1
|
Shi X, Yang D, Li S, Yu K, Yan W, Xu H. Research progress on coupling and stacking systems to enhance power generation performance of microbial fuel cell. J Environ Sci (China) 2025; 154:784-804. [PMID: 40049916 DOI: 10.1016/j.jes.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 05/13/2025]
Abstract
Microbial fuel cells (MFCs) face significant challenges related to low power output, which severely limits their practical applications. Coupling MFC with other technologies and stacking MFCs are feasible solutions to enhance power output. In recent years, the coupling and stacking technology of MFCs has become a research hotspot in the field of environmental energy. This paper first outlines the basic configurations of MFCs and then analyzes the advantages and disadvantages of different setups in the context of coupling and stacking. Subsequently, it discusses in detail the coupling systems of MFC with other technologies, as well as several configurations of stacked MFCs and the phenomenon of voltage reversal. Based on these investigations, the paper proposes future research directions aimed at optimizing MFC performance, thereby enhancing their potential for energy recovery from wastewater and supporting the commercialization and scaling of MFC technology.
Collapse
Affiliation(s)
- Xueyao Shi
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Kedi Yu
- Shenzhen Water Affairs Bureau, Guangdong, Shenzhen 518036, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Yin H, Zhou Y, Sui C, Ding J, Wang J. Recent advances on photocatalytic degradation of phthalate ester plasticizers using nanomaterial photocatalysts. ENVIRONMENTAL RESEARCH 2025; 276:121497. [PMID: 40180262 DOI: 10.1016/j.envres.2025.121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Phthalate esters (PAEs) are a class of organic ester compounds containing benzene rings, which have been widely applied as additives in various fields, especially as plasticizers in plastic product to improve the flexibility. Due to the non-covalent bonding, PAEs inevitably leach out from the plastic polymers into environments. PAEs are endocrine disruptors, which possess seriously hazards to organisms, such as reproductive and genetic abnormalities. Now, PAEs pollution has become a serious environmental problem. Moreover, due to its difficulty in natural degradation, it has become a widespread concern to eliminate PAEs pollution with energy-saving technology. Among various degradation technologies for organic pollutant removal, photocatalytic degradation has attracted more attentions due to the merits of low energy consumption, high removal efficiency, abundant photocatalyst and low secondary pollution. In this article, the photocatalytic degradation using nanomaterial photocatalysts towards four kinds of typical PAEs were reviewed, including di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), dimethyl phthalate (DMP), and diethyl phthalate (DEP). To improve the photocatalytic degradation efficiency, various semiconductor photocatalysts have been developed, and the optical and electrochemical properties, and the degradation mechanism and pathway have been also discussed. Finally, the challenges and perspectives of photocatalytic technology on PAEs elimination were presented.
Collapse
Affiliation(s)
- Huanshun Yin
- Key Laboratory of Marine Resource Chemistry and Food Technology of Ministry of Education, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yunlei Zhou
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China.
| | - Chengji Sui
- Department of Physical and Chemical Testing, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014 Jinan, PR China.
| | - Jia Ding
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
3
|
Li R, Gao SC, Fan X, Ma YM, Ren XP, Gao TP, Liu Y. Enhanced nitrate removal through autotrophic denitrification using microbial fuel cells via bidirectional extracellular electron transfer. Microchem J 2024; 204:111026. [DOI: 10.1016/j.microc.2024.111026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
4
|
Anandhi G, Iyapparaja M. Photocatalytic degradation of drugs and dyes using a maching learning approach. RSC Adv 2024; 14:9003-9019. [PMID: 38500628 PMCID: PMC10945304 DOI: 10.1039/d4ra00711e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024] Open
Abstract
The waste management industry uses an increasing number of mathematical prediction models to accurately forecast the behavior of organic pollutants during catalytic degradation. With the increasing quantity of waste generated, these models are critical for reinforcing the efficiency of wastewater treatment strategies. The application of machine-learning techniques in recent years has notably improved predictive models for waste management, which are essential for mitigating the impact of toxic commercial waste on global water supply. Organic contaminants, dyes, pesticides, surfactants, petroleum by-products, and prescription drugs pose risks to human health. Because traditional techniques face challenges in ensuring water quality, modern strategies are vital. Machine learning has emerged as a valuable tool for predicting the photocatalytic degradation of medicinal drugs and dyes, providing a promising avenue for addressing urgent demands in removing organic pollutants from wastewater. This research investigates the synergistic application of photocatalysis and machine learning for pollutant degradation, showcasing a sustainable solution with promising effects on environmental remediation and computational efficiency. This study contributes to green chemistry by providing a clever framework for addressing present-day water pollution challenges and achieving era-driven answers.
