1
|
Xiao Y, Wang Z, Li M, Liu Q, Liu X, Wang Y. Efficient Charge Separation in Ag/PCN/UPDI Ternary Heterojunction for Optimized Photothermal-Photocatalytic Performance via Tandem Electric Fields. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306692. [PMID: 38773907 DOI: 10.1002/smll.202306692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Indexed: 05/24/2024]
Abstract
Charge separation driven by the internal electric field is a research hotspot in photocatalysis. However, it remains challenging to accurately control the electric field to continuously accelerate the charge transfer. Herein, a strategy of constructing a tandem electric field to continuously accelerate charge transfer in photocatalysts is proposed. The plasma electric field, interface electric field, and intramolecular electric field are integrated into the Ag/g-C3N4/urea perylene imide (Ag/PCN/UPDI) ternary heterojunction to achieve faster charge separation and longer carrier lifetime. The triple electric fields function as three accelerators on the charge transport path, promoting the separation of electron-hole pairs, accelerating charge transfer, enhancing light absorption, and increasing the concentration of energetic electrons on the catalyst. The H2 evolution rate of Ag/PCN/UPDI is 16.8 times higher than that of pristine PDI, while the degradation rate of oxytetracycline is increased by 4.5 times. This new strategy will provide a groundbreaking idea for the development of high-efficiency photocatalysts.
Collapse
Affiliation(s)
- Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, China
| | - Zhezhe Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, China
| | - Mengyao Li
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yude Wang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming, 650504, China
| |
Collapse
|
2
|
Xiao Y, Li H, Yao B, Xiao K, Wang Y. Hollow g-C 3N 4@Ag 3PO 4 Core-Shell Nanoreactor Loaded with Au Nanoparticles: Boosting Photothermal Catalysis in Confined Space. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308032. [PMID: 38801010 DOI: 10.1002/smll.202308032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Indexed: 05/29/2024]
Abstract
Low solar energy utilization efficiency and serious charge recombination remain major challenges for photocatalytic systems. Herein, a hollow core-shell Au/g-C3N4@Ag3PO4 photothermal nanoreactor is successfully prepared by a two-step deposition method. Benefit from efficient spectral utilization and fast charge separation induced by the unique hollow core-shell heterostructure, the H2 evolution rate of Au/g-C3N4@Ag3PO4 is 16.9 times that of the pristine g-C3N4, and the degradation efficiency of tetracycline is increased by 88.1%. The enhanced catalytic performance can be attributed to the ordered charge movement on the hollow core-shell structure and a local high-temperature environment, which effectively accelerates the carrier separation and chemical reaction kinetics. This work highlights the important role of the space confinement effect in photothermal catalysis and provides a promising strategy for the development of the next generation of highly efficient photothermal catalysts.
Collapse
Affiliation(s)
- Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Haoyu Li
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Bo Yao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming, 650504, P. R. China
| |
Collapse
|
3
|
Xiao Y, Wang Z, Yao B, Cao M, Wang Y. Guiding the Driving Factors on Plasma Super-Photothermal S-Scheme Core-Shell Nanoreactor to Enhance Photothermal Catalytic H 2 Evolution and Selective CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304843. [PMID: 37936334 DOI: 10.1002/smll.202304843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Indexed: 11/09/2023]
Abstract
Light-induced heat has a non-negligible role in photocatalytic reactions. However, it is still challenging to design highly efficient catalysts that can make use of light and thermal energy synergistically. Herein, the study proposes a plasma super-photothermal S-scheme heterojunction core-shell nanoreactor based on manipulation of the driving factors, which consists of α-Fe2 O3 encapsulated by g-C3 N4 modified with gold quantum dots. α-Fe2 O3 can promote carrier spatial separation while also acting as a thermal core to radiate heat to the shell, while Au quantum dots transfer energetic electrons and heat to g-C3 N4 via surface plasmon resonance. Consequently, the catalytic activity of Au/α-Fe2 O3 @g-C3 N4 is significantly improved by internal and external double hot spots, and it shows an H2 evolution rate of 5762.35 µmol h-1 g-1 , and the selectivity of CO2 conversion to CH4 is 91.2%. This work provides an effective strategy to design new plasma photothermal catalysts for the solar-to-fuel transition.
