1
|
Singh AB, Paul T, Shukla SP, Kumar S, Kumar S, Kumar G, Kumar K. Gut microbiome as biomarker for triclosan toxicity in Labeo rohita: bioconcentration, immunotoxicity and metagenomic profiling. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:102-111. [PMID: 39427267 DOI: 10.1007/s10646-024-02817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Triclosan (TCS) is a lipophilic, broad spectrum antimicrobial agent commonly used in personal care products with a projected continuous escalation in aquatic environments in the post COVID 19 era. There is rich documentation in the literature on the alteration of physiological responses in fish due to TCS exposure; however, studies on gut associated bacteria of fish are still scarce. This is the first attempt to determine changes in bacterial community structure due to exposure of TCS on Labeo rohita, a commercially essential freshwater species, using 16S V3-V4 region ribosomal RNA (rRNA) next-generation sequencing (NGS). Chronic exposure of TCS at environmentally realistic concentrations viz. 1/5th (T1: 0.129 mg/L) and 1/10th (T2: 0.065 mg/L) of LC50 for 28 days resulted in the dose dependent bioconcentration of TCS in the fish gut. Prolonged exposure to TCS leads to disruption of gut bacteria evidenced by down regulation of the host immune system. Additionally, high-throughput sequencing analysis showed alternation in the abundance and diversity of microbial communities in the gut, signifying Proteobacteria and Verrucomicrobia as dominant phyla. Significant changes were also observed in the relative abundance of Chloroflexi and Gammatimonadetes phyla in TCS exposed groups. The study revealed that gut microbiome can be used as a biomarker in assessing the degree of TCS toxicity in commercially important fish species.
Collapse
Affiliation(s)
| | - Tapas Paul
- College of Fisheries, Bihar Animal Sciences University, Kishanganj, Bihar, 855107, India
| | - S P Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Sanath Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Ganesh Kumar
- Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, 284003, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| |
Collapse
|
2
|
Fan Y, Keerthisinghe TP, Nian M, Cao X, Chen X, Yang Q, Sampathkumar K, Loo JSC, Ng KW, Demokritou P, Fang M. Comparative secretome metabolic dysregulation by six engineered dietary nanoparticles (EDNs) on the simulated gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133003. [PMID: 38029586 DOI: 10.1016/j.jhazmat.2023.133003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
The potential use of engineered dietary nanoparticles (EDNs) in diet has been increasing and poses a risk of exposure. The effect of EDNs on gut bacterial metabolism remains largely unknown. In this study, liquid chromatography-mass spectrometry (LC-MS) based metabolomics was used to reveal significantly altered metabolites and metabolic pathways in the secretome of simulated gut microbiome exposed to six different types of EDNs (Chitosan, cellulose nanocrystals (CNC), cellulose nanofibrils (CNF) and polylactic-co-glycolic acid (PLGA); two inorganic EDNs including TiO2 and SiO2) at two dietary doses. We demonstrated that all six EDNs can alter the composition in the secretome with distinct patterns. Chitosan, followed by PLGA and SiO2, has shown the highest potency in inducing the secretome change with major pathways in tryptophan and indole metabolism, bile acid metabolism, tyrosine and phenol metabolism. Metabolomic alterations with clear dose response were observed in most EDNs. Overall, phenylalanine has been shown as the most sensitive metabolites, followed by bile acids such as chenodeoxycholic acid and cholic acid. Those metabolites might be served as the representative metabolites for the EDNs-gut bacteria interaction. Collectively, our studies have demonstrated the sensitivity and feasibility of using metabolomic signatures to understand and predict EDNs-gut microbiome interaction.
Collapse
Affiliation(s)
- Yijun Fan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei 230601, Anhui, China
| | | | - Min Nian
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Xing Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qin Yang
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Kaarunya Sampathkumar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Joachim Say Chye Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Institute of Eco-Chongming, Shanghai 202162, China.
