1
|
Kan J, Zhu Q, Qiu Q, Yang H, Zhu X. Release mechanism of sustained-release persulfate materials based on stearic acid. ENVIRONMENTAL TECHNOLOGY 2025:1-13. [PMID: 40419290 DOI: 10.1080/09593330.2025.2507389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in groundwater demonstrate poor degradability and wide contamination plumes. The widely utilized in-situ chemical oxidation technology can effectively oxidize and degrade PAHs in groundwater. However, conventional in-situ chemical oxidation for PAHs in groundwater faces challenges including rapid reaction of oxidants and potential rebound of pollutant concentrations. Therefore, there is a current need to develop novel sustained-release oxidants. This study developed persulfate release materials (PDS@SA) by blending sodium persulfate (PDS) with stearic acid (SA) at different mass ratios. Batch and column experiments were conducted to investigate the influence of mass ratio and particle size on the PDS release process. The results revealed that the mass ratio of PDS in PDS@SA was positively correlated with the cumulative release percentage of PDS, as well as the intermediate release rate and the final decomposition rate of PDS. The particle size of PDS@SA was directly proportional to the release lifespan of PDS, while inversely proportional to the total release amount of PDS. The release mechanisms was examined by Bhaskar and Rigter-Peppas models. The results were further validated by fitting with a dual boundary dissolution-diffusion model, which predicted the release lifespan of PDS@SA with different particle sizes with a PDS:SA ratio of 1:3. The prediction indicated that PDS@SA with particle sizes of 30 and 40 mm exhibited good sustained-release performance and significantly mitigated burst release effect. Compared to traditional methods of directly oxidizing organic matter in groundwater using activated persulfate, this study achieves enhanced controlled release and prolonged lifespan.
Collapse
Affiliation(s)
- Junheng Kan
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Quan Zhu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Qin Qiu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Hong Yang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Xueqiang Zhu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, People's Republic of China
| |
Collapse
|
2
|
Wang T, Chen JL, Huang R, Chen HL, Hu C, Chen G, Chen KP, Wu JC. Comparative mechanisms of PDS-activated antibiotic remediation in groundwater via controlled-release materials with different mesoporous catalysts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125797. [PMID: 40373447 DOI: 10.1016/j.jenvman.2025.125797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 05/03/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
In situ chemical oxidation (ISCO) using controlled-release oxidants materials (CRMs) is an effective method for the long-term removal of organic pollutants from groundwater. However, the complex hydrodynamic characteristics of groundwater make it extremely challenging to elucidate the mechanisms of pollutant degradation through CRMs. This study aims to construct persulfate-based CRMs using mesoporous MnO2 (Mn-CRMs) and TiO2 (Ti-CRMs) as catalysts to degrade tetracycline (TC) under static and dynamic groundwater. The types and contributions of active species, stoichiometric efficiency of the reactions, TC degradation pathways of the CRMs were compared in the static and dynamic groundwater. The results revealed the active species in the CRMs-based TC degradation depending on the structures of the powder catalysts. In the static and dynamic groundwater, the contribution rate of ·OH and SO4·- in the Mn-CRMs-based TC degradation was nearly 100 %, indicating a complete radical-based degradation pathway. TiO2 with abundant oxygen vacancies produced abundant 1O2 during the PDS activation process. Ti-CRMs showed a contribution rate of 1O2 to the TC degradation of up to 32.05 %, which indicated the co-action of ·OH and 1O2 for degrading TC. The RSE values of the CRMs-based TC degradation were similar to those of TC degradation using powder catalysts. Since the groundwater flow and PDS release, lower PDS concentrations were maintained around the CRMs in the dynamic groundwater, resulting in a higher RSE value. The results in this study provide insights into the removal mechanisms of pollutants in different groundwater and expand the application of ISCO to groundwater remediation.
Collapse
Affiliation(s)
- Ting Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jing-le Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Rui Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hua-Li Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Cheng Hu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Gang Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Kou-Ping Chen
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Ji-Chun Wu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Lou J, Han H, An J, Wang X. Degradation of levofloxacin by dielectric barrier discharge plasma/chlorine process: Roles of reactive species and control of chlorination disinfection byproducts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123727. [PMID: 39689538 DOI: 10.1016/j.jenvman.2024.123727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
In this study, a novel process of dielectric barrier discharge (DBD)/chlorine for levofloxacin (LEV) degradation was investigated. The combined system boosted the degradation efficiency of LEV from 77.8% to 97.5%, improved the reaction rate constant by 2.3 times, and reduced energy consumption by 64.5%. DBD/chlorine process was highly efficient for LEV degradation across a pH range of 3.3-10.8, with removal rates varying from 90.3% to 97.5%. The electron paramagnetic resonance and scavenging experiments demonstrated the generation of reactive oxygen species (ROS, including HO•, 1O2, and O2•-) and reactive chlorine species (RCS) in the DBD/chlorine system, with 1O2 in the nonradical pathway being crucial for LEV removal. Crucially, effective activation of chlorine not only encouraged the production of reactive species but also prevented the formation of disinfection by-products (DBPs), successfully controlling the ecotoxicity of the reaction system. DBD could activate chlorine to form chlorate and HO•, which in turn triggered the production of RCS. The comparison of the LEV degradation pathway was proposed with or without chlorine in the DBD process. Finally, the effects of different water quality and water bodies demonstrated the application prospects of the DBD/chlorine process. This work provided an efficient technique for the elimination of antibiotics by non-thermal plasma/chlorine.