Collapse
Affiliation(s)
- Ganesan Anandhi
- Department of Smart Computing, School of Computer Science Engineering and Information Systems, Vellore Institute of Technology Vellore 632014 Tamil Nadu India
| | - M Iyapparaja
- Department of Smart Computing, School of Computer Science Engineering and Information Systems, Vellore Institute of Technology Vellore 632014 Tamil Nadu India
| |
Collapse
|
5
|
Dong Z, Li S, Rene ER, Tan X, Ma W. Enhanced removal of dimethyl phthalate using heterogeneous UVC/VUV-Fenton amendment with Fe 3O 4@CM-β-CD/rGO catalyst: Efficiency, degradation mechanism and toxicity. CHEMOSPHERE 2024; 352:141343. [PMID: 38331269 DOI: 10.1016/j.chemosphere.2024.141343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Dimethyl phthalate (DMP) is widely used as plasticizer, and this kind of plastic industry wastewater is refractory due to the complex chemical structure and endocrine disrupting property. In order to effectively degrade and mineralize DMP contaminated wastewater, a heterogeneous UVC/VUV-Fenton catalyst system was designed with the amendment of targeted design catalyst Fe3O4@CM-β-CD/rGO with core-shell like structure covered with loose convex folded lamellar. The optimum removal and mineralization efficiency of DMP were 98.6 % and 62.8 % in 30 min with 150 mg L-1 Fe3O4@CM-β-CD/rGO and 8 mmol L-1 H2O2. This efficient and fast removal were attributed to a variety of photocatalytic oxidative active species •OH, •O2- and h+ with 59.6%, 29.1% and 9.9% contribution ratio, which mainly took effect on benzene ring open and side-chain fracture by oxidative, hydrolysis and hydrogen substitution determined by the rupture energy requirement from chemical bond in DMP. The target function of CM-β-CD in catalyst controlled the photo-electron generation rate and shorten mass transfer distance by the cladding lamellar, moreover, rGO accelerated the redox between Fe (II) and Fe (III) and electron transfer. The catalytic recovery and removal to DMP kept above 90 % after five recycles. This study provided an excellent performance catalyst and an effective photo-Fenton approach and for the treatment of endocrine disrupting wastewater.
Collapse
Affiliation(s)
- Zishui Dong
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Sinuo Li
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Xuantong Tan
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Guo W, Guo T, Zhang Y, Yin L, Dai Y. Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: A review. CHEMOSPHERE 2023; 339:139486. [PMID: 37499803 DOI: 10.1016/j.chemosphere.2023.139486] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
In the current era of severe energy and environmental crises, the need for efficient and sustainable methods to control pollution and promote resource recycling has become increasingly important. Photocatalytic degradation of pollutants and simultaneous production of clean energy is one such approach that has garnered significant attention in recent years. The principle of photocatalysis involves the development of efficient photocatalysts and the efficient utilization of solar energy. The use of organic contaminants can enhance the photocatalytic reactions, leading to the sustainable generation of clean energy. Herein, we provide a comprehensive review of the latest advances in the application of photocatalytic synergized clean energy production in the environmental field. This review highlights the latest developments and achievements in this field, highlighting the potential for this approach to revolutionize the way we approach environmental pollution control and resource recycling. The review focuses on (1) the mechanism of photocatalytic degradation and synergistic energy production, (2) photocatalysts and synthesis strategies, (3) photocatalytic carbon dioxide reduction, (4) pollutant degradation, and (5) hydrogen and electricity production. In addition, perspectives on key challenges and opportunities in photocatalysis and clean energy for future developments are proposed. This review provides a roadmap for future research directions and innovations of photocatalysis that could contribute to the development of more sustainable and cleaner energy solutions.