| |
Collapse
|
3
|
Śmialek M, Konieczka T, Konieczka P, Kowalczyk J, Koncicki A, Kozłowski K, Jankowski J. Monitoring of antibiotic use in broiler turkey flocks in the Warmia and Mazury province in 2019-2021. J Vet Res 2023; 67:243-249. [PMID: 38143827 PMCID: PMC10740319 DOI: 10.2478/jvetres-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/18/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction The increasing resistance of bacteria to antibiotics has obliged the EU Member States to reduce by 50% the use of antibiotics in animal production by 2030. This study was undertaken with the aim to analyse the use of antibiotics in flocks of broiler turkeys reared in the Warmia and Mazury province in a two-year period. Material and Methods From data from 238 production records of turkey flocks provided by the County Veterinary Inspectorates, the use of antibiotics (mg/kg) was analysed in turkey flocks reared in 2019-2021. The data provided the year of rearing, turkey sex and immunoprophylactic measures. Results A significant decrease in antimicrobial use was reported in the male turkey flocks in 2021 (157 mg/kg body weight) in comparison to 2020 (241 mg) and 2019 (299 mg). In both male and female turkeys, the use of antimicrobials gradually decreased from 2019 to 2021. Significantly lower antibiotic use was reported in turkey flocks using autogenous vaccines. Conclusion The positive trend shown in this study proves the possibility of meeting the EU recommendations for 50% reduction in the use of antibiotics in animal production by 2030. More emphasis should be placed on minimising the risk of infectious diseases requiring antibiotic therapy with welfare, biosecurity, immunomodulation and specific prophylaxis measures.
Collapse
Affiliation(s)
- Marcin Śmialek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
- SLW Biolab Veterinary Laboratory, 14-100Ostróda, Poland
| | - Teresa Konieczka
- Department of Poultry Science, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Paweł Konieczka
- Department of Poultry Science, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Joanna Kowalczyk
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Andrzej Koncicki
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Krzysztof Kozłowski
- Department of Poultry Science, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury, 10-719Olsztyn, Poland
| |
Collapse
|
4
|
Xu L, Yang X, He Y, Hu Q, Fu Z. Combined exposure to titanium dioxide and tetracycline induces neurotoxicity in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109562. [PMID: 36764589 DOI: 10.1016/j.cbpc.2023.109562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
In aquatic environment, engineered materials may inevitably interact with the coexisted organic pollutants, which affect their bioavailability and toxicity. In this contribution, the combined impacts of tetracycline (TC) and titanium dioxide nanoparticles (TiO2 NPs) on the neurodevelopment of zebrafish larvae were investigated, and the underlying mechanisms were further elucidated. Firstly, it was confirmed that the co-existence of TC would increase the size and decrease the zeta potential of TiO2 NPs. Following, developmental indicators and motor behaviors were investigated. Our results indicated that co-exposure to TC and TiO2 NPs exhibited enhanced embryonic malformation rates and abnormal nervous system development in zebrafish embryos. Meanwhile, the locomotor behavior was increased upon treatment of TC and TiO2 NP. Further, pathway enrichment analyses of transcriptomic sequencing provided detailed information that either lipid metabolism or PPAR signaling pathway were significantly affected in the co-exposure group. Also, TC + TiO2 NP exposure significantly changed the mRNA expression of neural development-related genes and up-regulated the expression levels of neurotransmitters like 5-hydroxytryptamine, dopamine, acetylcholinesterase, and γ-aminobutyric acid. Taken together, our results demonstrated that the co-exposure of TC and TiO2 NPs had the potential to cause neurotoxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Xiaole Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Ying He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China.
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China.
| |
Collapse
|
5
|
Couvillion SP, Danczak RE, Cao X, Yang Q, Keerthisinghe TP, McClure RS, Bitounis D, Burnet MC, Fansler SJ, Richardson RE, Fang M, Qian WJ, Demokritou P, Thrall BD. Graphene oxide exposure alters gut microbial community composition and metabolism in an in vitro human model. NANOIMPACT 2023; 30:100463. [PMID: 37060994 DOI: 10.1016/j.impact.2023.100463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
Graphene oxide (GO) nanomaterials have unique physicochemical properties that make them highly promising for biomedical, environmental, and agricultural applications. There is growing interest in the use of GO and extensive in vitro and in vivo studies have been conducted to assess its nanotoxicity. Although it is known that GO can alter the composition of the gut microbiota in mice and zebrafish, studies on the potential impacts of GO on the human gut microbiome are largely lacking. This study addresses an important knowledge gap by investigating the impact of GO exposure- at low (25 mg/L) and high (250 mg/L) doses under both fed (nutrient rich) and fasted (nutrient deplete) conditions- on the gut microbial communitys' structure and function, using an in vitro model. This model includes simulated oral, gastric, small intestinal phase digestion of GO followed by incubation in a colon bioreactor. 16S rRNA amplicon sequencing revealed that GO exposure resulted in a restructuring of community composition. 25 mg/L GO induced a marked decrease in the Bacteroidota phylum and increased the ratio of Firmicutes to Bacteroidota (F/B). Untargeted metabolomics on the supernatants indicated that 25 mg/L GO impaired microbial utilization and metabolism of substrates (amino acids, carbohydrate metabolites) and reduced production of beneficial microbial metabolites such as 5-hydroxyindole-3-acetic acid and GABA. Exposure to 250 mg/L GO resulted in community composition and metabolome profiles that were very similar to the controls that lacked both GO and digestive enzymes. Differential abundance analyses revealed that 3 genera from the phylum Bacteroidota (Bacteroides, Dysgonomonas, and Parabacteroides) were more abundant after 250 mg/L GO exposure, irrespective of feed state. Integrative correlation network analysis indicated that the phylum Bacteroidota showed strong positive correlations to multiple microbial metabolites including GABA and 3-indoleacetic acid, are much larger number of correlations compared to other phyla. These results show that GO exposure has a significant impact on gut microbial community composition and metabolism at both low and high GO concentrations.
