1
|
Wang F. Reproductive endocrine disruption effect and mechanism in male zebrafish after life cycle exposure to environmental relevant triclosan. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106899. [PMID: 38492288 DOI: 10.1016/j.aquatox.2024.106899] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Triclosan (TCS) is a wide-spectrum antibacterial agent that is found in various water environments. It has been reported to have estrogenic effects. However, the impact of TCS exposure on the reproductive system of zebrafish (Danio rerio) throughout their life cycle is not well understood. In this study, zebrafish fertilized eggs were exposed to 0, 10, and 50 μg/L TCS for 120 days. The study investigated the effects of TCS exposure on brain and testis coefficients, the expression of genes related to the hypothalamus-pituitary-gonadal (HPG) axis, hormone levels, vitellogenin (VTG) content, histopathological sections, and performed RNA sequencing of male zebrafish. The results revealed that life cycle TCS exposure had significant effects on zebrafish reproductive parameters. It increased the testis coefficient, while decreasing the brain coefficient. TCS exposure also led to a decrease in mature spermatozoa and altered the expression of genes related to the HPG axis. Furthermore, TCS disrupted the balance of sex hormone levels and increased VTG content of male zebrafish. Transcriptome sequencing analysis indicated that TCS affected reproductive endocrine related pathways, including PPAR signaling pathway, cell cycle, GnRH signaling pathway, steroid biosynthesis, cytokine-cytokine receptor interaction, and steroid hormone biosynthesis. Protein-protein interaction (PPI) network analysis confirmed the enrichment of hub genes in these pathways, including bub1bb, ccnb1, cdc20, cdk1, mcm2, mcm5, mcm6, plk1, and ttk in the brain, as well as fabp1b.1, fabp2, fabp6, ccr7, cxcl11.8, hsd11b2, and hsd3b1 in the testis. This study sheds light on the reproductive endocrine-disrupting mechanisms of life cycle exposure to TCS.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, No. 6 Jiqing Road, Yibin District, Luoyang 471022, China.
| |
Collapse
|
2
|
An J, Yi Y, Jiang J, Yao W, Ren G, Shang Y. Metabolic disturbance and transcriptomic changes induced by methyl triclosan in human hepatocyte L02 cells. Toxicol Res (Camb) 2023; 12:863-872. [PMID: 37915488 PMCID: PMC10615820 DOI: 10.1093/toxres/tfad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 11/03/2023] Open
Abstract
PURPOSE Methyl triclosan (MTCS) is one of the biomethylated by-products of triclosan (TCS). With the increasing use of TCS, the adverse effects of MTCS have attracted extensive attention in recent years. The purpose of this study was to investigate the cytotoxicity of MTCS and to explore the underlining mechanism using human hepatocyte L02 cells as in vitro model. RESULTS The cytotoxicity results revealed that MTCS could inhibit cell viability, disturb the ratio of reduced glutathione (GSH) and oxidized glutathione (GSSG), and reduce the mitochondrial membrane potential (MMP) in a dose-dependent manner. In addition, MTCS exposure significantly promoted the cellular metabolic process, including enhanced conversion of glucose to lactic acid, and elevated content of intracellular triglyceride (TG) and total cholesterol (TC). RNA-sequencing and bioinformatics analysis indicated disorder of glucose and lipid metabolism was significantly induced after MTCS exposure. Protein-protein interaction network analysis and node identification suggested that Serine hydroxy methyltransferase 2 (SHMT2), Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), Asparagine synthetase (ASNS) and Phosphoglycerate dehydrogenase (PHGDH) are potential molecular markers of metabolism imbalance induced by MTCS. CONCLUSION These results demonstrated that oxidative stress and metabolism dysregulation might be involved in the cytotoxicity of MTCS in L02 cells.
