1
|
Dileepkumar VG, Pahra S, López-Salas N, Basavaraja BM, Khan AA, Sumanth N, Devi P, Santosh MS. Enhancing NiS performance: Na-doping for advanced photocatalytic and electrocatalytic applications. NANOSCALE 2025; 17:2682-2691. [PMID: 39820663 DOI: 10.1039/d4nr04293j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Alkali metal doping is a new and promising approach to enhance the photo/electrocatalytic activity of NiS-based catalyst systems. This work investigates the impact of sodium on the structural, electronic, and catalytic properties of NiS. Comprehensive characterization techniques demonstrate that Na-doping causes significant changes in the NiS lattice and surface chemistry translating into a larger bandgap than NiS. Photocatalytic experiments demonstrate 98.5% degradation of 2,4-DCP under visible light, attributing it to improved light absorption and charge separation by Na-NiS nanoparticles. The effect of pH and pKa on the degradation of 2,4-DCP has also been studied and reported. Additionally, electrochemical measurements of Na-NiS indicate overpotentials of 336 mV towards hydrogen evolution reaction (HER) and 350 mV towards oxygen evolution reaction (OER). The material's overall water splitting is found to be 2.61 V at a current density of 10 mA cm-2. The results highlight the potential of Na-NiS as a versatile catalyst for environmental remediation and clean energy applications, paving the way for further exploration and optimization of doped transition metal sulfides.
Collapse
Affiliation(s)
- V G Dileepkumar
- CSIR - Central Institute of Mining and Fuel Research (CIMFR), Digwadih Campus, Dhanbad - 828108, Jharkhand, India.
- Department of Chemistry (Science and Humanities), PES University, Bengaluru, India
- Department of Chemistry, HKBK College of Engineering, Bangalore - 560045, Karnataka, India
| | - Swapna Pahra
- Academy of Scientific and Innovative Research (AcSIR), Gaziabaad-201002, India.
- Materials Science and Sensor Applications, CSIR - Central Scientific Instruments Organisation (CSIO), Chandigarh-160030, India
| | - Nieves López-Salas
- Paderborn University, Chemistry Department - Sustainable Materials Chemistry, Center for Sustainable Systems Design (CSSD), Warburguer Strasse 100, 33098, Paderborn, Germany.
| | - B M Basavaraja
- Department of Chemistry (Science and Humanities), PES University, Bengaluru, India
| | - Afaq Ahmad Khan
- GreenCat Laboratory, Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad - 826004, India
| | - N Sumanth
- CSIR - Central Institute of Mining and Fuel Research (CIMFR), Digwadih Campus, Dhanbad - 828108, Jharkhand, India.
| | - Pooja Devi
- Academy of Scientific and Innovative Research (AcSIR), Gaziabaad-201002, India.
- Materials Science and Sensor Applications, CSIR - Central Scientific Instruments Organisation (CSIO), Chandigarh-160030, India
| | - M S Santosh
- CSIR - Central Institute of Mining and Fuel Research (CIMFR), Digwadih Campus, Dhanbad - 828108, Jharkhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Gaziabaad-201002, India.
| |
Collapse
|
2
|
Zhang X, Puttaswamy M, Bai H, Hou B, Kumar Verma S. CdS/ZnS core-shell nanorod heterostructures co-deposited with ultrathin MoS 2 cocatalyst for competent hydrogen evolution under visible-light irradiation. J Colloid Interface Sci 2024; 665:430-442. [PMID: 38485632 DOI: 10.1016/j.jcis.2024.03.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/17/2024]
Abstract
Hydrogen generation via semiconductor photocatalysts has gained significant attention as a sustainable fuel generation process. To demonstrate the performance of nanoscale core-shell heterostructure in photocatalytic hydrogen production, we have fabricated CdS nanorods coated with ZnS photocatalyst via wet-chemical reaction followed by deposition of ultrathin MoS2 nanosheets by photo reduction process. The effect of ZnS content and suitable amount of MoS2 loading over the visible-light induced photocatalytic hydrogen evolution was examined in Na2S and Na2SO3 aqueous solutions. Interestingly, it is apparent that a close connection (or heterojunction) between CdS and ZnS is believed to easily tunnel the charge carriers to the surplus surface states, making its electrons and holes energetically favourable to transfer from ZnS to MoS2 for photocatalytic reactions and subsequently, enhances the H2 evolution activity in CdS/ZnS type I core-shell heterostructures. The optimal MoS2 concentration is resolved to be 7 mol% and the subsequent visible-light induced H2 generation rate was 13589 μmol h-1g-1, which is 19 and 158 fold higher than pristine CdS and ZnS respectively. The probable photocatalytic mechanism of CdS/ZnS type I core-shell heterostructure with MoS2 cocatalyst is proposed. Our inexpensive and convenient preparation strategy may offer novel prospects in the engineering of desirable nanoheterostructures with better performance.
