1
|
Zhang Y, Zhao C, Yan W, Tian T, Zhao M, Zhao L. Design of novel chromatographic stationary phases based on long-chain ionic liquid-derived carbon quantum dots, with embedded polar groups and imidazoles, for the separation of multiple compounds. Mikrochim Acta 2025; 192:174. [PMID: 39969575 DOI: 10.1007/s00604-025-06963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Carbon quantum dots (CQDs) were synthesized from brominated 1-hexadecyl-3-vinylimidazolium and citric acid, and a mixed-mode chromatographic (MMC) stationary phase, which can be used in the RPLC/HILIC/IEC chromatographic modes with a good separation efficiency, was successfully synthesized by click-chemistry bonding to a sulfhydryl-modified silica surface. The successful synthesis of the chromatographic stationary phase was demonstrated by its characterization. The effects of organic phase ratio, column temperature and buffer salts on the column were investigated, established the van't Hoff equation, and verified the ion-exchange effect of the column by separating benzoic acid and phenolic compounds under different pH conditions. The reversed-phase performance of the column was characterized by Tanaka test. Compounds such as alkylbenzenes, polycyclic aromatic hydrocarbons, and nucleosides can all be separated on the column in a short period of time. The reproducibility and stability of the columns were verified under the corresponding chromatographic conditions, and the results showed good reproducibility and stability of the columns. The chromatographic column was used to separate the base nucleosides in apples, and four base nucleosides were successfully isolated from apples.
Collapse
Affiliation(s)
- Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, People's Republic of China
| | - Chenyang Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, People's Republic of China
| | - Wen Yan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, People's Republic of China
| | - Tian Tian
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, People's Republic of China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, People's Republic of China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
2
|
El Messaoudi N, Miyah Y, Georgin J, Wasilewska M, Felisardo RJA, Moukadiri H, Manzar MS, Aryee AA, Knani S, Rahman MM. Recent developments in the synthesis of tetraethylenepentamine-based nanocomposites to eliminate heavy metal pollutants from wastewater through adsorption. BIORESOURCE TECHNOLOGY REPORTS 2024; 28:101982. [DOI: 10.1016/j.biteb.2024.101982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
|
3
|
Wang M, Yuan Y, Han Y, Qiao F, Li J, Yan H. Two-dimensional hydrophilic imprinted resin-graphene oxide composite for selective extraction and rapid determination of gibberellin traces in licorice samples. Food Chem 2024; 452:139553. [PMID: 38733687 DOI: 10.1016/j.foodchem.2024.139553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
This study presents novel methodologies and materials for selectively and sensitively determining gibberellin traces in licorice to address food safety concerns. A novel hydrophilic imprinted resin-graphene oxide composite (HMIR-GO) was developed with fast mass transfer, high adsorption capacity, and exceptional aqueous recognition performance for gibberellin. Leveraging the advantages of molecular imprinting, hydrophilic resin synthesis, and rapid mass transfer characteristics of GO, HMIR-GO was employed as an adsorbent, showing resistance to matrix interference. Coupled with HPLC, a rapid and selective method for determining gibberellin was established. Under optimal conditions, the method exhibited a wide linear range (0.02-5.00 μg g-1, r = 0.9999), low detection limits (3.3 ng g-1), and satisfactory recoveries (92.0-98.4%), enabling the accurate and rapid detection of gibberellin in licorice. This study introduces a pioneering strategy for the selective extraction and determination of trace gibberellin levels, offering insights for similar applications in functional foods.
Collapse
Affiliation(s)
- Mingwei Wang
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Yanan Yuan
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Yehong Han
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Fengxia Qiao
- College of Biochemical and Environmental Engineering, Baoding University, Baoding, 071002, China
| | - Jinliang Li
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Safari F, Poursalehi R, Delavari H. Urea-driven g-C 3N 4 nanostructures for highly efficient photoreduction of Cr(vi) under visible LED light: effects of calcination temperature. RSC Adv 2024; 14:26943-26953. [PMID: 39193279 PMCID: PMC11348859 DOI: 10.1039/d4ra00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Graphitic carbon nitride (g-C3N4) nanostructures were synthesized via the calcination of urea at various temperatures ranging between 400 and 600 °C and were utilized for photoreduction of Cr(vi) in aqueous medium. Due to the low adsorption of Cr(vi) on the g-C3N4 surface, a more accurate assessment of the photocatalytic performance of the samples was carried out. Although the characterization showed that the specific surface of samples increased as the calcination temperature increased, the most efficient product in terms of the photoreduction duration of Cr(vi) was produced through the calcination process carried out at 450 °C, which reduced the concentration by more than 99% in 40 minutes. These results demonstrate that the structural and surface properties of g-C3N4 are critical factors that impact the photocatalytic performance. Alongside the calcination temperatures, the concentration of citric acid as a hole scavenger, the source of illumination, pH levels, and the recycling ability of the produced specimen at 450 °C were also investigated. Conspicuously, the photocatalyst works better when more citric acid is present and the pH level decreases. Out of all the cases studied regarding the light source, the 400 nm LED light source was found to be the most efficient. Additionally, even after going through the photoreduction process four times, the photocatalyst still remained highly efficient.
Collapse
Affiliation(s)
- Faramarz Safari
- Nanotechnology Group, Faculty of Engineering and Technology, Tarbiat Modares University Tehran Iran
| | - Reza Poursalehi
- Nanotechnology Group, Faculty of Engineering and Technology, Tarbiat Modares University Tehran Iran
| | - Hamid Delavari
- Nanotechnology Group, Faculty of Engineering and Technology, Tarbiat Modares University Tehran Iran
| |
Collapse
|
5
|
Liu X, Han Z, Lin N, Hao Y, Qu J, Gao P, He X, Liu B, Duan X. Immature persimmon residue as a novel biosorbent for efficient removal of Pb(II) and Cr(VI) from wastewater: Performance and mechanisms. Int J Biol Macromol 2024; 266:131083. [PMID: 38531519 DOI: 10.1016/j.ijbiomac.2024.131083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Owing to the powerful affinity of tannin toward heavy metal ions, it is frequently immobilized on adsorbents to enhance their adsorption properties. However, natural adsorbents containing tannin have been overlooked owing to its water solubility. Herein, a novel natural adsorbent based on the immature persimmon residue (IPR) with soluble tannin removed was fabricated to eliminate Pb(II) and Cr(VI) in aquatic environments. The insoluble tannin in IPR endowed it with prosperous properties for eliminating Pb(II) and Cr(VI), and the IPR achieved maximum Pb(II) and Cr(VI) adsorption quantities of 68.79 mg/g and 139.40 mg/g, respectively. Kinetics and isothermal adsorption analysis demonstrated that the removal behavior was controlled by monolayer chemical adsorption. Moreover, the IPR exhibited satisfactory Pb(II) and Cr(VI) removal efficiencies even in the presence of multiple coexisting ions and showed promising regeneration potential after undergoing five consecutive cycles. Additionally, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analysis unveiled that the elimination mechanisms were primarily electrostatic attraction, chelation and reduction. Overall, the IPR, as a tannin-containing biosorbent, was verified to possess substantial potential for heavy metal removal, which can provide new insights into the development of novel natural adsorbents from the perspective of waste resource utilization.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zixuan Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nan Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuexin Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialin Qu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengcheng Gao
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohua He
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuchang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Li Z, Shen S, Hussain S, Cui B, Yao J, Su Y, Wang Y, Hao Y, Gao R. Imidazolium-Functionalized Conjugated Polymer for On-Site Visual and Ultrasensitive Detection of Toxic Hexavalent Chromium. Anal Chem 2024; 96:5150-5159. [PMID: 38502727 DOI: 10.1021/acs.analchem.3c05200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Hexavalent chromium [Cr(VI)] is considered a serious environmental pollutant that possesses a hazardous effect on humans even at low concentrations. Thus, the development of a bifunctional material for ultratrace-selective detection and effective elimination of Cr(VI) from the environment remains highly desirable and scarcely reported. In this work, we explore an imidazolium-appended polyfluorene derivative PF-DBT-Im as a highly sensitive/selective optical probe and a smart adsorbent for Cr(VI) ions with an ultralow detection limit of 1.77 nM and removal efficiency up to 93.7%. In an aqueous medium, PF-DBT-Im displays obvious transformation in its emission color from blue to magenta on exclusively introducing Cr(VI), facilitating naked-eye colorimetric detection. Consequently, a portable sensory device integrated with a smartphone is fabricated for realizing real-time and on-site visual detection of Cr(VI). Besides, the imidazolium groups attached onto side chains of PF-DBT-Im are found to be highly beneficial for achieving selective and efficient elimination of Cr(VI) with capacity as high as 128.71 mg g-1. More interestingly, PF-DBT-Im could be easily regenerated following treatment with KBr and can be recycled at least five times in a row. The main factor behind ultrasensitive response and excellent removal efficiency is found to be anion-exchange-induced formation of a unique ground-state complex between PF-DBT-Im and Cr(VI), as evident by FT-IR, XPS, and simulation studies. Thus, taking advantage of the excellent signal amplification property and rich ion-exchange sites, a dual-functional-conjugated polymer PF-DBT-Im is presented for the concurrent recognition and elimination of Cr(VI) ions proficiently and promptly with great prospects in environmental monitoring and water decontamination.