Collapse
Affiliation(s)
- Sneha P Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Robert E Danczak
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA
| | - Qin Yang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Tharushi P Keerthisinghe
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Ryan S McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA
| | - Meagan C Burnet
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sarah J Fansler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rachel E Richardson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA.
| | - Brian D Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
6
|
Zhang J, Zhang Q, Zhang Z, Zhou Z, Lu T, Sun L, Qian H. Evaluation of phoxim toxicity on aquatic and zebrafish intestinal microbiota by metagenomics and 16S rRNA gene sequencing analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63017-63027. [PMID: 35449330 DOI: 10.1007/s11356-022-20325-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Phoxim is one of the main organophosphorus pesticides used in agricultural production. However, little information is known about how it affects the aquatic microbial community and the intestinal microbiota of fish. Herein, we utilized shotgun metagenomics and 16S rRNA gene sequencing to reveal the aquatic eco-risk of phoxim. Seven days of phoxim exposure significantly changed the composition of aquatic microbial community, obliterated the interactions between microorganisms, and thus reduced the complexity and stability of the microbial community. During long-time exposure (i.e., 14 days), most of the ecological functions were restored due to the redundancy of the microbial community. However, phoxim exposure promoted the dissemination of elfamycin resistance gene. The zebrafish gut microbial community also recovered from a temporary ecological disorder of aquatic microbiota, but phoxim continually affected zebrafish growth and swimming behavior. Overall, our results demonstrated that phoxim exposure significantly changed the structure and function of the microbial community and displayed a negative impact on freshwater ecosystems in a short exposure time.
Collapse
Affiliation(s)
- Jinfeng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China.
| |
Collapse
|
7
|
Zhao H, Liu M, Lv Y, Fang M. Dose-response metabolomics and pathway sensitivity to map molecular cartography of bisphenol A exposure. ENVIRONMENT INTERNATIONAL 2022; 158:106893. [PMID: 34592654 DOI: 10.1016/j.envint.2021.106893] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
In the toxicological regime, the toxicological endpoint and its dose-response relationship are two of the most prominent characters in conducting a risk assessment for chemical exposure. Systems biological methods have been used to comprehensively characterize the impact of toxicants on the biochemical pathways. However, the majority of the current studies are only based on single-dose, and limited information can be extrapolated to other doses from these experiments, regardless of the sensitivity of each endpoint. This study aims to understand the dose-response metabolite dysregulation pattern and metabolite sensitivity at the system-biological level. Here, we applied bisphenol A (BPA), an endocrine-disrupting chemical (EDC), as the model chemical. We first employed the global metabolomics method to characterize the metabolome of breast cancer cells (MCF-7) upon exposure to different doses (0, 20, 50, and 100 µM) of BPA. The dysregulated features with a clear dose-response relationship were also effectively picked up with an R-package named TOXcms. Overall, most metabolites were dysregulated by showing a significant dose-dependent behaviour. The results suggested that BPA exposure greatly perturbed purine metabolism and pyrimidine metabolism. Interestingly, most metabolites within the purine metabolism were described as a biphasic dose-response relationship. With the established dose-response relationship, we were able to fully map the metabolite cartography of BPA exposure within a wide range of concentrations and observe some unique patterns. Furthermore, an effective concentration of certain fold changes (e.g., EC+10 means the dose at which metabolite is 10% upregulated) and metabolite sensitivity were defined and introduced to this dose-response omics information. The result showed that the purine metabolism pathway is the most venerable target of BPA, which can be a potential endogenous biomarker for its exposure. Overall, this study applied the dose-response metabolomics method to fully understand the biochemical pathway disruption of BPA treatment at different doses. Both dose-response omics strategy and metabolite sensitivity analysis can be further considered and emphasized in future chemical risk assessments.
Collapse
Affiliation(s)
- Haoduo Zhao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Min Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yunbo Lv
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore.
| |
Collapse
|