Collapse
Affiliation(s)
- Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Zhezhe Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Bo Yao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming, 6500504, P. R. China
| |
Collapse
|
4
|
Gao ZW, Li YY, Li PH, Yang YF, Zhao YH, Yang M, Chen SH, Song ZY, Huang XJ. Synergistic activation of P and orbital coupling effect for ultra-sensitive and selective electrochemical detection of Cd(II) over Fe-doped CoP. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132842. [PMID: 37907008 DOI: 10.1016/j.jhazmat.2023.132842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023]
Abstract
Despite significant advancements in the detection of cadmium (Cd(II)) based on nanomaterial adsorbability, limited research has been conducted on ultra-sensitive and selective detection mechanisms, resulting in a lack of guidance for designing efficient interface materials to detect Cd(II). Herein, reductive Fe doping on CoP facilitates an efficient Fe-Co-P electron transfer path, which renders P the electron-rich site and subsequently splits a new orbital peak that matches with that of Cd(II) for excellent electrochemical performance. The sensitivity of Cd(II) was remarkably up to 109.75 μA μM-1 on the Fe-CoP modified electrode with excellent stability and repeatability, surpassing previously reported findings. Meanwhile, the electrode exhibits exceptional selectivity towards Cd(II) ions compared to some bivalent heavy metal ions (HMIs). Moreover, X-ray absorption fine structure (XAFS) analysis reveals the interaction between P and Cd(II), which is further verified via density functional theory (DFT) calculation with the new hybrid peaks resulting from the splitting peak of P atoms coupled with the orbital energy level of Cd(II). Generally, doping engineering for specific active sites and regulation of orbital electrons not only provides valuable insights for the subsequent regulation of electronic configuration but also lays the foundation for customizing highly sensitive and selectivity sensors.
Collapse
Affiliation(s)
- Zhi-Wei Gao
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Yu Li
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuan-Fan Yang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Huan Zhao
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem And Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Li F, Dong B, Yu L, Jin X, Huang Q. Construction of Photothermo-Electro Coupling Field Based on Surface Modification of Hydrogenated TiO 2 Nanotube Array Photoanode and Its Improved Photoelectrochemical Water Splitting. Inorg Chem 2024; 63:1175-1187. [PMID: 38165740 DOI: 10.1021/acs.inorgchem.3c03604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Solar water splitting has gained increasing attention in converting solar energy into green hydrogen energy. However, the construction of a photothermo-electro coupling field by harnessing light-induced heat and its enhancement on solar water splitting were seldom studied. Herein, we developed a full-spectrum responsive photoanode by depositing CdxZn1-xS onto the surface of hydrogenated TiO2 nanotube array (H-TNA), followed by modification with Ni2P. The resulting ternary photoanode exhibits a photocurrent density of 4.99 mA·cm-2 at 1.23 V vs. RHE with photoinduced heating, which is 11.9-fold higher than that of pristine TNA, with an optimal ABPE of 2.47%. The characterization results demonstrate that the ternary photoanode possesses superior full-spectrum absorption and efficient photogenerated carrier separation driven by the interface electric fields. Additionally, Ni2P reduces the hole injection barrier and increases surface active sites, accelerating the consumption of holes accumulating on the relatively unstable CdxZn1-xS to simultaneously improve the activity and stability of water splitting. Moreover, temperature-dependent measurements reveal that H-TNA and Ni2P significantly motivate the photothermal conversion to construct a photothermo-electro coupling field, optimizing photoelectric conversion and charge carrier-induced surface reactions. This work contributes to understanding the synergistic effect of the photothermo-electro coupling field on the photoelectrochemical water splitting.
Collapse
Affiliation(s)
- Fei Li
- School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Bo Dong
- School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Lintao Yu
- School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xiaoli Jin
- School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qunzeng Huang
- School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
6
|
Cheng P, Wang D. Easily Repairable and High-Performance Carbon Nanostructure Absorber for Solar Photothermoelectric Conversion and Photothermal Water Evaporation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8761-8769. [PMID: 36744969 DOI: 10.1021/acsami.2c22077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Carbon materials are a category of broadband solar energy harvesting materials that can convert solar energy into heat under irradiation, which can be used for photothermal water evaporation and photothermoelectric power generation. However, destruction of the carbon nanostructure during usage will significantly decrease the light-trapping performance and, thus, limit their practical applications. In this article, an easily repairable carbon nanostructure absorber with full-solar-spectrum absorption and a hierarchically porous structure is prepared. The carbon absorber shows a superhigh light absorption of above 97% across the whole solar spectrum because of multiple scatterings within the carbon nanostructure and photon interaction with the carbon nanoparticles. The excellent light absorption performance directly leads to a good photothermal effect. As a consequence, the carbon absorber integrated with a thermoelectric module can obtain a large power (133.3 μW cm-2) output under 1 sun. In addition, the carbon absorber combined with the sponge can achieve a high photothermal water evaporation efficiency of 83.6% under 1 sun. Its high-efficiency solar-to-electricity and photothermal water evaporation capabilities demonstrate that the carbon absorber with superhigh absorption, simple fabrication, and facile repairability shows great potential for practical fresh water production and electric power generation.