Collapse
Affiliation(s)
- Xingyu Zhang
- School of Material Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Madhusudan Puttaswamy
- Department of Civil and Environmental Engineering, Environmental Materials Laboratory, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| | - Haiqiang Bai
- School of New Energy, Yulin University, Yulin 719000, Shaanxi, PR China
| | - Bofang Hou
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, PR China
| | | |
Collapse
|
3
|
Ma F, Xu X, Huo C, Sun C, Li Q, Yin Z, Cao S. Dual Heterogeneous Structures Promote Electrochemical Properties and Photocatalytic Hydrogen Evolution for Inverse Opal ZnO/ZnS/Co 3O 4 Crystals. Inorg Chem 2024; 63:8782-8790. [PMID: 38691448 DOI: 10.1021/acs.inorgchem.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Potocatalytic hydrogen evolution represnets a promising way to achieve renewable energy sources. Dual heterojunctions with an inverse opal structure are proposed for addressing fundamental challenges (low surface area, inefficient light absorption, and poor charge separation) in photocatalytic water splitting. Inverse opal structure and Co3O4 were introduced to design and synthesize a ZnO/ZnS/Co3O4 (IO-ZnO/ZnS/Co3O4) photocatalyst. Morphology characterizations and photoelectric measurements reveal that the introduction of three-dimensional (3D) structures and dual heterojunctions improves light utilization efficiency and accelerates charge separation, greatly promoting photoelectric performance. The as-prepared IO-ZnO/ZnS/Co3O4 manifests superior photocurrent density (0.49 mA/cm2), which is 4 times higher than that of IO-ZnO/ZnS due to the existence of dual heterojunctions. The result is further confirmed by an enhanced H2 production rate (153.01 μmol/g/h) in pure water. Notably, excellent cycling stability is achieved in pure water because Co3O4 can rapidly capture photogenerated holes to inhibit severe photocorrosion of ZnO/ZnS. Therefore, this work presents a new insight into inhibiting photocorrosion of metal sulfides and promoting their photoelectric performance by combining 3D structures and dual heterojunctions.
Collapse
Affiliation(s)
- Feng Ma
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyang Xu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chen Huo
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Chaozhong Sun
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qing Li
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhengliang Yin
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shunsheng Cao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, China
| |
Collapse
|
4
|
Reddy NR, Kumar AS, Reddy PM, Kakarla RR, Jung JH, Aminabhavi TM, Joo SW. Efficient synthesis of 3D ZnO nanostructures on ITO surfaces for enhanced photoelectrochemical water splitting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120082. [PMID: 38232595 DOI: 10.1016/j.jenvman.2024.120082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
New photoactive materials with uniform and well-defined morphologies were developed for efficient and sustainable photoelectrochemical (PEC) water splitting and hydrogen production. The investigation is focused on hydrothermal deposition of zinc oxide (ZnO) onto indium tin oxide (ITO) conductive surfaces and optimization of hydrothermal temperature for growing uniform sized 3D ZnO morphologies. Fine-tuning of hydrothermal temperature enhanced the scalability, efficiency, and performance of ZnO-decorated ITO electrodes used in PEC water splitting. Under UV light irradiation and using eco-friendly low-cost hydrothermal process in the presence of stable ZnO offered uniform 3D ZnO, which exhibited a high photocurrent of 0.6 mA/cm2 having stability up to 5 h under light-on and light-off conditions. The impact of hydrothermal temperature on the morphological properties of the deposited ZnO and its subsequent performance in PEC water splitting was investigated. The work contributes to advancement of scalable and efficient fabrication technique for developing energy converting photoactive materials.