Collapse
Affiliation(s)
- Zehong Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shenyu Shen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sameer Hussain
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bo Cui
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jingbo Yao
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yue Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yi Hao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
7
|
Liang H, Wu H, Fang W, Ma K, Zhao X, Geng Z, She D, Hu H. Two-stage hydrothermal oxygenation for efficient removal of Cr(VI) by starch-based polyporous carbon: Wastewater application and removal mechanism. Int J Biol Macromol 2024; 264:130812. [PMID: 38484806 DOI: 10.1016/j.ijbiomac.2024.130812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Cr(VI) is of concern because of its high mobility and toxicity. In this work, a two-stage hydrothermal strategy was used to activate the O sites of starch, and by inserting K-ion into the pores, starch-based polyporous carbon (S-PC) adsorption sites was synthesized for removal of Cr(VI). Physicochemical characterization revealed that the O content of the S-PC reached 20.66 % after activation, indicating that S-PC has excellent potential for adsorption of Cr(VI). The S-PC removal rate for 100 mg/L Cr(VI) was 96.29 %, and the adsorption capacity was 883.86 mg/g. Moreover, S-PC showed excellent resistance to interference, and an equal concentration of hetero-ions reduced the activity by less than 5 %. After 8 cycles of factory wastewater treatment, the S-PC maintained 81.15 % of its original activity, which indicated the possibility of practical application. Characterization and model analyses showed that the removal of Cr(VI) from wastewater by the S-PC was due to CC, δ-OH, ν-OH, and C-O-C groups, and the synergistic effect of adsorption and reduction was the key to the performance. This study provides a good solution for treatment of Cr(VI) plant wastewater and provides a technical reference for the use of biological macromolecules such as starch in the treatment of heavy metals.
Collapse
Affiliation(s)
- Hongxu Liang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Haiyang Wu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wendi Fang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kaiyue Ma
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250300, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Hongxiang Hu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Zhao D, Li Z, Zhu K, Lu A, Wang Y, Jiang J, Tang C, Shen XC, Ruan C. Highly dispersed amorphous nano-selenium functionalized carbon nanofiber aerogels for high-efficient uptake and immobilization of Hg(II) ions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133162. [PMID: 38086302 DOI: 10.1016/j.jhazmat.2023.133162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Owing to the strong Hg-Se interaction, Se-containing materials are promising for the uptake and immobilization of Hg(II) ions; compared with metal selenides or selenized compounds, elemental Se contains the highest ratio of Se. However, it remains a challenge to fully expose all the potential Se binding sites and achieve high utilization efficiency of elemental Se. Through rational design on the structure, dispersity, and size of materials, Se/CNF aerogels composed of abundant well-dispersed and amorphous nano-Se have been prepared and applied for the high-efficient uptake and immobilization of Hg(II) ions. The well-dispersion of nano-Se increases the exposure of Se sites, the amorphous structure benefits the easy cleavage of Se-Se bonds, the 3D porous networks of aerogels permit fast ions transport and easy operation. Benefiting from the combination effect of strong Hg-Se interaction and sufficient exposure of Se-enriched sites, the Se/CNF aerogels demonstrate strong binding ability (Kd = 3.8 ×105 mL·g-1), high capacity (943.4 mg·g-1), and preeminent selectivity (αMHg > 100) towards highly toxic Hg(II) ions. Notably, the utilization efficiency of Se in Se/CNF aerogels is as high as 99.5%. Moreover, the strong Hg-Se interaction and extraordinary stability of HgSe could minimize the environmental impact of the spent Se/CNF adsorbents after its disposal.
Collapse
Affiliation(s)
- Dongmin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Zhuoyan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Kaini Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Ai Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Ying Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jingjing Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cong Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Changping Ruan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
9
|
Su K, Hu G, Zhao T, Dong H, Yang Y, Pan H, Lin Q. The ultramicropore biochar derived from waste distiller's grains for wet-process phosphoric acid purification: Removal performance and mechanisms of Cr(VI). CHEMOSPHERE 2024; 349:140877. [PMID: 38061559 DOI: 10.1016/j.chemosphere.2023.140877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Solid waste and heavy metal pollution are long-term and challenging subjects in the field of environmental engineering. In this study, we propose a sustainable approach to "treating waste with waste" by utilizing the ultramicropore biochar derived from solid waste distiller's grains as a means to remove Cr(VI) from simulated wastewater and wet phosphoric acid. The biochar prepared in this research exhibit extremely high specific surface areas (up to 2973 m2/g) and a well-developed pore structure, resulting in a maximum Cr(VI) adsorption capacity of 426.0 mg/g and over 99% removal efficiency of Cr(VI). Furthermore, the adsorbent can be reused for up to eight cycles without significant reduction in its Cr(VI) adsorption performance. Mechanistic investigations suggest that the exceptional Cr(VI) adsorption capacity can be attributed to the synergistic effect of electrostatic interaction and reduction adsorption. This study offers an alternative approach for the resource utilization of solid waste distiller's grains, and the prepared biochar holds promise for the removal of Cr(VI) from wastewater and wet-process phosphoric acid.
Collapse
Affiliation(s)
- Kai Su
- Key Laboratory of Green Chemical and Clean Energy Technology, Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, PR China
| | - Guotao Hu
- Guizhou Wengfu (Group) Co., Ltd., Guiyang, 550025, PR China
| | - Tianxiang Zhao
- Key Laboratory of Green Chemical and Clean Energy Technology, Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, PR China.
| | - Huinan Dong
- Key Laboratory of Green Chemical and Clean Energy Technology, Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, PR China
| | - Yi Yang
- Guizhou Wengfu (Group) Co., Ltd., Guiyang, 550025, PR China
| | - Hongyan Pan
- Key Laboratory of Green Chemical and Clean Energy Technology, Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, PR China.
| | - Qian Lin
- Key Laboratory of Green Chemical and Clean Energy Technology, Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
10
|
Ran Q, Zhao D, Ji Y, Fan Z, Lin G, Liu X, Jia K. Recyclable adsorption removal and fluorescent monitoring of hexavalent chromium by electrospun nanofibers membrane derived from Tb 3+ coordinating polyarylene ether amidoxime. Talanta 2024; 266:125058. [PMID: 37572474 DOI: 10.1016/j.talanta.2023.125058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Emerging technologies or advanced materials which can simultaneously adsorb and detect highly toxic Cr(VI) are urgently in demand for environmental remediation. Herein, we have designed and synthesized a functional polyarylene ether with aromatic main chain and pendent carboxyl groups along with amidoxime group that can be coordinated with different metal ions. Thanks to its versatile activation of the lanthanide ions' inherent fluorescence and good processability, the fluorescent nanofiber membranes with competitive Cr(VI) adsorption and detection performance have been fabricated via one-step electrospinning of mixed solution containing synthesized polymer and terbium salt. More specifically, the optimized nanofiber membrane exhibits a maximal Cr(VI) adsorption of 278.2 mg/g and specific detection for hexavalent chromium down to 11.76 nM. More importantly, the prepared fluorescent nanofiber membranes can be easily re-generated and re-used for both Cr(VI) adsorption and detection for five times. Given the unique advantages of easy fabrication, competitive dual functionalities as well as good reusability of electrospun fluorescent nanofiber membranes, the present work basically opens up new insight in the design of multifunctional recyclable material for the remediation of heavy metal pollution.