Collapse
Affiliation(s)
- Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Yuting Yi
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Jingjing Jiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Weiwei Yao
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Guofa Ren
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Yu Shang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| |
Collapse
|
3
|
Wang F, Liu F. Mechanism-based understanding of the potential cellular targets of triclosan in zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104255. [PMID: 37657728 DOI: 10.1016/j.etap.2023.104255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Triclosan (TCS) has become widely distributed due to its widespread use. In this study, we investigated the mechanisms of TCS's potential effects on cellular targets in zebrafish (Danio rerio) larvae using transcriptome sequencing. The expressions of 772, 368, and 1039 genes were significantly altered in zebrafish after embryos were exposed to 2, 10, and 50 μg/L TCS for consecutive 50 d, respectively, and 33 differentially expressed genes (DEGs) were found. DEGs were significantly enriched in the biological processes, including inflammatory response and purine ribonucleoside bisphosphate biosynthetic process by Go analysis, and in processes such as egg coat formation, binding of sperm to zona pellucida, positive regulation of acrosome reaction, and immune response by Gene set enrichment analysis (GSEA). Both KEGG pathway analysis and GSEA showed that NOD-like receptor signaling pathway and Steroid biosynthesis were significantly affected. Results showed that TCS potentially affected reproduction, immune, and metabolism of zebrafish larvae.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China.
| | - Fei Liu
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China
| |
Collapse
|
4
|
Lu L, Huang W, Han Y, Tong D, Sun S, Yu Y, Liu G, Shi W. Toxicity of microplastics and triclosan, alone and in combination, to the fertilisation success of a broadcast spawning bivalve Tegillarca granosa. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104208. [PMID: 37390575 DOI: 10.1016/j.etap.2023.104208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 07/02/2023]
Abstract
Since most marine invertebrates adopted external fertilisation, their fertilisation process is particularly vulnerable to aquatic pollutants. Both antimicrobial ingredients and microplastics (MPs) are ubiquitous in aquatic environments; however, their synergistic effects on the fertilisation of marine invertebrates remain unclear. Therefore, in this study, the fertilisation toxicity of MPs and triclosan (TCS), alone and in combination, was investigated in the broadcast spawning bivalve Tegillarca granosa. Results showed that MPs and TCS significantly suppressed the fertilisation success of T. granosa. As the fertilisation success of broadcast spawning invertebrates depends on successful gamete collisions, gamete fusion, and egg activation, sperm swimming velocity, viability, gamete collision probability, ATP status, and ion-transport enzyme activities were also analysed to further ascertain the underlying toxicity mechanisms. In summary, our findings indicate that the presence of MPs may enhance the fertilisation toxicity of TCS by hampering sperm-egg collision probability, reducing gamete fusion efficiency, and restricting Ca2+ oscillation formation.
Collapse
Affiliation(s)
- Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China; Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou, PR China.
| |
Collapse
|
5
|
Wang F, Liu H, Liu F. Analysis of the effect of triclosan on gonadal differentiation of zebrafish based on metabolome. CHEMOSPHERE 2023; 331:138856. [PMID: 37149099 DOI: 10.1016/j.chemosphere.2023.138856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
Although the previous research confirmed that triclosan (TCS) affects the female proportion at the early stage of zebrafish (Danio rerio) and has an estrogen effect, the mechanism by which TCS affects the sex differentiation of zebrafish is not entirely clear. In this study, zebrafish embryos were exposed to different concentrations of TCS (0, 2, 10, and 50 μg/L) for 50 consecutive days. The expression of sex differentiation related genes and metabolites were then determined in larvae using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Liquid Chromatography-Mass Spectrometer (LC-MS), respectively. TCS upregulated the expression of the sox9a, dmrt1a and amh genes, down-regulating the expression of wnt4a, cyp19a1b, cyp19a1a, and vtg2 gene. The overlapped classification of Significant Differential Metabolites (SDMs) between the control group and three TCS treated groups related to gonadal differentiation was Steroids and steroid derivatives, including 24 down-regulated SDMs. The enriched pathways related to gonadal differentiation were Steroid hormone biosynthesis, Retinol metabolism, Metabolism of xenobiotics by cytochrome P450, and Cortisol synthesis and secretion. Moreover, SDMs were significantly enriched in Steroid hormone biosynthesis in the 2 μg/L TCS group, which included Dihydrotestosterone, Cortisol, 11beta-hydroxyandrost-4-ene-3, 17-dione, 21-Hydroxypregnenolone, Androsterone, Androsterone glucuronide, Estriol, Estradiol, 19-Hydroxytestosterone, Cholesterol, Testosterone, and Cortisone acetate. Results showed that TCS affects the female proportion mainly through Steroid hormone biosynthesis, in which aromatase plays a key role in zebrafish. Retinol metabolism, metabolism of xenobiotics by cytochrome P450, and cortisol synthesis and secretion may also participate in TCS-mediated sex differentiation. These findings reveal the molecular mechanisms of TCS-induced sex differentiation, and provide theoretical guidance for the maintenance of water ecological balance.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, Luoyang, 471022, China.