Collapse
Affiliation(s)
- Pengfei Cheng
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro- and Nanotechnologies MacroNano, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 5, 98693Ilmenau, Germany
| | - Dong Wang
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro- and Nanotechnologies MacroNano, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 5, 98693Ilmenau, Germany
| |
Collapse
|
7
|
Liao L, Wang M, Li Z, Wang X, Zhou W. Recent Advances in Black TiO 2 Nanomaterials for Solar Energy Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:468. [PMID: 36770430 PMCID: PMC9921477 DOI: 10.3390/nano13030468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Titanium dioxide (TiO2) nanomaterials have been widely used in photocatalytic energy conversion and environmental remediation due to their advantages of low cost, chemical stability, and relatively high photo-activity. However, applications of TiO2 have been restricted in the ultraviolet range because of the wide band gap. Broadening the light absorption of TiO2 nanomaterials is an efficient way to improve the photocatalytic activity. Thus, black TiO2 with extended light response range in the visible light and even near infrared light has been extensively exploited as efficient photocatalysts in the last decade. This review represents an attempt to conclude the recent developments in black TiO2 nanomaterials synthesized by modified treatment, which presented different structure, morphological features, reduced band gap, and enhanced solar energy harvesting efficiency. Special emphasis has been given to the newly developed synthetic methods, porous black TiO2, and the approaches for further improving the photocatalytic activity of black TiO2. Various black TiO2, doped black TiO2, metal-loaded black TiO2 and black TiO2 heterojunction photocatalysts, and their photocatalytic applications and mechanisms in the field of energy and environment are summarized in this review, to provide useful insights and new ideas in the related field.
Collapse
|
8
|
Xiao Y, Yao B, Wang Z, Chen T, Xiao X, Wang Y. Plasma Ag-Modified α-Fe 2O 3/g-C 3N 4 Self-Assembled S-Scheme Heterojunctions with Enhanced Photothermal-Photocatalytic-Fenton Performances. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234212. [PMID: 36500835 PMCID: PMC9740289 DOI: 10.3390/nano12234212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 05/26/2023]
Abstract
Low spectral utilization and charge carrier compounding limit the application of photocatalysis in energy conversion and environmental purification, and the rational construction of heterojunction is a promising strategy to break this bottleneck. Herein, we prepared surface-engineered plasma Ag-modified α-Fe2O3/g-C3N4 S-Scheme heterojunction photothermal catalysts by electrostatic self-assembly and light deposition strategy. The local surface plasmon resonance effect induced by Ag nanoparticles broadens the spectral response region and produces significant photothermal effects. The temperature of Ag/α-Fe2O3/g-C3N4 powder is increased to 173 °C with irradiation for 90 s, ~3.2 times higher than that of the original g-C3N4. The formation of 2D/2D structured S-Scheme heterojunction promotes rapid electron-hole transfer and spatial separation. Ternary heterojunction construction leads to significant enhancement of photocatalytic performance of Ag/α-Fe2O3/g-C3N4, the H2 photocatalytic generation rate up to 3125.62 µmol g-1 h-1, which is eight times higher than original g-C3N4, and the photocatalytic degradation rate of tetracycline to reach 93.6%. This thermally assisted photocatalysis strategy improves the spectral utilization of conventional photocatalytic processes and provides new ideas for the practical application of photocatalysis in energy conversion and environmental purification.
Collapse
Affiliation(s)
- Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Bo Yao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Zhezhe Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Ting Chen
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuechun Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Yude Wang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, Yunnan University, Kunming 650504, China
| |
Collapse
|
9
|
Annealing and Plasma Effects on the Structural and Photocatalytic Properties of TiO2 Fibers Produced by Electrospinning. Catalysts 2022. [DOI: 10.3390/catal12111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, a combined method of heat treatment and plasma surface modification was used to improve the nanostructures and photocatalytic activity of electrospun TiO2 fibers. Based on the tuning effect of the annealing temperature from 500 to 800 °C, further improvements via the generation of H2 radiofrequency plasma reactions on the fiber’s surface were investigated. It was found that the anatase–rutile phase transition starts to occur at around 700 °C, which is higher than the common temperature for TiO2. The interfacial effect is generated by the symbiosis relationship between these two phases in the fibers, which can enhance photocatalytic activity since the anatase–rutile heterojunction in mixed-phase TiO2 is formed. The dramatic rise in oxygen vacancies on the fiber’s surface is created by the H2 plasma; this leads to the number of trapped electrons increasing and results in an accelerated separation between the photogenerated electrons and holes. Therefore, the photocatalytic mechanism, including the anatase–rutile heterojunction and the TiO2 fiber band structure containing oxygen vacancies, is predicted. The degradation rate was significantly enhanced (1.5 times) by increasing the annealing temperature up to 700 °C, which can be further improved upon after treatment with surface H2 plasma.