Collapse
Affiliation(s)
- Qimeng Ran
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Danlei Zhao
- College of Quality and Technical Supervision, Hebei University, Baoding, 071002, China
| | - Yao Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Zilin Fan
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Guo Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Xiaobo Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu, China
| | - Kun Jia
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu, China.
| |
Collapse
|
11
|
Jiang X, Zhou Y, Chen H, Zhang R, Yu J, Wang S, Jiang F, Bai H, Yang X. A novel hydrangea-like magnetic composite Fe 3O 4@MnO 2@ZIF-67 for efficient selective adsorption of Pd(II) from metallurgical wastewater. CHEMOSPHERE 2023; 344:140432. [PMID: 37832882 DOI: 10.1016/j.chemosphere.2023.140432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
The selective adsorption of palladium from wastewater is a feasible solution to solving palladium pollution and resource scarcity. Because traditional solvent extraction methods often involve the use of considerable amounts of organic solvents, research is focused on investigating adsorption techniques that can selectively remove palladium from wastewater. In this paper, the magnetic composite Fe3O4@MnO2@ZIF-67 was synthesized and its performance for the adsorption of Pd(II) in acidic water was investigated. Fe3O4@MnO2@ZIF-67 was characterized by various analytical methods such as TEM, SEM, EDS, BET, XRD, FTIR, zeta potential analysis, VSM, and TGA. The effects of palladium ion concentration, contact time, pH, and temperature on adsorption were evaluated. The kinetics were shown to follow the pseudo-second-order kinetic model and Elovich model, and the rate-limiting step was chemisorption. Thermodynamic studies showed that increasing the temperature promoted the adsorption of Pd(II), and the maximum uptake capacity of Fe3O4@MnO2@ZIF-67 for Pd(II) was 531.91 mg g-1. Interestingly, Fe3O4@MnO2@ZIF-67 exhibited superior selectivity for Pd(II) in the presence of Ir(IV), Pt(IV), and Rh(III). The adsorbent can be used repeatedly for selective adsorption of palladium. Even at the fifth cycle, the uptake rate of Pd(II) remained as high as 83.1%, and it showed a favorable adsorption capacity and selectivity for Pd(II) in real metallurgical wastewater. The adsorption mechanism was analyzed by SEM, FTIR, XRD, XPS, and DFT calculations, which indicated that electrostatic interactions and coordination with nitrogen-containing groups were involved. Fe3O4@MnO2@ZIF-67 is a promising adsorbent for the efficient adsorption and selective separation of palladium ions.
Collapse
Affiliation(s)
- Xue Jiang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Yu Zhou
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Haiou Chen
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Ru Zhang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Junhui Yu
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Shixiong Wang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Fengzhi Jiang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Huiping Bai
- School of Materials and Energy, Key Laboratory of Micro/Nano Materials and Technology, Yunnan University, Kunming, 650091, China.
| | - Xiangjun Yang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
12
|
Liang H, Ma K, Zhao X, Geng Z, She D, Hu H. Enhancement of Cr(VI) adsorption on lignin-based carbon materials by a two-step hydrothermal strategy: Performance and mechanism. Int J Biol Macromol 2023; 252:126432. [PMID: 37604414 DOI: 10.1016/j.ijbiomac.2023.126432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Cr(VI) is a carcinogenic heavy metal that forms an oxygen-containing anion, which is difficult to remove from water by adsorbents. Here, industrial alkali lignin was transformed into a Cr(VI) adsorbent (N-LC) by using a two-step hydrothermal strategy. The characterization results of the adsorbent showed that O and N were uniformly distributed on the surface of the adsorbent, resulting in a favorable morphology and structure. The Cr(VI) adsorption of N-LC was 13.50 times that of alkali lignin, and the maximum was 326.10 mg g-1, which confirmed the superiority of the two-step hydrothermal strategy. After 7 cycles, the adsorption of N-LC stabilized at approximately 62.18 %. In addition, in the presence of coexisting ions, N-LC showed a selective adsorption efficiency of 85.47 % for Cr(VI), which is sufficient to support its application to actual wastewaters. Model calculations and characterization showed that N and O groups were the main active factors in N-LC, and CO, -OH and pyridinic-N were the main active sites. This study provides a simple and efficient method for the treatment of heavy metals and the utilization of waste lignin, which is expected to be widely applied in the environmental, energy and chemical industries.
Collapse
Affiliation(s)
- Hongxu Liang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kaiyue Ma
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250300, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Diao She
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongxiang Hu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
13
|
Wen J, Zhang Y, Du Y. Effective removal of Cr(VI) in water by bulk-size polyaniline/polyvinyl alcohol/amyloid fibril composite beads. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1944-1956. [PMID: 37906451 PMCID: wst_2023_327 DOI: 10.2166/wst.2023.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
With the rapid expansion of industrial activities, chromium ions are discharged into the environment and cause water and soil pollution of various extents, which seriously endangers the natural ecological environment and human health. In this study, polyaniline/polyvinyl alcohol/amyloid fibril (PANI/PVA/AFL) composite gel beads (PPA) were prepared from polyaniline and amyloid fibrils with HCl as doping acid and PVA as a cross-linking agent. The results showed that PPA was an irregular composite bead with a diameter of 6 mm. The adsorption of Cr(VI) on the PPA gel beads followed the pseudo-second-order kinetics model, suggesting that chemical reactions were the controlling step in the Cr(VI) adsorption process. Though the Redlich-Peterson isotherm model had the best fit for the adsorption data, the isothermal adsorption process can be simplified using the Langmuir model. The maximum adsorption capacity for Cr(VI) in water was 51.5 mg g-1, comparable to or even higher than some PANI-based nanomaterials. Thermodynamic parameters showed that the adsorption process was a spontaneous, endothermic, and entropy-increasing process. Microscopic analysis revealed that the capture of Cr(VI) on PPA was mainly governed by electrostatic attraction, reduction, and complexation reactions. PPA can be used as a kind of effective remediation agent to remove Cr(VI) in water.
Collapse
Affiliation(s)
- Jia Wen
- Research Institute of Hunan University in Chongqing, Chongqing 401120, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China E-mail:
| | - Yuru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yinlin Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
14
|
Guo Y, He D. Preparation of a novel poly-(di-ionic liquid)/BDD-modified electrode for the detection of tetrachloro- p-benzoquinone. J Mol Liq 2023; 385:122242. [PMID: 37337511 PMCID: PMC10241489 DOI: 10.1016/j.molliq.2023.122242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
During the COVID-19 pandemic, the release of toxic disinfection by-products (DBPs) has increased due to the intensive, large-scale use of disinfectants. Halogenated benzoquinones (HBQs) are among the most toxic DBPs, but there is no rapid, convenient, and economical detection method. In this study, a novel PDIL/BDD-modified electrode was prepared in a mixed solvent of dimethyl sulfoxide (DMSO) and acetonitrile (ACN) by electrochemical polymerization with a di-ionic ionic liquid containing alkenyl groups as the monomer. The electrochemical behavior of tetra-chloro-p-benzoquinone (TCBQ) on the modified electrode was studied. By studying the cyclic voltammetry behavior of TCBQ on the PDIL/BDD electrode, it was concluded that the electrode reactions of TCBQ included the reduction of TCBQ to TCBQH2 (C1) and the reduction of bis-quinhydrone imidazole π-π type charge transfer complex to TCBQH2 (C2). By studying the SWV responses of TCBQ in the concentration range of 1-100 ng/L on the PDIL/BDD electrode, it was found that the reduction peak current (Ipa) had a linear relationship with the concentration. The electrochemical SWV technique was used to detect the concentration of trace TCBQ in water and is expected to be used for the detection of other HBQs in drinking water and swimming pool water.
Collapse
Affiliation(s)
- Yanni Guo
- Department of Chemistry, Changzhi University, 046011 Changzhi, China
| | - Deliang He
- College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, China
| |
Collapse
|
15
|
Liang H, Zhao X, Li N, Zhang H, Geng Z, She D. Three-dimensional lignin-based polyporous carbon@polypyrrole for efficient removal of reactive blue 19: A synergistic effect of the N and O groups. Int J Biol Macromol 2023; 239:124220. [PMID: 37001780 DOI: 10.1016/j.ijbiomac.2023.124220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Reactive blue 19 is one of the abundant carcinogens commonly used in industrial applications. This study transformed industrial lignin into a lignin-based polyporous carbon@polypyrrole (LPC@PPy) by a hydrothermal-activation-in situ polymerization strategy for removal of reactive blue 19. The hydrothermal reaction and polypyrrole polymerization provide abundant O and N groups, and the pore-making process promotes the even distribution of O and N groups in the 3D pore of LPC@PPy, which is favorable for the adsorption of reactive blue 19. The adsorption capacity of LPC@PPy for reactive blue 19 is 537.52 mg g-1, which is 2.04 times the performance of LPC (only hydrothermal and activation process, only have O groups) and 3.36 times that of LC (direct lignin activation, lack of O and N groups). After 8 cycles, LPC@PPy still maintained a high adsorption capacity of 92.14 % for reactive blue 19. In addition, this study found that N and O groups in the material played an important role in adsorption, mainly pyridinic-N, C-OH, -COOR, -C-O- and CC. This work provides a new strategy for the removal of reactive blue 19 and determines the groups that mainly interact with reactive blue 19, which provides a new reference for adsorption, catalysis and related fields.