| | - Haifang Liu
- School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Fei Liu
- School of Biological Science, Luoyang Normal University, Luoyang, 471022, China
| |
Collapse
|
6
|
Wang A, Wan X, Zhuang P, Jia W, Ao Y, Liu X, Tian Y, Zhu L, Huang Y, Yao J, Wang B, Wu Y, Xu Z, Wang J, Yao W, Jiao J, Zhang Y. High fried food consumption impacts anxiety and depression due to lipid metabolism disturbance and neuroinflammation. Proc Natl Acad Sci U S A 2023; 120:e2221097120. [PMID: 37094155 PMCID: PMC10160962 DOI: 10.1073/pnas.2221097120] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Western dietary patterns have been unfavorably linked with mental health. However, the long-term effects of habitual fried food consumption on anxiety and depression and underlying mechanisms remain unclear. Our population-based study with 140,728 people revealed that frequent fried food consumption, especially fried potato consumption, is strongly associated with 12% and 7% higher risk of anxiety and depression, respectively. The associations were more pronounced among male and younger consumers. Consistently, long-term exposure to acrylamide, a representative food processing contaminant in fried products, exacerbates scototaxis and thigmotaxis, and further impairs exploration ability and sociality of adult zebrafish, showing anxiety- and depressive-like behaviors. Moreover, treatment with acrylamide significantly down-regulates the gene expression of tjp2a related to the permeability of blood-brain barrier. Multiomics analysis showed that chronic exposure to acrylamide induces cerebral lipid metabolism disturbance and neuroinflammation. PPAR signaling pathway mediates acrylamide-induced lipid metabolism disorder in the brain of zebrafish. Especially, chronic exposure to acrylamide dysregulates sphingolipid and phospholipid metabolism, which plays important roles in the development of anxiety and depression symptoms. In addition, acrylamide promotes lipid peroxidation and oxidation stress, which participate in cerebral neuroinflammation. Acrylamide dramatically increases the markers of lipid peroxidation, including (±)5-HETE, 11(S)-HETE, 5-oxoETE, and up-regulates the expression of proinflammatory lipid mediators such as (±)12-HETE and 14(S)-HDHA, indicating elevated cerebral inflammatory status after chronic exposure to acrylamide. Together, these results both epidemiologically and mechanistically provide strong evidence to unravel the mechanism of acrylamide-triggered anxiety and depression, and highlight the significance of reducing fried food consumption for mental health.
Collapse
Affiliation(s)
- Anli Wang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Xuzhi Wan
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Pan Zhuang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Wei Jia
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Yang Ao
- Department of Nutrition, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310009, China
| | - Xiaohui Liu
- Department of Nutrition, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310009, China
| | - Yimei Tian
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Li Zhu
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Yingyu Huang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Jianxin Yao
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310009, China
| | - Yu Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| |
Collapse
|