Collapse
|
10
|
Zheng Z, Man JHK, Lo IMC. Integrating Reactive Chlorine Species Generation with H 2 Evolution in a Multifunctional Photoelectrochemical System for Low Operational Carbon Emissions Saline Sewage Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16156-16166. [PMID: 36326170 DOI: 10.1021/acs.est.2c04139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional wastewater treatment plants (WWTPs) suffer from high carbon emissions and are inefficient in removing emerging organic pollutants (EOPs). Consequently, we have developed a low operational carbon emissions multifunctional photoelectrochemical (PEC) system for saline sewage treatment to simultaneously remove organic pollutants, ammonia, and bacteria, coupled with H2 evolution. A reduced BiVO4 (r-BiVO4) photoanode with enhanced PEC properties, ascribed to constructing sufficient oxygen vacancies and V4+ species, was synthesized for the aforementioned technique. The PEC/r-BiVO4 process could treat saline sewage to meet local WWTPs' discharge standard in 40 min at 2.0 V vs Ag/AgCl and completely degrade carbamazepine (one of EOPs), coupled with 633 μmol of H2 production; 93.29% reduction in operational carbon emissions and 77.82% decrease in direct emissions were achieved by the PEC/r-BiVO4 process compared with large-scale WWTPs, attributed to the restrained generation of CH4 and N2O. The PEC system activated chloride ions in sewage to generate numerous reactive chlorine species and facilitate •OH production, promoting contaminants removal. The PEC system exhibited operational feasibility at varying pH and total suspended solids concentrations and has outstanding reusability and stability, confirming its promising practical potential. This study proposed a novel PEC reaction for reducing operational carbon emissions from saline sewage treatment.
Collapse
Affiliation(s)
- Zexiao Zheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong999077, China
| | - Justin H K Man
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong999077, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong999077, China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong999077, China
| |
Collapse
|
11
|
Chang N, Guo J, Liu Y, Shi B, Wang S, Wang H, Zhao X. Synergetic effect of cobalt phosphide cocatalyst modified molybdenum disulfide for boosting photocatalytic performance. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Recent Advancements in Photocatalysis Coupling by External Physical Fields. Catalysts 2022. [DOI: 10.3390/catal12091042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Photocatalysis is one of the most promising green technologies to utilize solar energy for clean energy achievement and environmental governance, such as artificial photosynthesis, water splitting, pollutants degradation, etc. Despite decades of research, the performance of photocatalysis still falls far short of the requirement of 5% solar energy conversion efficiency. Combining photocatalysis with the other physical fields has been proven to be an efficient way around this barrier which can improve the performance of photocatalysis remarkably. This review will focus on the recent advances in photocatalysis coupling by external physical fields, including Thermal-coupled photocatalysis (TCP), Mechanical-coupled photocatalysis (MCP), and Electromagnetism-coupled photocatalysis (ECP). In this paper, coupling mechanisms, materials, and applications of external physical fields are reviewed. Specifically, the promotive effect on photocatalytic activity by the external fields is highlighted. This review will provide a detailed and specific reference for photocatalysis coupling by external physical fields in a deep-going way.
Collapse
|
13
|
Li W, Tao CC, Tang JP, Zhong SL. Cu-Modified La 2Si 2O 7/TiO 2 composite materials: preparation, characterization and photothermal properties. Dalton Trans 2022; 51:12192-12197. [PMID: 35894183 DOI: 10.1039/d2dt01138g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu-Modified La2Si2O7/TiO2 composite materials were prepared by the molten salt method and a solid-phase reduction strategy. Due to the surface plasmon resonance (SPR) of copper, the optical response from the UV to the visible region and near-infrared is increased. In the meantime, it enhances the absorption of visible light by the titanium dioxide and acts as a plasma catalyst. The combination enhances the photothermal properties of the composite. The particle size of Cu/La2Si2O7/TiO2 is in the range of 100 to 230 nm. Results show that the composite has a good photothermal effect. The 1 mg ml-1 solution can be warmed up to 63.1 °C at 0.5 W cm-2 laser power density with a maximum temperature difference of 45 °C. It has potential applications in solar energy conversion, photothermal catalysis, etc.