Collapse
Affiliation(s)
- Hongxu Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250300, China
| | - Ning Li
- Guodian Yinhe Water Co. LTD, Qingdao 266071, China
| | - Hongwei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation CAS&MWR, Yangling 712100, China.
| |
Collapse
|
16
|
Chen Y, Yang J, Abbas A. Enhanced Chromium (VI) Adsorption onto Waste Pomegranate-Peel-Derived Biochar for Wastewater Treatment: Performance and Mechanism. TOXICS 2023; 11:toxics11050440. [PMID: 37235254 DOI: 10.3390/toxics11050440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Surface chemical modification allows for the rational construction of biochar with desirable structures and functionalities for environment purification. Fruit-peel-derived adsorbing material has been well studied in the adsorption of heavy-metal removal due to its abundance and non-toxicity, but its precise mechanism in removing chromium-containing pollutants remains unclear. Herein, we explored the potential application of engineered biochar prepared from fruit waste via chemical modification to remove chromium (Cr) from an aqueous solution. By synthesizing two types of agricultural residue-derived adsorbents, including pomegranate peel adsorbent (PG) and its modified product, pomegranate-peel-derived biochar (PG-B), via chemical and thermal decomposition methods, we elucidated the adsorption property of Cr(VI) on the studied materials and identified the cation retention mechanism of the adsorption process. Batch experiments and varied characterizations demonstrated that superior activity was exhibited in PG-B, which can contribute to the porous surfaces caused by pyrolysis and effective active sites resulting from alkalization. The highest Cr(VI) adsorption capacity is obtained at pH 4, a dosage of 6.25 g L-1, and a contact time of 30 min. The maximum adsorption efficiency of 90.50% in a short period (30 min) was obtained on PG-B, while PG reached a removal performance of 78.01% at 60 min. The results from kinetic and isotherm models suggested that monolayer chemisorption dominated the adsorption process. The Langmuir maximum adsorption capacity is 16.23 mg g-1. This study shortened the adsorption equilibrium time of pomegranate-based biosorbents and presents positive significance in designing and optimizing waste fruit-peel-derived adsorption materials for water purification.
Collapse
Affiliation(s)
- Yingzhou Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jinyan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Adil Abbas
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Li C, Shen J, Wang J, Bao C, Li B, Liu L, Wang H, Zhang X. Highly compressible and macro-porous hydrogels via the synergy of cryogelation and double-network for efficient removal of Cr(VI). Int J Biol Macromol 2023; 238:124160. [PMID: 36966856 DOI: 10.1016/j.ijbiomac.2023.124160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Mechanically robust and macro-porous hydrogels are urgently required for the dynamic removal of heavy metals in wastewater purification field. Herein, a novel microfibrillated cellulose/polyethyleneimine hydrogel (MFC/PEI-CD) with high compressibility and macro-porous structures was fabricated via the synergy of cryogelation and double-network for Cr(VI) adsorption from wastewater. MFCs were pre-cross-linked by bis(vinyl sulfonyl)methane (BVSM) and then formed double-network hydrogels with PEIs and glutaraldehyde below freezing. The SEM showed that the MFC/PEI-CD possessed interconnected macropores with an average pore diameter of 52 μm. Mechanical tests indicated a high compressive stress of 116.4 kPa at 80 % strain, which was 4 times higher than the corresponding MFC/PEI with a single-network. The Cr(VI) adsorption performance of MFC/PEI-CDs was systematically investigated under different parameters. Kinetic studies indicated that the adsorption process was well described by the pseudo-second-order model. Isothermal adsorption behaviors accorded well with Langmuir model with the maximum adsorption capacity of 545.1 mg/g, which was superior to most adsorption materials. More importantly, the MFC/PEI-CD was applied to dynamically adsorb Cr(VI) with the treatment volume of 2070 mL/g. Therefore, this work demonstrates that the synergy of cryogelation and double-network is a novel method for preparing macro-porous and robust materials with promising heavy metal removal from wastewater.
Collapse
|
18
|
Li Y, Gao C, Shuai K, Hashan D, Liu J, She D. Performance and mechanism of starch-based porous carbon capture of Cr(VI) from water. Int J Biol Macromol 2023; 241:124597. [PMID: 37116837 DOI: 10.1016/j.ijbiomac.2023.124597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Cr(VI) pollution has seriously affected the survival of biological organisms and humans, so reducing the harm of Cr(VI) pollution is a significant scientific goal. Natural starch exhibits a low adsorption capacity for Cr(VI); thus, physical or chemical modification is needed to improve the adsorption and regeneration performance of starch. In this study, a novel starch-based porous carbon (SPC) was prepared to remove Cr(VI) from water by using soluble starch as a raw material. The characterization results show that the SPC shows a ratio surface area of 1325.39 m2/g. Kinetics suggest that the adsorption of Cr(VI) on SPC is dominated by chemisorption. The isotherm data demonstrated that the adsorption of Cr(VI) by SPC adhered to the Freundlich model. SPC exhibits a multimolecular layer adsorption structure, and the highest amount of adsorbed Cr(VI) in SPC was 777.89 mg/g (25 °C). Ion competition experiments show that SPC exhibits significant selectivity for Cr(VI) adsorption. In addition, the adsorption cycle experiment shows that SPC maintains a 63 % removal rate after 7 cycles. In this study, starch was transformed into high-quality adsorbent materials by hydrothermal and activation strategies, offering a new innovation for the optimization of starch-based adsorbents.
Collapse
Affiliation(s)
- Yanyang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chunli Gao
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Kewei Shuai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Dana Hashan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jing Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation CAS&MWR, Yangling 712100, China.
| |
Collapse
|
19
|
A novel magnetic loading porous liquid absorbent for removal of Cu(II) and Pb(II) from the aqueous solution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
20
|
Zhao X, Liang H, Wang Z, Li D, Shen X, Xu X, Li K, Xiang Q, Wu Y, Chen Q. Preparation of N-doped cellulose-based hydrothermal carbon using a two-step hydrothermal induction assembly method for the efficient removal of Cr(VI) from wastewater. ENVIRONMENTAL RESEARCH 2023; 219:115015. [PMID: 36535391 DOI: 10.1016/j.envres.2022.115015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Cr(VI) pollution is a growing problem that causes the deterioration of the environment and human health. We report the development of an effective adsorbent for the removal of Cr(VI) from wastewater. N-doped cellulose-based hydrothermal carbon (N-CHC) was prepared via a two-step hydrothermal method. The morphology and structural properties of N-CHC were investigated by various techniques. N-CHC has many O and N groups, which are suitable for Cr(VI) adsorption and reduction. Intermittent adsorption experiments showed that N-CHC had an adsorption capacity of 151.05 mg/g for Cr(VI) at pH 2, indicating excellent adsorption performance. Kinetic and thermodynamic analyses indicates that the adsorption of Cr(VI) on N-CHC follows a monolayer uniform adsorption process, which is a spontaneous endothermic process dominated by chemical interaction and limited by diffusion within particles. In a multi-ion system (Pb2+, Cd2+, Mn7+, Cl-, and SO42-), the selectivity of N-CHC toward Cr(VI) was 82.62%. In addition, N-CHC demonstrated excellent reuse performance over seven adsorption-desorption cycles; the Cr(VI) removal rate of N-CHC in 5-20 mg/L wastewater was >99.87%, confirming the potential of N-CHC for large-scale applications. CN/C-OR, pyridinic-N, and pyrrolic-N were found to play a critical role in the adsorption process. This study provides a new technology for Cr(VI) pollution control that could be utilized in large-scale production and other environmental applications.
