1
|
Zhang G, Jiang Y, Yang Z, Sun X, Xu Y, Cheng S, Zhang X, Song J. The regulation mechanism of transition metal doping on Hg 0 adsorption and oxidation on Ce/TiO 2(001) surface: A DFT study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172334. [PMID: 38608895 DOI: 10.1016/j.scitotenv.2024.172334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/05/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
The mercury oxidation performance of Ce/TiO2 catalyst can be further enhanced by transition metal modifications. This study employed density functional theory (DFT) calculations to investigate the adsorption and oxidation mechanisms of Hg0 on Ce/TiO2(001) and its transition metal modified surfaces. According to the calculation results, Ru-, Mo-, Nb-, and Mn-doping increased the affinity of the Ce/TiO2(001) surface towards Hg0 and HCl, thereby facilitating the efficient capture and oxidation of Hg0. The increased adsorption energy (Eads) of the intermediate HgCl on the modified surfaces could promote its conversion to the final product HgCl2. The modification of transition metals impeded the desorption of the final products HgCl2 and HgO, but it did not serve as the rate-determining step. The oxidation of Hg0 by lattice oxygen and HCl followed the Mars-Maessen and Langmuir-Hinshelwood mechanisms, respectively. HCl exhibited higher mercury oxidation ability than lattice oxygen. The reactivity of lattice oxygen could be further improved by doping transition metals, their promotion order was Ru > Nb > Mo > Mn. In a HCl atmosphere, Mn modification could significantly reduce the energy barrier for HCl activation and HgCl2 formation, providing the optimal enhancement for the mercury oxidation ability of Ce/TiO2 catalyst. The screening method of transition metal modified components based on surface adsorption reaction and oxidation energy barrier was proposed in this study, which provided theoretical guidance for the development of CeTi based catalysts with high mercury oxidation activity.
Collapse
Affiliation(s)
- Guomeng Zhang
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Ye Jiang
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China.
| | - Zhengda Yang
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Xin Sun
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Yichao Xu
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Siyuan Cheng
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Xiang Zhang
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Jiayao Song
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China
| |
Collapse
|