Collapse
Affiliation(s)
- Wenqing Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Tao Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Yuanzheng Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Yunrong Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| |
Collapse
|
7
|
Wang J, Tian Y, Wei J, Lyu C, Yu H, Song Y. Impacts of dibutyl phthalate on bacterial community composition and carbon and nitrogen metabolic pathways in a municipal wastewater treatment system. ENVIRONMENTAL RESEARCH 2023; 223:115378. [PMID: 36709875 DOI: 10.1016/j.envres.2023.115378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Dibutyl phthalate (DBP) is a typical toxic and hazardous pollutant in pharmaceutical wastewater, affecting the metabolism of microbial flora, leading to decreased treatment efficiency, and deteriorated effluent quality in municipal wastewater treatment plants (WWTPs). This study conducted a long-term experiment with 6 operational stages in a pilot-scale A2O-MBR system, analyzing the effect of DBP on the bacterial community and their carbon and nitrogen metabolic pathways. 16S rRNA gene amplicon sequencing analysis and principal components analysis (PCA) showed that DBP at 8 mg/L significantly influenced the structure of bacterial community (P < 0.05), resulting in reduced bacterial community diversity. Metagenomic analysis was used to explore the embedded carbon and nitrogen metabolic pathways. At the presence of DBP, the metabolism of saccharides, lipids, and aromatic compounds were blocked owing to the vanishment of key enzyme (such as acetylaminohexosyltransferase (EC 2.4.1.92) and UDP-sugar pyro phosphorylase (EC 2.7.7.64)) encoding genes, resulting in weakened carbon metabolism, and thus reduced COD removal performance. The resultant deficiency of the genes such as those encoding hydroxyproline dehydrogenase (EC 1.5.5.3) gave rise to interrupted metabolic pathways of amino acid (arginine, proline, tyrosine, and tryptophan), resulting in declined function of nitrogen metabolism and thus reduced TN removal efficiency. The uncovery of the mechanisms by which DBP affects wastewater treatment system efficiency and microbial metabolism is of theoretical importance for the efficient operation of municipal and pharmaceutical wastewater treatment systems.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yucheng Tian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Chunjian Lyu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Sharma P, Dutta D, Udayan A, Nadda AK, Lam SS, Kumar S. Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119248. [PMID: 35395353 DOI: 10.1016/j.envpol.2022.119248] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The presence of heavy metals in municipal solid waste (MSW) is considered as prevalent global pollutants that cause serious risks to the environment and living organisms. Due to industrial and anthropogenic activities, the accumulation of heavy metals in the environmental matrices is increasing alarmingly. MSW causes several adverse environmental impacts, including greenhouse gas (GHG) emissions, river plastic accumulation, and other environmental pollution. Indigenous microorganisms (Pseudomonas, Flavobacterium, Bacillus, Nitrosomonas, etc.) with the help of new pathways and metabolic channels can offer the potential approaches for the treatment of pollutants. Microorganisms, that exhibit the ability of bioaccumulation and sequestration of metal ions in their intracellular spaces, can be utilized further for the cellular processes like enzyme signaling, catalysis, stabilizing charges on biomolecules, etc. Microbiological techniques for the treatment and remediation of heavy metals provide a new prospects for MSW management. This review provides the key insights on profiling of heavy metals in MSW, tolerance of microorganisms, and application of indigenous microorganisms in bioremediation. The literatures revealed that indigenous microbes can be exploited as potential agents for bioremediation.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Deblina Dutta
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Aswathy Udayan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| |
Collapse
|
9
|
Tong Y, Wei J, Mo R, Ma H, Ai F. Photocatalytic Microbial Fuel Cells and Performance Applications: A Review. Front Chem 2022; 10:953434. [PMID: 35844644 PMCID: PMC9280278 DOI: 10.3389/fchem.2022.953434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, photocatalytic microbial fuel cells have gradually become a hot research topic in pollutant treatment, using either in situ or indirectly the oxidation of organic pollutants by catalytic materials under light and the biodegradation and mineralization of various components in wastewater by microorganisms, or through the generation of electricity by the microbial fuel cell (MFC) system to promote the photogeneration and separation of electrons and holes by the catalytic materials of the photocatalytic cell (PC) system. This study aims to provide new ideas for the development of environmentally friendly wastewater treatment technologies by investigating the use of photocatalytic cells for the efficient degradation and resource utilization of target pollutants. This study aims to raise awareness of the use of photocatalytic microbial fuel cells for pollutant degradation by providing an overview of the practical status of photocatalytic microbial fuel cells. This is achieved by reviewing the key cathode development, production capacity, and progress in the degradation of pollutants in photocatalytic microbial fuel cells. The issues facing future developments are also discussed in terms of how photocatalytic microbial fuel cells work and how they degrade pollutants. This study shows that photocatalytic microbial fuel cells are beneficial for achieving renewable energy (bioenergy, photovoltaic, etc.) capacity and dealing with environmental pollution and that this is a novel technology that deserves to be promoted to achieve the current dual carbon targets.