Collapse
Affiliation(s)
- Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Hongxu Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zihao Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Daijia Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Xiaoyan Shen
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Xiaoya Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Kun Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Qingyue Xiang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Yihan Wu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
21
|
Xing R, Song Y, Gao T, Cai X, Yao J, Liu Q, Zhang C. High capacity and fast removal of Cr(vi) by alkali lignin-based poly(tetraethylene pentamine-pyrogallol) sorbent. RSC Adv 2023; 13:1627-1639. [PMID: 36688065 PMCID: PMC9827104 DOI: 10.1039/d2ra07143f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
In this work, a novel alkali lignin-based adsorption material, alkali lignin-based poly(tetraethylene pentamine-pyrogallol) (AL-PTAP), was prepared using a Mannich reaction and catechol-amine reaction for removal of Cr(vi). It was characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The effects of tetraethylene pentamine (TEPA) dosage, pyrogallol (PL) dosage, contact time, pH, temperature and other factors on the adsorption behavior of the adsorbent were systematically investigated. These experimental data show that the adsorption behavior conforms to the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity is 769.2 mg g-1 at 303 K, which is much higher than that of alkali lignin (AL). AL-PTAP can achieve a removal rate of almost 100% for Cr(vi) solutions with a concentration of less than 90 mg L-1 at 1 min. Furthermore, the toxic Cr(vi) is partly reduced to nontoxic Cr(iii) during the adsorption process. Therefore, AL-PTAP is a fast and efficient alkali lignin-based adsorbent, which is expected to improve the utilization value of alkali lignin in Cr(vi) wastewater treatment.
Collapse
Affiliation(s)
- Rufei Xing
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) #3501 Daxue Road, Western University Science Park Jinan 250353 Shandong Province P. R. China +86 13806410075
| | - Yanxin Song
- School of Chemical Engineering & Pharmacy, Jining Technician College #3166 Chongwen Road Jining 272100 Shandong Province P. R. China +86 15668106398
| | - Tingting Gao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Xiaoxia Cai
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) #3501 Daxue Road, Western University Science Park Jinan 250353 Shandong Province P. R. China +86 13806410075
| | - Jinshui Yao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) #3501 Daxue Road, Western University Science Park Jinan 250353 Shandong Province P. R. China +86 13806410075
| | - Qinze Liu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) #3501 Daxue Road, Western University Science Park Jinan 250353 Shandong Province P. R. China +86 13806410075
| | - Changbin Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Science Beijing 100085 P. R. China
| |
Collapse
|
22
|
Dong H, Zhang L, Shao P, Hu Z, Yao Z, Xiao Q, Li D, Li M, Yang L, Luo S, Luo X. A metal-organic framework surrounded with conjugate acid-base pairs for the efficient capture of Cr(VI) via hydrogen bonding over a wide pH range. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129945. [PMID: 36113345 DOI: 10.1016/j.jhazmat.2022.129945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Given the large amount of toxic Cr(VI) wastewater from various industries, it is urgent to take effective treatment measures. Adsorption has been regarded as highly desirable for Cr(VI) removal, but the effectiveness of most adsorbents is significantly dependent on pH value, in which precipitous performance drop and even structural collapse generally occur in strong acidic/alkaline aqueous. Thus, maintaining high adsorption performance and structural integrity over a wide pH range is challenging. To efficiently remove Cr(VI), we designed and prepared of an acid-base resistant metal-organic framework (MOF) Zr-BDPO, by introducing weak acid-base groups (-NH-, -N= and -OH) onto the ligand. Zr-BDPO achieved a maximum adsorption capacity of 555.6 mg·g-1 and retained skeletal structure at pH= 1-11. Interestingly, all these groups can generate conjugate acid-base pairs by means of H+ and OH- in the external solution and then form buffer layer. The removal of Cr(VI) at a broad range of pH values primarily via hydrogen bonds between -NH- and -OH, and the oxoanion species of Cr(VI) is unusual. This strategy that insulating high concentrations of acids and bases and relying on hydrogen bonds to capture Cr(VI) oxoanions provides a new perspective for actual Cr(VI) wastewater treatment.
Collapse
Affiliation(s)
- Hao Dong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Li Zhang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Zichao Hu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Ziwei Yao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Qingying Xiao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dewei Li
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Min Li
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shenglian Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
23
|
Sun M, Feng J, Feng Y, Xin X, Ding Y, Sun M. Ionic liquid-functionalized dendrimer grafted silica for mixed-mode chromatographic separation and online solid-phase extraction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Novel insights into Graphene oxide-based adsorbents for remediation of hazardous pollutants from aqueous solutions: A comprehensive review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Zhao X, Feng H, Jia P, An Q, Ma M. Removal of Cr(VI) from aqueous solution by a novel ZnO-sludge biochar composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83045-83059. [PMID: 35754078 DOI: 10.1007/s11356-022-21616-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The incorporation of ZnO into biochar has become a promising way to obtain adsorbents with enhanced adsorption capacity. In this study, a low-cost ZnO-sludge biochar composite (ZBC) was prepared by a simply in situ method using sewage sludge biochar (SBC) and zinc acetate, as well as employed for Cr(VI) adsorption in water. The results of XPS and FT-IR suggested that the ZBC surface had more functional groups such as -COOH, -OH, -C-O, ZnO, etc. Compared with SBC, the BET-specific surface area of the ZBC increased from 8.82 to 41.24 m2·g-1, which provides potential advantages for Cr(VI) uptake. Benefiting from ZnO incorporation, about an 18% increase in Cr(VI) removal efficiency was obtained. The maximum removal efficiency and equilibrium adsorption amount of ZBC for Cr(VI) reached 98.4% and 33.87 mg·g-1, respectively. The adsorption was spontaneous and endothermic nature, and coincided nicely with pseudo-second-order kinetics and Langmuir isotherm. The analyses indicated that Cr(VI) removal by ZBC was predominantly via electrostatic attraction, surface complexation, ion exchange, and reduction. This study provided valuable insights into the problem of sludge disposal and provided a new and effective method for Cr(VI) removal.
Collapse
Affiliation(s)
- Xia Zhao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Hao Feng
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Pengju Jia
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Qiufeng An
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Minghua Ma
- Xi'an No.5 Reclaimed Water Plant, Xi'an, 710000, China
| |
Collapse
|
26
|
Safaviyan M, Faramarzi M, Parsa SAM, Karimi H. Tetraethylenepentamine-enriched magnetic graphene oxide as a novel Cr(VI) removal adsorbent. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
27
|
Full-Lignin-Based Adsorbent for Removal of Cr(VI) from Waste Water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Fantinel LA, Bonetto LR, Baldasso C, Poletto M. Evaluation of the use of adsorbents based on graphene oxide and cellulose for Cr(VI) adsorption. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lucas Antônio Fantinel
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Luis Rafael Bonetto
- Chemical Engineering, Exact Sciences, and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Camila Baldasso
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Matheus Poletto
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| |
Collapse
|
29
|
Liang H, Li Y, Zhao X, Gao C, Zhang H, Geng Z, She D. Efficient Cr(VI) removal from wastewater by D-(+)-xylose based adsorbent: Key roles of three-dimensional porous structures and oxygen groups. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129345. [PMID: 35716565 DOI: 10.1016/j.jhazmat.2022.129345] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Reducing the harm of heavy metals to the environment has been a major scientific challenge. In this study, D-(+)-xylose was used to prepare an adsorbent with rich O groups and three-dimensional porous structures for Cr(VI) adsorption. What's more, the adsorption sites of many oxygen groups in the material were combined with the three-dimensionally connected porous structures, which made the adsorption sites fully in contact with Cr(VI). At the concentration of 300 mg/L, the removal rate of Cr(VI) was 94.50%, 6.4 times that of the non-porous treatment and 9.6 times that of the non-porous and O group treatment. The adsorbent showed a high adsorption capacity (910.10 mg/g) for Cr(VI), and the adsorption model proved that the adsorbent was a multi-molecular layer adsorbent. In addition, the adsorption was controlled by chemical reaction and diffusion, which was also attributed to the three-dimensional porous structure and abundant oxygen groups of the material. XPS and FTIR indicated that four O groups participated in the adsorption reaction (-OH, C-O-C, CO, and C-O), and C-O-C and C-O were the main reaction sites. After treating wastewater from electroplating plants with X-PC, the discharged water met international and domestic discharge standards (Cr(VI) removal rate> 99.90%). This work provides a new idea for the application of sugars in the environment and the design of porous adsorbents.