Collapse
Affiliation(s)
- Jing Lou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Hao Han
- College of Resources and Environment Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Jiutao An
- College of Resources and Environment Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
4
|
Tan B, He Z, Fang Y, Zhu L. Removal of organic pollutants in shale gas fracturing flowback and produced water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163478. [PMID: 37062313 DOI: 10.1016/j.scitotenv.2023.163478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 06/03/2023]
Abstract
Shale gas has been developed as an alternative to conventional energy worldwide, resulting in a large amount of shale gas fracturing flowback and produced water (FPW). Previous studies focus on total dissolved solids reduction using membrane desalination. However, there is a lack of efficient and stable techniques to remove organic pollutants, resulting in severe membrane fouling in downstream processes. This review focuses on the concentration and chemical composition of organic matter in shale gas FPW in China, as well as the hazards of organic pollutants. Organic removal techniques, including advanced oxidation processes, coagulation, sorption, microbial degradation, and membrane treatment are systematically reviewed. In particular, the influences of high salt on each technique are highlighted. Finally, different treatment techniques are evaluated in terms of energy consumption, cost, and organic removal efficiency. It is concluded that integrated coagulation-sorption-Fenton-membrane filtration represents a promising treatment process for FPW. This review provides valuable information for the feasible design, practical operation, and optimization of FPW treatment.
Collapse
Affiliation(s)
- Bin Tan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hangzhou Shangtuo Environmental Technology Co., Ltd, Hangzhou 311121, China
| | - Zhengming He
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Yuchun Fang
- Hangzhou Shangtuo Environmental Technology Co., Ltd, Hangzhou 311121, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
5
|
Wu S, Deng S, Xia F, Han X, Ju T, Xiao H, Xu X, Yang Y, Jiang Y, Xi B. A novel thermosensitive persulfate controlled-release hydrogel based on agarose/silica composite for sustained nitrobenzene degradation from groundwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130619. [PMID: 37056022 DOI: 10.1016/j.jhazmat.2022.130619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 12/14/2022] [Indexed: 06/19/2023]
Abstract
The increasing risk of organic contamination of groundwater poses a serious threat to the environment and human health, causing an urgent need to develop long-lasting and adaptable remediation materials. Controlled-release materials (CRMs) are capable of encapsulating oxidants to achieve long-lasting release properties in aquifers and considered to be effective strategies in groundwater remediation. In this study, novel hydrogels (ASGs) with thermosensitive properties were prepared based on agarose and silica to achieve controlled persulfate (PS) release. By adjusting the composition ratio, the gelation time and internal pore structure of the hydrogels were regulated for groundwater application, which in turn affected the PS encapsulated amount and release properties. The hydrogels exhibited significant temperature responsiveness, with 6.8 times faster gelation rates and 2.8 times longer controlled release ability at 10 ℃ than at 30 ℃. The ASGs were further combined with zero-valent iron to achieve long-lasting degradation of the typical nitrobenzene compound 2,4-dinitrotoluene (2,4-DNT), and the degradation performance was maintained at 50 % within 14 PV, which was significantly improved compared with that of the PS/ZVI system. This study provided new concepts for the design of controlled-release materials and theoretical support for the remediation of organic contamination.
Collapse
Affiliation(s)
- Shuxuan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fu Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tianyu Ju
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Han Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
6
|
Rayaroth MP, Marchel M, Boczkaj G. Advanced oxidation processes for the removal of mono and polycyclic aromatic hydrocarbons - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159043. [PMID: 36174692 DOI: 10.1016/j.scitotenv.2022.159043] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Aromatic hydrocarbons (AHs) are toxic environmental contaminants presented in most of the environmental matrices. Advanced oxidation processes (AOPs) for the removal of AHs in the account of complete mineralization from various environmental matrices have been reviewed in this paper. An in-depth discussion on various AOPs for mono (BTEX) and polyaromatic hydrocarbons (PAHs) and their derivatives is presented. Most of the AOPs were effective in the removal of AHs from the aquatic environment. A comparative study on the degradation of various AHs revealed that the oxidation of the AHs is strongly dependent on the number of aromatic rings and the functional groups attached to the ring. The formation of halogenated and nitrated derivatives of AHs in the real contaminated water containing chloride, nitrite, and nitrate ions seems to be a challenge in using the AOPs in real systems. The phenolic compounds, quinone, alcohols, and aliphatic acids are the important byproducts formed during the oxidation of AHs, initiated by the attack of reactive oxygen species (ROS) on their electron-rich center. In conclusion, AOPs are the adaptable method for the removal of AHs from different environmental matrices. The persulfate-based AOPs were applied in the soil phase removal as an in situ chemical oxidation of AHs. Moreover, the combination of AOPs will be a conclusive solution to avoid or minimize unexpected or other toxic intermediate products and to obtain rapid oxidation of AHs.