Collapse
Affiliation(s)
- N Ramesh Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - A Sai Kumar
- Department of Physics, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - P Mohan Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Raghava Reddy Kakarla
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Jae Hak Jung
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India; University Center for Research & Development (UCRO), Chandigarh University, Mohali, Punjab, 140 413, India.
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
5
|
Sheng H, Wang J, Huang J, Li Z, Ren G, Zhang L, Yu L, Zhao M, Li X, Li G, Wang N, Shen C, Lu G. Strong synergy between gold nanoparticles and cobalt porphyrin induces highly efficient photocatalytic hydrogen evolution. Nat Commun 2023; 14:1528. [PMID: 36934092 PMCID: PMC10024688 DOI: 10.1038/s41467-023-37271-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/09/2023] [Indexed: 03/20/2023] Open
Abstract
The reaction efficiency of reactants near plasmonic nanostructures can be enhanced significantly because of plasmonic effects. Herein, we propose that the catalytic activity of molecular catalysts near plasmonic nanostructures may also be enhanced dramatically. Based on this proposal, we develop a highly efficient and stable photocatalytic system for the hydrogen evolution reaction (HER) by compositing a molecular catalyst of cobalt porphyrin together with plasmonic gold nanoparticles, around which plasmonic effects of localized electromagnetic field, local heating, and enhanced hot carrier excitation exist. After optimization, the HER rate and turn-over frequency (TOF) reach 3.21 mol g-1 h-1 and 4650 h-1, respectively. In addition, the catalytic system remains stable after 45-hour catalytic cycles, and the system is catalytically stable after being illuminated for two weeks. The enhanced reaction efficiency is attributed to the excitation of localized surface plasmon resonance, particularly plasmon-generated hot carriers. These findings may pave a new and convenient way for developing plasmon-based photocatalysts with high efficiency and stability.
Collapse
Affiliation(s)
- Huixiang Sheng
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jin Wang
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Juhui Huang
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Guozhang Ren
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Linrong Zhang
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Liuyingzi Yu
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengshuai Zhao
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xuehui Li
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Gongqiang Li
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ning Wang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Chen Shen
- Institute of Materials Science, Technical University of Darmstadt, Darmstadt, 64287, Germany
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
6
|
Lu J, Guo Q, Chen J, Xie K, Guan X, Yang L, Wang G. Delicate Design of ZnS@In 2S 3 Core-Shell Structures with Modulated Photocatalytic Performance under Simulated Sunlight Irradiation. ACS OMEGA 2023; 8:529-538. [PMID: 36643549 PMCID: PMC9835534 DOI: 10.1021/acsomega.2c05483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
ZnS@In2S3 core-shell structures with high photocatalytic activity have been delicately designed and synthesized. The unique structure and synergistic effects of the composites have an important influence on the improvement of photocatalytic activity. The photocatalytic activity has been studied by photodegrading individual eosin B (EB) and the mixture solution consisting of eosin B and rhodamine B (EB-RhB) in the presence of hydrogen peroxide (H2O2) under simulated sunlight irradiation. The results show that all of the photocatalysts with different contents of In2S3 exhibit enhanced catalytic activity compared to pure ZnS for the degradation of EB and EB-RhB solution. When the theoretical molar ratio of ZnS to In2S3 was 1:0.5, the composite presents the highest photocatalytic efficiency, which could eliminate more than 98% of EB and 94% of EB-RhB. At the same time, after five cycles of photocatalytic tests, the photocatalytic efficiency could be about 96% for the degradation of the EB solution, and relatively high photocatalytic activity could also be obtained for the degradation of the EB-RhB mixed solution. This work has proposed a facile synthetic process to realize the controlled preparation of core-shell ZnS@In2S3 composites with effectively modulated structures and compositions, and the composites have also proved to be high-efficiency photocatalysts for the disposal of complicated pollutants.