Collapse
Affiliation(s)
- Hongxu Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanyang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250300, China
| | - Chunli Gao
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Hongwei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation CAS&MWR, Yangling 712100, China.
| |
Collapse
|
30
|
Mao W, Zhang Y, Luo J, Chen L, Guan Y. Novel co-polymerization of polypyrrole/polyaniline on ferrate modified biochar composites for the efficient adsorption of hexavalent chromium in water. CHEMOSPHERE 2022; 303:135254. [PMID: 35690169 DOI: 10.1016/j.chemosphere.2022.135254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
It is still a huge challenge to prepare cheap and effective composite materials for removing hexavalent chromium (Cr(VI)) in sewage treatment. In this study, a noval co-polymerization of polypyrrole/polyaniline on ferrate modified biochar (Ppy/PANI/FBC) was fabricated via ferrate-promoted pyrolysis and in-situ oxidative polymerization of pyrrole and aniline molecules to effectively remove Cr(VI) from polluted water. The Ppy/PANI/FBC quickly decreased Cr(VI) concentration from 38.92 to 3.92 mg/L within 400 min, with an efficient removal efficiency (89.92%), which was significantly higher than that of FBC (4.75%), Ppy/FBC (72.30%), and PANI/FBC (42.43%). These results are mainly caused by its conjugated connection and well-dispersion of Ppy and PANI on the surface of a carbon-based material. Meanwhile, the experimental results were in line with the pseudo-second-order kinetic and Freundlich models. The Ppy/PANI/FBC is featured by a high capacity of Cr(VI) adsorption (up to 203.71 mg/g). In addition, it could be adopted for efficiently removing Cr(VI) over a wide pH range (4-9) because of the positively charged nitrogen (-NH.+- and = N+-). The sorption mechanisms of Cr(VI) were identified, including electrostatic interaction with surface protonated nitrogen (N+), ion exchange between the doped Cl- ions and Cr(VI), chemical decrease of the Cr(VI) to Cr(III) by the iron valence cycle and efficient electron transfer of Ppy/PANI/FBC, as well as surface complexation by amine and oxygen-containing groups. More importantly, 97.98% Cr(VI) was efficiently removed in 20 min by coupling a photocatalytic reaction, also providing a novel idea for the practical use of adsorbents in wastewater treatment.
Collapse
Affiliation(s)
- Wei Mao
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Ying Zhang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Jinen Luo
- Shenzhen Zhenheli Ecology & Environment Co., Ltd., Shenzhen, 518052, China
| | - Lingtiao Chen
- Shenzhen Zhenheli Ecology & Environment Co., Ltd., Shenzhen, 518052, China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
31
|
Niu J, Cui C, Zhang Y, Zhang L, Li H, Zhang Y, Hu H, Zhang J, Xie Y. Magnetic Biochar Composites Modified with Branched Polyethyleneimine for Highly Efficient Cr(VI) Removal from Water. ChemistrySelect 2022. [DOI: 10.1002/slct.202201500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiaojiao Niu
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Can Cui
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Yu Zhang
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Li Zhang
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Hongxiong Li
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Ying Zhang
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Hailiang Hu
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Jianhui Zhang
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Yadian Xie
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| |
Collapse
|
32
|
Luis López-Miranda J, Molina GA, Esparza R, Alexis González-Reyna M, Silva R, Estévez M. Ecofriendly and sustainable Sargassum spp.-based system for the removal of highly used drugs during the COVID-19 pandemic. ARAB J CHEM 2022; 15:104169. [PMID: 35957843 PMCID: PMC9356597 DOI: 10.1016/j.arabjc.2022.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022] Open
Abstract
Analgesic consumption increased significantly during the COVID-19 pandemic. A high concentration of this kind of drug is discarded in the urine, reaching the effluents of rivers, lakes, and seas. These medicines have brought serious problems for the flora and, especially, the ecosystems’ fauna. This paper presents the results of removing diclofenac, ibuprofen, and paracetamol in an aqueous solution, using Sargassum spp. from the Caribbean coast. The study consisted of mixing each drug in an aqueous solution with functionalized Sargassum spp in a container under constant agitation. Therefore, this work represents an alternative to solve two of the biggest problems in recent years; first, the reduction of the overpopulation of sargassum through its use for the remediation of the environment. Second is the removal of drug waste used excessively during the COVID-19 pandemic. Liquid samples of the solution were taken at intervals of 10 min and analyzed by fluorescence to determine the concentration of the drug. The sorption capacity for diclofenac, ibuprofen, and paracetamol was 2.46, 2.08, and 1.41 μg/g, corresponding to 98 %, 84 %, and 54 % of removal, respectively. The removal of the three drugs was notably favored by increasing the temperature to 30 and 40 °C, reaching efficiencies close to 100 %. Moreover, the system maintains its effectiveness at various pH values. In addition, the Sargassum used can be reused for up to three cycles without reducing its removal capacity. The wide diversity of organic compounds favors the biosorption of drugs, removing them through various kinetic mechanisms. On the other hand, the Sargassum used in the drugs removal was analyzed by X-ray diffraction, FTIR spectroscopy, TGA analysis, and scanning electron microscopy before and after removal. The results showed an evident modification in the structure and morphology of the algae and demonstrated the presence of the biosorbed drugs. Therefore, this system is sustainable, simple, economical, environmentally friendly, highly efficient, and scalable at a domestic and industrial level that can be used for aquatic remediation environments.
Collapse
Affiliation(s)
- J Luis López-Miranda
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Gustavo A Molina
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Marlen Alexis González-Reyna
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Rodolfo Silva
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Edificio 17, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Miriam Estévez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| |
Collapse
|
33
|
Roy S, Ahmaruzzaman M. Ionic liquid based composites: A versatile materials for remediation of aqueous environmental contaminants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115089. [PMID: 35525038 DOI: 10.1016/j.jenvman.2022.115089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the most aggravated problems threatening the sustainability of human race and other life forms due to the rapid pace of civilization and industrialization. A long history exists of release of hazardous pollutants into the water bodies due to selfish human activities since the Industrial Revolution, but no effort has been completely successful in curbing the activities that result in the degradation of our environment. These pollutants are harmful, carcinogenic and have adverse health effects to all forms of life. Thus, remarkable efforts have been geared up to obtain clean water by exploiting science and technology. The application of Ionic liquids (ILs) as sustainable materials have received widespread attention since the last decade. Their interesting properties, simplicity in operation and satisfactory binding capacities in elimination of the contaminants makes them a valuable prospect to be utilized in wastewater treatment. Immobilizing and grafting the solid supports with ILs have fetched efficient results to exploit their potential in the adsorptive removal processes. This review provides an understanding of the recent developments and outlines the possible utility of IL based nano adsorbents in the removal of organic compounds, dyes and heavy metal ions from aqueous medium. Effect of several parameters such as sorbent dosage, pH and temperature on the removal efficiency has also been discussed. Moreover, the adsorption isotherms, thermodynamics and mechanism are comprehensively studied. It is envisioned that the literature gathered in this article will guide the budding scientists to put their interest in this area of research in the days to come.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
34
|
Xu LH, Li Y, Li SH, Lv MY, Zhao ZP. Space-confined growth of 2D MOF sheets between GO layers at room temperature for superior PDMS membrane-based ester/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Guo Y, Tang Y, He D, Liu M, Pan R, Dong W, Ma L. Preparation and polymerization analysis of poly-(alkenyl-based di-ionic ionic liquid). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Gollakota AR, Subbaiah Munagapati V, Shu CM, Wen JC. Adsorption of Cr (VI), and Pb (II) from aqueous solution by 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide functionalized biomass Hazel Sterculia (Sterculia Foetida L.). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Liang H, Ding W, Zhang H, Peng P, Peng F, Geng Z, She D, Li Y. A novel lignin-based hierarchical porous carbon for efficient and selective removal of Cr(VI) from wastewater. Int J Biol Macromol 2022; 204:310-320. [PMID: 35149091 DOI: 10.1016/j.ijbiomac.2022.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 02/05/2022] [Indexed: 01/02/2023]
Abstract
A novel lignin-based hierarchical porous carbon (L-HPC) was prepared to remove Cr(VI) from water by using industrial alkali lignin through simple hydrothermal-induced assembly and alkali activation strategy. The adsorbent were characterized by SEM-EDS mapping, TEM, BET, XPS, FTIR, Raman spectroscopy and zeta potential. The characterization results indicated that L-HPC contained three-dimensional connected channels and many adsorbing N, O and other adsorption groups, which is very beneficial for Cr(VI) adsorption. The kinetics showed that the L-HPC adsorption of Cr(VI) was chemical adsorption and mainly controlled by intraparticle diffusion. The isotherm and thermodynamics indicated that L-HPC adsorption of Cr(VI) conforms to the Freundlich model, L-HPC is a kind of multimolecular layer adsorbent, and the adsorption capacity of Cr(VI) by L-HPC was 887.8 mg/g, which was significantly higher than values for other adsorbents. Ion competition simulation and actual water body tests showed that L-HPC exhibits high selectivity for Cr(VI) adsorption, adsorption cycle experiments show that L-HPC maintains over 83% performance after 12 cycles. Cost analysis shows that L-HPC is suitable for mass production. Therefore, L-HPC is a Cr(VI) adsorbent with high efficiency, high selectivity, and high reusability, which is broadly applicable and shows favorable prospects.