Collapse
Affiliation(s)
- Yao Tong
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, China
| | - Julong Wei
- School of Mechanical Engineering, Shandong University, Jinan, China
| | - Rick Mo
- Hong Kong Productivity Council(HKPC), Hong Kong, China
| | - Hailing Ma
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, China
- *Correspondence: Hailing Ma, ; Fujin Ai,
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- *Correspondence: Hailing Ma, ; Fujin Ai,
| |
Collapse
|
10
|
Tuan Tran H, Lin C, Bui XT, Ky Nguyen M, Dan Thanh Cao N, Mukhtar H, Giang Hoang H, Varjani S, Hao Ngo H, Nghiem LD. Phthalates in the environment: characteristics, fate and transport, and advanced wastewater treatment technologies. BIORESOURCE TECHNOLOGY 2022; 344:126249. [PMID: 34732372 DOI: 10.1016/j.biortech.2021.126249] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Phthalates are well-known emerging contaminants that harm human health and the environment. Therefore, this review aims to discuss about the occurrence, fate, and phthalates concentration in the various environmental matrices (e.g., aquatic, sediment, soil, and sewage sludge). Hence, it is necessary to treat sources containing phthalates before discharging them to aqueous environment. Various advanced wastewater treatments including adsorption process (e.g., biochar, activated carbon), advanced oxidation processes (e.g., photo-fenton, ozonation, photocatalysis), and biological treatment (membrane bioreactor) have been successfully to address this issue with high removal efficiencies (70-95%). Also, the degradation mechanism was discussed to provide a comprehensive understanding of the phthalate removal for the reader. Additionally, key factors that influenced the phthalates removal efficiency of these technologies were identified and summarized with a view towards pilot-scale and industrial applications.
Collapse
Affiliation(s)
- Huu Tuan Tran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam
| | - Minh Ky Nguyen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Ngoc Dan Thanh Cao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hong Giang Hoang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Health Sciences and Finance - Accounting, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Sector-10A, Gandhinagar 382010, Gujarat, India
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, 15 Broadway, Ultimo, NWS 2007, Australia
| | - Long D Nghiem
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, 15 Broadway, Ultimo, NWS 2007, Australia
| |
Collapse
|
11
|
Ratheesh A, Elias L, Aboobakar Shibli SM. Tuning of Electrode Surface for Enhanced Bacterial Adhesion and Reactions: A Review on Recent Approaches. ACS APPLIED BIO MATERIALS 2021; 4:5809-5838. [PMID: 35006924 DOI: 10.1021/acsabm.1c00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The study of bacterial adhesion and its consequences has great significance in different fields such as marine science, renewable energy sectors, soil and plant ecology, food industry, and the biomedical field. Generally, the adverse effects of microbial surface interactions have attained wide visibility. However, herein, we present distinct approaches to highlight the beneficial aspects of microbial surface interactions for various applications rather than deal with the conventional negative aspects or prevention strategies. The surface microbial reactions can be tuned for useful biochemical or bio-electrochemical applications, which are otherwise unattainable through conventional routes. In this context, the present review is a comprehensive approach to highlight the basic principles and signature parameters that are responsible for the useful microbial-electrode interactions. It also proposes various surface tuning strategies, which are useful for tuning the electrode characteristics particularly suitable for the enhanced bacterial adhesion and reactions. The tuning of surface characteristics of electrodes is discussed with a special reference to the Microbial Fuel Cell as an example.
Collapse
Affiliation(s)
- Anjana Ratheesh
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Liju Elias
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Sheik Muhammadhu Aboobakar Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India.,Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| |
Collapse
|