Collapse
Affiliation(s)
- Jianyi Lu
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Qianqian Guo
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Jingyang Chen
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Kunhan Xie
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Xiaohui Guan
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Liu Yang
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Guangsheng Wang
- School
of Chemistry, Beihang University, Beijing100191, P. R. China
| |
Collapse
|
7
|
Ramesh Reddy N, Mohan Reddy P, Hak Jung J, Woo Joo S. Construction of various morphological ZnO-NiO S-scheme nanocomposites for photocatalytic dye degradation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Solid-State Synthesis of ZnO/ZnS Photocatalyst with Efficient Organic Pollutant Degradation Performance. Catalysts 2022. [DOI: 10.3390/catal12090981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To improve the separation efficiency of photogenerated carriers in ZnS, constructing a ZnS-based heterostructure with ZnO is assessed to be an efficient strategy, and a ZnO/ZnS photocatalyst was prepared by a solid-phase approach, and the structure and morphology were systematically studied. The ZnO/ZnS photocatalyst showed excellent photocatalytic properties on methyl orange, rhodamine B and tetracycline under UV light irradiation, indicating that the photocatalyst exhibited efficient broad-spectrum photocatalytic performance. Compared with ZnS, the degradation rates of ZnO/ZnS photocatalysts for methyl orange, rhodamine B and tetracycline under UV light increased from 21%, 9% and 32% to 96%, 94% and 93%, respectively, higher than the reported ZnO/ZnS composites synthesized by a novel wet chemical route, attributing to the improvement of light absorption ability and the effective separation of carriers. In addition, the influence of the sacrificial agent on the reaction system was investigated, and the synergistic mechanism of ZnO and ZnS in the catalytic process was analyzed according to the fluorescence spectra, photocurrent and first-principles calculation results, and a possible catalytic mechanism was put forward.
Collapse
|
9
|
A critical review in the features and application of photocatalysts in wastewater treatment. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Abstract
Hydrogen (H2) has emerged as a sustainable energy carrier capable of replacing/complementing the global carbon-based energy matrix. Although studies in this area have often focused on the fundamental understanding of catalytic processes and the demonstration of their activities towards different strategies, much effort is still needed to develop high-performance technologies and advanced materials to accomplish widespread utilization. The main goal of this review is to discuss the recent contributions in the H2 production field by employing nanomaterials with well-defined and controllable physicochemical features. Nanoengineering approaches at the sub-nano or atomic scale are especially interesting, as they allow us to unravel how activity varies as a function of these parameters (shape, size, composition, structure, electronic, and support interaction) and obtain insights into structure–performance relationships in the field of H2 production, allowing not only the optimization of performances but also enabling the rational design of nanocatalysts with desired activities and selectivity for H2 production. Herein, we start with a brief description of preparing such materials, emphasizing the importance of accomplishing the physicochemical control of nanostructures. The review finally culminates in the leading technologies for H2 production, identifying the promising applications of controlled nanomaterials.
