative silanized β-cyclodextrin adsorbent. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Wang S, Huang Y, Wu Y, Zhang X, Wan L, Liu X, Zhang W. Re-utilization of Chinese medicinal herbal residue: waste wormwood rod-derived porous carbon as a low-cost adsorbent for methyl orange removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2601-2614. [PMID: 34810334 DOI: 10.2166/wst.2021.453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A cost-effective approach was applied to prepare porous carbon samples by the simple carbonization of wormwood rod followed by salt activator (NaCl) activation. The effect of preparation parameters on the characteristics of the wormwood rod-based porous carbons (WWRs) were studied. The properties of these samples were investigated by SEM, BET surface area, X-ray diffraction, FT-IR spectra and X-ray photoelectron spectrometer. The prepared WWRs were applied as new adsorbent materials to remove methyl orange (MO). The experimental results indicated that WWR-800 activated at 800 °C possesses the best adsorption performance. Several factors that affected the adsorption property of the system such as the solution pH, dosing of adsorbent, initial dye concentration and ionic strength were examined. In addition, the thermodynamic parameters and kinetic parameters of MO with WWR-800 were studied. The results indicated that the adsorption of MO on WWR-800 was an endothermic process and non-spontaneous under standard conditions. The maximum equilibrium adsorption capacity of MO on WWR-800 was 454.55 mg/g. After five adsorption/desorption cycles, the adsorption capacity of MO on WWR-800 remained at 94%, which indicated that wormwood rod-based porous carbon possessed good reusability.
Collapse
Affiliation(s)
- Shuhui Wang
- Hubei Key Lab for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, Hubei 438000, China E-mail: ; Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, Three Gorges University, Yichang, Hubei 443002, China
| | - Yu Huang
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, Three Gorges University, Yichang, Hubei 443002, China
| | - Yiting Wu
- Hubei Key Lab for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, Hubei 438000, China E-mail:
| | - Xinyu Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, Hubei 438000, China E-mail:
| | - Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, Hubei 438000, China E-mail:
| | - Xiang Liu
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, Three Gorges University, Yichang, Hubei 443002, China
| | - Wanju Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, Hubei 438000, China E-mail:
| |
Collapse
|
12
|
Zhao S, Chen F, Zhang Q, Meng L. High-performance electrocatalyst based on polyazine derived mesoporous nitrogen-doped carbon for oxygen reduction reaction. RSC Adv 2021; 11:29555-29563. [PMID: 35479528 PMCID: PMC9040643 DOI: 10.1039/d1ra03255k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/13/2021] [Indexed: 02/05/2023] Open
Abstract
Nitrogen-doped porous carbon materials have high potential in metal-free electrocatalysts, which is essential for several renewable energy conversion systems. Herein, we report a convenient and environment-friendly method to fabricate a nitrogen doped mesoporous carbon (NMC) using a nonionic surfactant of Pluronic F127 micelles as the template and a Schiff-base polymer (polyazine) as the precursor. The synthesized NMCs were of spheric morphology and mesoporous structures with surface area up to 1174 m2 g−1 and high level of nitrogen (2.9–19 at%) and oxygen (4.9–7.4 at%) simultaneously doped. The electrochemical data of NMCs were analyzed in the context of the BET and XPS information. A correlation between ORR activity and the pyridinic-N was found. The NMC-700 demonstrate the highest electrocatalytic activity for ORR among the studied materials, which can be ascribed to the reasonable surface area and mesoporous structure, as well as the most abundant touchable pyridinic-N, thus providing more effective active sites for the oxygen reduction. In comparsion to the control sample, the NMC-700 provides the ORR electrocatalytic activity approximate to that of commercial Pt/C catalyst with a highly long-term stability. Nitrogen-doped porous carbon materials have high potential in metal-free electrocatalysts, which is essential for several renewable energy conversion systems.![]()
Collapse
Affiliation(s)
- Songlin Zhao
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou Zhejiang 310014 China .,School of Pharmaceutical and Materials Engineering, Taizhou University Taizhou 318000 China
| | - Fushan Chen
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University Jiujiang 332005 China
| | - Qunfeng Zhang
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Lingtao Meng
- School of Pharmaceutical and Materials Engineering, Taizhou University Taizhou 318000 China
| |
Collapse
|