Collapse
Affiliation(s)
- Hongxu Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongwei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Feng Peng
- Beijing Key Lab Lignocellulos Chem, Beijing Forestry University, Beijing 100083, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, CAS&MWR, Yangling 712100, China.
| | - Yan Li
- Cultivated land Quality and Agri-environment Protection Workstation, Department of Agriculture and Rural Affairs of Shaanxi Province, Xi'an 710003, China
| |
Collapse
|
38
|
Lin Z, Zhang Y, Zhao Q, Cui Y, Chen A, Jiao B. In-situ decomposed nanofluids dispersive liquid-phase microextraction for detection of seven triazole fungicidets in fruit juices and tea drinks. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Yang HR, Yang C, Li SS, Shan XC, Song GL, An QD, Zhai SR, Xiao ZY. Site-imprinted hollow composites with integrated functions for ultra-efficient capture of hexavalent chromium from water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Cui C, Xie YD, Niu JJ, Hu HL, Lin S. Poly(Amidoamine) Dendrimer Modified Superparamagnetic Nanoparticles as an Efficient Adsorbent for Cr(VI) Removal: Effect of High-Generation Dendrimer on Adsorption Performance. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02222-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Jiao GJ, Ma J, Li Y, Jin D, Zhou J, Sun R. Removed heavy metal ions from wastewater reuse for chemiluminescence: Successive application of lignin-based composite hydrogels. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126722. [PMID: 34332480 DOI: 10.1016/j.jhazmat.2021.126722] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The novel sulfomethylated lignin-grafted-polyacrylic acid (SL-g-PAA) hydrogel was fabricated in this work via a facile and green synthetic strategy for the efficient removal of heavy metal ions from wastewater, and then successively reused for chemiluminescence (CL). The sulfomethylation of lignin was first performed to improve its water solubility and introduce numerous active sites for adsorption of heavy metal ions. The as-synthesized SL-g-PAA hydrogel with high content of lignin exhibited the highly efficient and rapid removal of various metal ions from simulated wastewater. More importantly, the spent hydrogel (M2+@SL-g-PAA) after adsorption was reused for the first time to develop a new CL system by an ingenious strategy, in which these metal ions adsorbed on M2+@SL-g-PAA act as heterogeneous catalytic sites to catalyze the CL reaction between N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and H2O2. The resultant CL system displayed high CL intensity and long duration time, which could be observed by naked eye in the dark and lasted for > 24 h. The combination of facile fabrication process, renewable raw materials, and ingenious strategy for successive application in adsorption and CL endows this lignin-based composite hydrogel with a great potential for application in wastewater treatment, biological imaging and cold light sources.
Collapse
Affiliation(s)
- Gao-Jie Jiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China.
| | - Yancong Li
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongnv Jin
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
42
|
|
43
|
Zhang Y, Liu Q, Ma W, Liu H, Zhu J, Wang L, Pei H, Liu Q, Yao J. Insight into the synergistic adsorption-reduction character of chromium(VI) onto poly(pyrogallol-tetraethylene pentamine) microsphere in synthetic wastewater. J Colloid Interface Sci 2021; 609:825-837. [PMID: 34839912 DOI: 10.1016/j.jcis.2021.11.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
Facile fabrication of the ultra-high-performance adsorbent can effectively ameliorate the Cr(VI)-pollution elimination in sewage control. Herein, a simple synthesis strategy is proposed to tap a versatile chelating resin poly(pyrogallol-tetraethylene pentamine) (PPTA) with respect to Cr(VI) removal from solution. Multiple changing factors which affect the adsorption behavior of PPTA are explored sequentially, such as initial pH, adsorbate concentration, adsorbent dosage, temperature, foreign ions, etc. The microstructure and functional mechanism of synthetic adsorbent are investigated systematically by means of various characterizations including TEM, EDS, FT-IR, XPS, etc. Consequently, the as-prepared PPTA-3 microsphere by reactant ratio of 1: 1 represents a brilliant synergistic adsorption and reduction result for Cr(VI) by the drastic electrostatic interaction of -NH3+ and -OH2+ groups, including satisfactory removal efficiency which closes to 100 % in low concentration, favorable specificity for the influence from coexistent ions (Mo(VI), Mn(VII), Cl-, Cr(III), etc), and passable recyclability. Following the surpassingly fitting with Langmuir isotherm model, its maximum capacity reaches 714.29 mg g-1 at 30 °C. The removal performance is essentially in agreement with the pseudo-second-order kinetics, simultaneously, suffers the rate-limiting impact depending on intra-particle diffusion process. In brief, this newly developed chelating resin presents an effective means with regard to the Cr(VI)-wastewater treatment or other uses in the future.
Collapse
Affiliation(s)
- Yan Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Qiang Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China.
| | - Wei Ma
- School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, People's Republic of China
| | - Hanxiao Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Jingwen Zhu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Hongchang Pei
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Qinze Liu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| | - Jinshui Yao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| |
Collapse
|
44
|
A Review on Promising Membrane Technology Approaches for Heavy Metal Removal from Water and Wastewater to Solve Water Crisis. WATER 2021. [DOI: 10.3390/w13223241] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the impacts of water scarcity, the world is looking at all possible solutions for decreasing the over-exploitation of finite freshwater resources. Wastewater is one of the most reliable and accessible water supplies. As the population expands, so do industrial, agricultural, and household operations in order to meet man’s enormous demands. These operations generate huge amounts of wastewater, which may be recovered and used for a variety of reasons. Conventional wastewater treatment techniques have had some success in treating effluents for discharge throughout the years. However, advances in wastewater treatment techniques are required to make treated wastewater suitable for industrial, agricultural, and household use. Diverse techniques for removing heavy metal ions from various water and wastewater sources have been described. These treatments can be categorized as adsorption, membrane, chemical, or electric. Membrane technology has been developed as a popular alternative for recovering and reusing water from various water and wastewater sources. This study integrates useful membrane technology techniques for water and wastewater treatment containing heavy metals, with the objective of establishing a low-cost, high-efficiency method as well as ideal production conditions: low-cost, high-efficiency selective membranes, and maximum flexibility and selectivity. Future studies should concentrate on eco-friendly, cost-effective, and long-term materials and procedures.
Collapse
|
45
|
Ullah R, Ahmad W, Yaseen M, Khan M, Iqbal Khattak M, Mohamed Jan B, Ikram R, Kenanakis G. Fabrication of MNPs/rGO/PMMA Composite for the Removal of Hazardous Cr(VI) from Tannery Wastewater through Batch and Continuous Mode Adsorption. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6923. [PMID: 34832323 PMCID: PMC8620348 DOI: 10.3390/ma14226923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis of magnetic nanoparticle (MNP)-reduced graphene oxide (rGO) and polymethylmethacrylate (PMMA) composite (MNPs/rGO/PMMA) as adsorbent via an in situ fabrication strategy and, in turn, the application for adsorptive removal and recovery of Cr(VI) from tannery wastewater. The composite material was characterized via XRD, FTIR and SEM analyses. Under batch mode experiments, the composite achieved maximum adsorption of the Cr(VI) ion (99.53 ± 1.4%, i.e., 1636.49 mg of Cr(VI)/150 mg of adsorbent) at pH 2, adsorbent dose of 150 mg/10 mL of solution and 30 min of contact time. The adsorption process was endothermic, feasible and spontaneous and followed a pseudo-2nd order kinetic model. The Cr ions were completely desorbed (99.32 ± 2%) from the composite using 30 mL of NaOH solution (2M); hence, the composite exhibited high efficiency for five consecutive cycles without prominent loss in activity. The adsorbent was washed with distilled water and diluted HCl (0.1M), then dried under vacuum at 60 °C for reuse. The XRD analysis confirmed the synthesis and incorporation of magnetic iron oxide at 2θ of 30.38°, 35.5°, 43.22° and 57.36°, respectively, and graphene oxide (GO) at 25.5°. The FTIR analysids revealed that the composite retained the configurations of the individual components, whereas the SEM analysis indicated that the magnetic Fe3O4-NPs (MNPs) dispersed on the surface of the PMMA/rGO sheets. To anticipate the behavior of breakthrough, the Thomas and Yoon-Nelson models were applied to fixed-bed column data, which indicated good agreement with the experimental data. This study evaluates useful reference information for designing a cost-effective and easy-to-use adsorbent for the efficient removal of Cr(VI) from wastewater. Therefore, it can be envisioned as an alternative approach for a variety of unexplored industrial-level operations.