Collapse
|
11
|
Mahdi MA, Jasim LS, Ranjeh M, Masjedi-Arani M, Salavati-Niasari M. Improved pechini sol-gel fabrication of Li2B4O7/NiO/Ni3(BO3)2 nanocomposites to advanced photocatalytic performance. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Meera MS, Sasidharan SK, Hossain A, Kiss J, Kónya Z, Elias L, Shibli SMA. Effect of Excess B in Ni 2P-Coated Boron Nitride on the Photocatalytic Hydrogen Evolution from Water Splitting. ACS APPLIED ENERGY MATERIALS 2022; 5:3578-3586. [DOI: 10.1021/acsaem.1c04086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Muraleedharan Sheela Meera
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Sreekala Keerthi Sasidharan
- Department of Nanotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Aslam Hossain
- Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - János Kiss
- ELKH-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. 1., H-6720 Szeged, Hungary
| | - Zoltán Kónya
- ELKH-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. 1., H-6720 Szeged, Hungary
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. 1., H-6720 Szeged, Hungary
| | - Liju Elias
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Sheik Muhammadhu Aboobakar Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
- Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| |
Collapse
|
13
|
CuS/Ag 2O nanoparticles on ultrathin g-C 3N 4 nanosheets to achieve high performance solar hydrogen evolution. J Colloid Interface Sci 2022; 615:740-751. [PMID: 35176540 DOI: 10.1016/j.jcis.2022.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 01/08/2023]
Abstract
Ternary heterostructures play a crucial role in improving the separation of charge carriers and fast surface reaction kinetics, which in turn helps in understanding the effective photocatalytic water splitting performance. Herein, CuS/Ag2O nanoparticles were presented on a graphitic carbon nitride (g-C3N4) surface to obtain CuS/Ag2O/g-C3N4 material using facile hydrothermal and precipitation methods. Structural and morphological studies confirmed the presence of ternary nanostructures comprising CuS, Ag2O, and g-C3N4 with nanoparticle and nanosheet morphologies. The as-synthesized CuS/Ag2O/g-C3N4 exhibited a remarkable photocatalytic H2 production of 1752 µmol.h-1.g-1cat, which is considerably superior than those of CuS and g-C3N4. The improved H2 production performance which is due to the effective interfacial CuS/Ag2O/g-C3N4 heterojunction interface and superior hole (h+) trapping capability of the CuS at the CuS/Ag2O/g-C3N4 interface. This can efficiently enhance the lifetime of photoexcited charge carriers and enhance the electron density for the production of H2. The optimum CuS/Ag2O/g-C3N4 heterostructure remained stable after 8 successive experimental cycles, although with a slight change in the H2 production rate. Therefore, this study offers a novel approach to exploit the efficacy through the synergetic effect of integrating CuS as the photocatalyst and Ag2O as the visible sensitizer, thus proposing a viable strategy of using earth-abundant material to enhance the conversion of solar energy to fuel.
Collapse
|
14
|
Cai WQ, Zhang FJ, Wang YR, Li DC. Enhanced photocatalytic hydrogen evolution under visible light using noble metal-free ZnS NPs/Ni@Trimellitic acid porous microsphere heterojunction. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1011-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Gu Y, Gao T, Zhang F, Lu C, Cao W, Fu Z, Hu C, Lyu L. Surface sulfur vacancies enhanced electron transfer over Co-ZnS quantum dots for efficient degradation of plasticizer micropollutants by peroxymonosulfate activation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Reddy NR, Reddy PM, Mandal TK, Reddy KR, Shetti NP, Saleh TA, Joo SW, Aminabhavi TM. Synthesis of novel Co 3O 4 nanocubes-NiO octahedral hybrids for electrochemical energy storage supercapacitors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113484. [PMID: 34391101 DOI: 10.1016/j.jenvman.2021.113484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Fabrication of novel metal oxide nanostructured composites is a proficient approach to develop efficient energy storage devices and development of cost-free and eco-friendly metal oxide nanostructures for supercapacitor applications received considerable attention in recent years. The Co3O4 nanocubes-NiO octahedral structured composite was constructed using facile and one-step calcination process. Cyclic voltammetry, charge-discharge, and electrochemical impedance spectral techniques have been employed to analyze the specific capacitance of the synthesized nanostructures and the composites. Specific capacitance and cycling stability of the composites were evaluated with the pristine Co3O4 and NiO nanostructures. The composite showed a specific capacitance of 832 F g-1 at a current density of 0.25 A g-1, which was ~1.5 and ~1.9-times higher than pristine Co3O4 nanocubes and NiO octahedral structure, respectively. On the other hand, electrode showed approximately 50 % capacity retention at a higher current density (5 Ag-1) because of the uniform morphology of Co3O4 and NiO. The charge-discharge stability measurements of the composite showed an admirable specific capacitance retention capability, which was 94.5 % after 2000 continuous charge-discharge cycles at a current density of 5 A g-1. The superior electrochemical performance of the nano-composite was ascribed to synergistic effects and uniform morphology. Efficient nanostructure development using facile and one-step calcination process and electrochemical performance make the synthesized composite a promising device for supercapacitor applications.