Collapse
Affiliation(s)
- Wei Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Chao-Chao Tao
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Jian-Ping Tang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Sheng-Liang Zhong
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
14
|
Alexpandi R, Abirami G, Balaji M, Jayakumar R, Ponraj JG, Cai Y, Pandian SK, Ravi AV. Sunlight-active phytol-ZnO@TiO 2 nanocomposite for photocatalytic water remediation and bacterial-fouling control in aquaculture: A comprehensive study on safety-level assessment. WATER RESEARCH 2022; 212:118081. [PMID: 35077939 DOI: 10.1016/j.watres.2022.118081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
With a growing consciousness of the importance of nature stewardship, researchers are focusing their efforts on utilizing renewable energy, particularly solar energy, to address environmental concerns. In this context, photocatalysis has long been viewed as one of the most promising cleaning methods. Hence, we have prepared a sunlight-active phytol-assisted ZnO-TiO2 nanocomposite (PZTN) for photocatalytic bacterial deactivation and dye degradation process. The PZTN-photocatalysis effectively deactivated the bacterial pathogens as well as malachite green dye within 240 min under direct-sunlight. Moreover, this will be the first complete study on safety level assessment of photocatalytically-remediated water through toxicity studies. The obtained results evidenced that photocatalytically-deactivated bacteria and MG-dye showed to have no toxic effects, signifying that the PZTN-photocatalyzed water seems to be extremely safe for the environment. As a result of this research, we suggest that the PZTN could be a promising sunlight-active photocatalyst for environmental water treatment. On the other hand, biofouling is a ubiquitous phenomenon in the marine environment. Bacteria are the first organisms to foul surfaces and produce biofilms on man-made submerged materials. Interestingly, PZTN-coated PVC plastic-films effectively disallowed biofilms on their surface. This part of this research suggests that PZTN coated PVC-plastics are the best alternative for biofouling management.
Collapse
Affiliation(s)
- Rajaiah Alexpandi
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630003, India
| | - Gurusamy Abirami
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630003, India
| | - Murugesan Balaji
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu 630003, India; The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China
| | - Rengarajan Jayakumar
- Mandapam Regional Centre, Central Marine Fisheries Research Institute, Mandapam, Tamil Nadu, India
| | - Jeyaraj Godfred Ponraj
- TIL Biosciences - Animal Health Division of Tablets (India) Limited, Jhaver Centre, Egmore, Chennai 600 008, India
| | - Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shunmugiah Karutha Pandian
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630003, India
| | - Arumugam Veera Ravi
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630003, India.
| |
Collapse
|
15
|
Chen Z, Yin H, Wang R, Peng Y, You C, Li J. Efficient Electron Transfer by Plasmonic Silver in SrTiO 3 for Low-Concentration Photocatalytic NO Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3604-3612. [PMID: 35230808 DOI: 10.1021/acs.est.2c00262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocatalysis presents a feasible option to control low-concentration NO emissions from industrial burning facilities, and increasing excitons in quantity and improving surface activity are the crucial issues to be solved. Plasmonic silver with the orientation of the (111) plane is uniformly distributed on the Ti-O termination of the SrTiO3 (STO) (100) plane (major). The NO conversion rate has a sixfold increment compared to pristine STO. Meanwhile, the toxic NO2 had a significant decline in the absence of water. This high performance could be attributed to the unique property of the localized surface plasmonic resonance of silver particles, which increases the optical response range of the catalyst. Meanwhile, the formation of a Schottky junction could promote the charge separation and enhance the lifetime of excitons via the electron transfer from silver particles to STO. More importantly, the Ag-O bond of the heterojunction increases the charge density of adjacent Ti, preferring to bond with the antibonding orbital electron of adsorbed molecules, which offers a favorable channel for the NO adsorption and activation of reactive oxidation species.
Collapse
Affiliation(s)
- Zhen Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Haibo Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Rong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Changfu You
- Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Zhang K, Cao H, Dar A, Li D, Zhou L, Wang C. Construction of oxygen defective ZnO/ZnFe2O4 yolk-shell composite with photothermal effect for tetracycline degradation: Performance and mechanism insight. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Huang S, Qin C, Niu L, Wang J, Sun J, Dai L. Strategies for preparing TiO 2/CuS nanocomposites with cauliflower-like protrusions for photocatalytic water purification. NEW J CHEM 2022. [DOI: 10.1039/d2nj00672c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and controllable method was developed to prepare TiO2/CuS nanocomposites with high photocatalytic efficiency.
Collapse
Affiliation(s)
- Sihui Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chuanxiang Qin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Linyan Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - JianJun Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lixing Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|