Collapse
Affiliation(s)
- Rahman Ullah
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (R.U.); (M.Y.)
| | - Waqas Ahmad
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (R.U.); (M.Y.)
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (R.U.); (M.Y.)
| | - Mansoor Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan;
| | - Mehmood Iqbal Khattak
- Material Science Center (PCSIR) Laboratories Complex, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan;
| | - Badrul Mohamed Jan
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Rabia Ikram
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-70013 Heraklion, Crete, Greece;
| |
Collapse
|
46
|
Gao X, Shi F, Peng F, Shi X, Cheng C, Hou W, Xie H, Lin X, Wang X. Formulation of nanopesticide with graphene oxide as the nanocarrier of pyrethroid pesticide and its application in spider mite control. RSC Adv 2021; 11:36089-36097. [PMID: 35492771 PMCID: PMC9043262 DOI: 10.1039/d1ra06505j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/24/2021] [Indexed: 12/27/2022] Open
Abstract
Nanopesticides with controlled release can achieve more effective utilization of pesticides. Here, to enhance the adsorption of pesticides onto the target organisms, the formulation of pesticides with temperature-responsive release was proposed by combing graphene oxide (GO) and existing pyrethroid pesticides (cyhalothrin, bifenthrin and fenpropathrin). Pesticides were loaded onto GO nanosheets as a carrier via a simple physisorption process, and the GO–pesticide nanocomposites exhibited temperature-responsive release and excellent storage stability, which are of vital importance to the practical application. Furthermore, we assessed the bioactivity of the GO–pesticide nanocomposites against spider mites (Tetranychus urticae Koch) indoors and in the field. As a result, GO–pesticide nanocomposites had many folds higher bioactivity than individual pesticides, and could be adsorbed on the cuticle of T. urticae and surface of bean leaves with highly uniform dispersibility. The easy preparation and higher bioactivity of GO–pesticide nanocomposites indicate their promising application potential in pest control and green agriculture. Nanopesticides with controlled release can achieve more effective utilization of pesticides.![]()
Collapse
Affiliation(s)
- Xiaoduo Gao
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology Qinhuangdao 066000 PR China.,Hebei Key Laboratory of Crop Stress Biology (in preparation), Hebei Normal University of Science and Technology Qinhuangdao 066000 PR China
| | - Fengyu Shi
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology Qinhuangdao 066000 PR China.,Hebei Key Laboratory of Crop Stress Biology (in preparation), Hebei Normal University of Science and Technology Qinhuangdao 066000 PR China
| | - Fei Peng
- Analysis and Testing Center, Hebei Normal University of Science and Technology Qinhuangdao 066000 PR China .,Hebei Key Laboratory of Active Components and Functions in Natural Products (under planning), Hebei Normal University of Science and Technology Qinhuangdao 066004 PR China
| | - Xuejuan Shi
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology Qinhuangdao 066000 PR China.,Hebei Key Laboratory of Crop Stress Biology (in preparation), Hebei Normal University of Science and Technology Qinhuangdao 066000 PR China
| | - Caihong Cheng
- Analysis and Testing Center, Hebei Normal University of Science and Technology Qinhuangdao 066000 PR China .,Hebei Key Laboratory of Active Components and Functions in Natural Products (under planning), Hebei Normal University of Science and Technology Qinhuangdao 066004 PR China
| | - Wenlong Hou
- Analysis and Testing Center, Hebei Normal University of Science and Technology Qinhuangdao 066000 PR China .,Hebei Key Laboratory of Active Components and Functions in Natural Products (under planning), Hebei Normal University of Science and Technology Qinhuangdao 066004 PR China
| | - Haicui Xie
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology Qinhuangdao 066000 PR China.,Hebei Key Laboratory of Crop Stress Biology (in preparation), Hebei Normal University of Science and Technology Qinhuangdao 066000 PR China
| | - Xiaohu Lin
- Analysis and Testing Center, Hebei Normal University of Science and Technology Qinhuangdao 066000 PR China
| | - Xiuping Wang
- Hebei Key Laboratory of Crop Stress Biology (in preparation), Hebei Normal University of Science and Technology Qinhuangdao 066000 PR China .,Analysis and Testing Center, Hebei Normal University of Science and Technology Qinhuangdao 066000 PR China
| |
Collapse
|
47
|
Liao C, Liu YP, Ren H, Jiang XY, Yu JG, Chen XQ. Rational assembly of GO-based heterocyclic sulfur- and nitrogen-containing aerogels and their adsorption properties toward rare earth elementals. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126484. [PMID: 34186427 DOI: 10.1016/j.jhazmat.2021.126484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
An aromatic heterocyclic compound, 2-aminobenzothiazole (ABT), was used to decorate graphene oxide (GO) by a facile hydrothermal self-assembly procedure. The developed three-dimensional (3D) GO-ABT composite aerogels could be utilized as high-powered and sustainable adsorbents for the enrichment and recovery of low concentration rare earth elements (REEs) from aqueous solutions. The composition and microstructure of GO-ABT composites were explored various characterization methods. The enrichment properties of GO-ABT composites for REEs were investigated in detail, revealing the existence of S-, N- and -NH2 in ABT, as well as the carboxyl and hydroxyl groups of GO which might act as the major REE binding sites. The adsorption of GO-ABT composites for low concentration REEs could reach equilibrium in 30 min. Our investigations confirmed that the optimal pH value of GO-ABT composites for REEs was pH 4.0-5.0. For the adsorbent regeneration study, 50.0 mg of GO-ABT15:1/120 °C/6 h composite was used toward 20.0 mL of Er3+ solutions. After ten regeneration cycles, the adsorption rates of GO-ABT composites for Er3+ remained around 100%, and the desorption rates maintained over 90%. The long-term storage of the adsorbent did not affect its adsorption ability, while desorption rates increased, indicating it possessed relatively higher stability.
Collapse
Affiliation(s)
- Cong Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yi-Ping Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hao Ren
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
48
|
Wang X, Peng F, Cheng C, Chen L, Shi X, Gao X, Li J. Synergistic Antifungal Activity of Graphene Oxide and Fungicides against Fusarium Head Blight In Vitro and In Vivo. NANOMATERIALS 2021; 11:nano11092393. [PMID: 34578709 PMCID: PMC8471600 DOI: 10.3390/nano11092393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/28/2022]
Abstract
Plant pathogens constantly develop resistance to antimicrobial agents, and this poses great challenges to plant protection. Therefore, there is a pressing need to search for new antimicrobials. The combined use of antimicrobial agents with different antifungal mechanisms has been recognized as a promising approach to manage plant diseases. Graphene oxide (GO) is a newly emerging and highly promising antimicrobial agent against various plant pathogens in agricultural science. In this study, the inhibitory activity of GO combined with fungicides (Mancozeb, Cyproconazol and Difenoconazole) against Fusarium graminearum was investigated in vivo and in vitro. The results revealed that the combination of GO and fungicides has significant synergistic inhibitory effects on the mycelial growth, mycelial biomass and spore germination of F. graminearum relative to single fungicides. The magnitude of synergy was found to depend on the ratio of GO and fungicide in the composite. In field tests, GO–fungicides could significantly reduce the disease incidence and disease severity, exhibiting a significantly improved control efficacy on F. graminearum. The strong synergistic activity of GO with existing fungicides demonstrates the great application potential of GO in pest management.
Collapse
Affiliation(s)
- Xiuping Wang
- Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (X.W.); (F.P.); (C.C.)
- Hebei Key Laboratory of Active Components and Functions in Natural Products (under Planning), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Fei Peng
- Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (X.W.); (F.P.); (C.C.)
- Hebei Key Laboratory of Active Components and Functions in Natural Products (under Planning), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Caihong Cheng
- Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (X.W.); (F.P.); (C.C.)
- Hebei Key Laboratory of Active Components and Functions in Natural Products (under Planning), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Lina Chen
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (L.C.); (X.S.); (X.G.)
| | - Xuejuan Shi
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (L.C.); (X.S.); (X.G.)
| | - Xiaoduo Gao
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (L.C.); (X.S.); (X.G.)
| | - Jun Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430070, China
- Correspondence: ; Tel.: +86–027–8671–1182
| |
Collapse
|