Collapse
Affiliation(s)
- N Ramesh Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - P Mohan Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - T K Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India.
| |
Collapse
|
17
|
Wang Y, Li J, Hu Q, Hao M, Liu Y, Gong L, Li R, Huang X. Boosting Visible-Light-Driven Photocatalytic Hydrogen Production through Sensitizing TiO 2 via Novel Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40562-40570. [PMID: 34470106 DOI: 10.1021/acsami.1c09960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Improving the light utilization and electron-hole separation efficiency plays a central role in photocatalysis for converting light energy to hydrogen energy. Herein, for the first time, a stable, highly dispersible discrete T4 [Cd3In17Se31]5- cluster is developed as a novel photosensitizer to sensitize TiO2 for photocatalytic hydrogen production. Compared with pristine TiO2 (near zero) and the T4 clusters (19.5 μmol g-1 h-1) that exhibit low hydrogen evolution activities, the T4/TiO2 composite, constructed from traces of 0.127 mol % T4 cluster-sensitized TiO2, exhibits a dramatically improved photocatalytic activity of 328.2 μmol g-1 h-1, highlighting that the photocatalytic efficiency strongly correlates with that of the T4 cluster. In the meantime, the T4/TiO2 composites are highly stable, remaining robust in a long-time test of 50 h for photocatalytic hydrogen production. Ultrafast transient absorption spectroscopy, in combination with electrochemical analyses, steady-state and time-resolved photoluminescence, and density functional theory calculations, indicates that the T4 cluster not only serve as a photosensitizer to absorb visible light but also form a heterojunction between the interface of the T4 cluster and TiO2 to accelerate electron injection. This work highlights the great potential of the stable and highly dispersed discrete metal chalcogenide clusters as high-efficiency photosensitizers for converting solar energy to chemical energy.
Collapse
Affiliation(s)
- Yanqi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jianrong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Qianqian Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Minting Hao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yifan Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Liaokuo Gong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Renfu Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
18
|
Navakoteswara Rao V, Ravi P, Sathish M, Vijayakumar M, Sakar M, Karthik M, Balakumar S, Reddy KR, Shetti NP, Aminabhavi TM, Shankar MV. Metal chalcogenide-based core/shell photocatalysts for solar hydrogen production: Recent advances, properties and technology challenges. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125588. [PMID: 33756202 DOI: 10.1016/j.jhazmat.2021.125588] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Metal chalcogenides play a vital role in the conversion of solar energy into hydrogen fuel. Hydrogen fuel technology can possibly tackle the future energy crises by replacing carbon fuels such as petroleum, diesel and kerosene, owning to zero emission carbon-free gas and eco-friendliness. Metal chalcogenides are classified into narrow band gap (CdS, Cu2S, Bi2S3, MoS2, CdSe and MoSe2) materials and wide band gap materials (ZnS, ZnSe and ZnTe). Composites of these materials are fabricated with different architectures in which core-shell is one of the unique composites that drastically improve the photo-excitons separation, where chalcogenides in the core can be well protected for sustainable uses. Thus,the core-shell structures promote the design and fabrication of composites with the required characteristics. Interestingly, the metal chalcogenides as a core-shell photocatalyst can be classified into type-I, reverse type-I, type-II and S-type nanocomposites, which can effectively influence and significantly enhance the rate of hydrogen production. In this direction, this review is undertaken to provide a comprehensive overview of the advanced preparation processes, properties of metal chalcogenides, and in particular, photocatalytic performance of the metal chalcogenides as a core-shell photocatalysts for solar hydrogen production.
Collapse
Affiliation(s)
- Vempuluru Navakoteswara Rao
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India
| | - Parnapalle Ravi
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Marappan Sathish
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manavalan Vijayakumar
- Global Innovative Centre for Advanced (GICAN), Nanomaterials, Collage of Science, Engineering and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohan Sakar
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, Karnataka, India
| | - Mani Karthik
- Centre for Nanomaterials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005, India
| | - Subramanian Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nagaraj P Shetti
- Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi 580027, Karnataka, India
| | - Tejraj M Aminabhavi
- Department of Pharmaceutics, SETs' College of Pharmacy, Dharwad 580007, Karnataka, India.
| | - Muthukonda Venkatakrishnan Shankar
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India
| |
Collapse
|