Collapse
Affiliation(s)
- Manoj P Rayaroth
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdańsk, G. Narutowicza 11/12 Str, Poland; GREMI, UMR 7344, Université d'Orléans, CNRS, 45067 Orléans, France
| | - Mateusz Marchel
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdańsk, G. Narutowicza 11/12 Str, Poland
| | - Grzegorz Boczkaj
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233 Gdańsk, G. Narutowicza 11/12 Str, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
7
|
Chang YC, Chen KF, Chen TY, Chen HH, Chen WY, Mao YC. Development of novel persulfate tablets for passive trichloroethylene (TCE)-contaminated groundwater remediation. CHEMOSPHERE 2022; 295:133906. [PMID: 35143855 DOI: 10.1016/j.chemosphere.2022.133906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
In this study, a biodegradable binder, hydroxypropyl methyl cellulose (HPMC), was used for the first time to mix with persulfate powder for developing novel persulfate-releasing tablets to remediate trichloroethylene (TCE)-contaminated groundwater. To obtain feasible parameters for the preparation of persulfate tablets, different pressures, HPMC/tablet mass ratios, and persulfate dosages were evaluated. The results showed that the persulfate tablet released 2868 mg-persulfate/day for 12 days under the optimal manufacturing parameters of HPMC/tablet mass ratio of 0.5 and pressure of 4.90 × 108 N/m2. Persulfate diffusion and gel layer erosion were dominant mechanisms for controlling the persulfate released in water. The persulfate release time and rate can be controlled by adjusting the persulfate dosage at the optimal HPMC/tablet ratio. In the column experiment, TCE with an initial concentration of 70 mg/L reached 55% removal efficiency by the tablet, which showed that the developed tablet was capable of degrading highly concentrated TCE. The results of electron spin resonance (ESR) spectroscopy showed that both SO4-· and ·OH were responsible for the oxidation of TCE. During 150 days of incubation, the biodegrading efficiency of HPMC by microbes in soil and activated sludge was 67% and 80%, respectively, under aerobic conditions, while 58% of HPMC was removed by soil bacteria under anaerobic conditions. The results showed that persulfate tablets could be used as a passive groundwater remediation system. There is no waste generated after persulfate is completely released during groundwater remediation. The developed persulfate tablets are environmentally friendly and meet the green remediation aspect.
Collapse
Affiliation(s)
- Yu-Chen Chang
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan.
| | - Ting-Yu Chen
- Department of Landscape Architecture, National Chin-Yi University of Technology, Taiping, Taichung, 411030, Taiwan
| | - Hung-Hsiang Chen
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan
| | - Wei-Yu Chen
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan
| | - Ying-Chih Mao
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan
| |
Collapse
|
8
|
Tang X, Yu C, Lei Y, Wang Z, Wang C, Wang J. A novel chitosan-urea encapsulated material for persulfate slow-release to degrade organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128083. [PMID: 34923382 DOI: 10.1016/j.jhazmat.2021.128083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
A novel eco-friendly material (CS-U@PS) for persulfate slow-release to effectively degrade organic pollutants (methyl orange and pyrene) was synthesized using chitosan and urea as the encapsulated framework materials via an emulsion cross-linking method for the first time. The obtained CS-U@PS exhibits spherical shapes with a uniform size of approximately 2-3 µm according to the particle-size distribution and SEM image results. The slow-release mechanism was proposed through a kinetics model study and the Ritger-Peppas model fit well (r2 = 0.9699) to indicate that the slow-release process is non-Fickian diffusion. The influences of urea and PS dosages and oxidative conditions on methyl orange degradation were studied, and all the results suggested that urea played an important role in PS slow-release and can also catalyze the activation of PS by iron to further produce radicals and improve the removal efficiency of pollutants. A pyrene removal rate of 90.53% was achieved in aqueous solutions and an above 80% removal rate was obtained in weakly acidic or neutral soil environments by CS-U@PS activated by Fe2+ with citric acid as the chelating agent. Therefore, the fabricated slow-release oxidation materials exhibit application potential for the remediation of organic polluted groundwater and soil.
Collapse
Affiliation(s)
- Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Urban Environmental Pollution Diagnosis and Remediation Technology Engineering Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Congya Yu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Urban Environmental Pollution Diagnosis and Remediation Technology Engineering Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yuanyuan Lei
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Urban Environmental Pollution Diagnosis and Remediation Technology Engineering Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Zhen Wang
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Urban Environmental Pollution Diagnosis and Remediation Technology Engineering Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jingang Wang
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|