1
|
Dong S, Li Y, Zhu K, Wang C, Zhai S. Advances in structure designing and function tailoring strategy toward alginate-based hydrogels for efficient water remediation: A review. Int J Biol Macromol 2025; 304:140801. [PMID: 39924010 DOI: 10.1016/j.ijbiomac.2025.140801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Alginate (mainly sodium alginate, SA), as a natural polysaccharide material, has been widely applied in water remediation due to its excellent biocompatibility, degradability, and high hydration properties. Alginate hydrogels exhibit high adsorption capacity, effectively removing heavy metal ions, dyes, antibiotics, phosphate ions, and other pollutants from wastewater. This review begins with a description of the chemical structure of sodium alginate and its physicochemical properties, followed by a detailed discussion of the preparation methods of alginate-based composite hydrogels, including physical and chemical crosslinking, emulsification, electrostatic complexation, self-assembly, ultrasound and microwave-assisted methods. Based on the different compositions of the composites, alginate-based composite hydrogels are classified into several types for the removal of specific pollutants. Moreover, the paper systematically summarizes the research progress of alginate-based composite hydrogels in adsorbing heavy metal ions, dyes, antibiotics, phosphate ions for application effects. Although alginate-based composite hydrogels demonstrate great potential in water remediation, challenges such as insufficient mechanical strength, poor regeneration ability, and low stability under extreme conditions still exist. Finally, the future development prospects of alginate composite hydrogels in the field of water remediation, as well as potential research directions to improve their adsorption performance, enhance their regeneration capacity, and improve their environmental friendliness are presented.
Collapse
Affiliation(s)
- Shuwen Dong
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yingyi Li
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kairuo Zhu
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chaohai Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China.
| | - Shangru Zhai
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; School of Environment and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province 310023, China.
| |
Collapse
|
2
|
Mei Y, Zhuang S, Wang J. Adsorption of heavy metals by biochar in aqueous solution: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178898. [PMID: 39986038 DOI: 10.1016/j.scitotenv.2025.178898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Heavy metal pollution (e.g., Cd, Hg, Pb, Cu, Ni, Zn, As and Cr) has become a crucial issue worldwide. Among various remediation strategies, adsorption is widely recognized for its environmental sustainability, cost-effectiveness, and operational simplicity. In this context, biochar has gained significant attention due to its promising adsorption performance. To systematically support adsorption studies, this review compiled essential models for adsorption experiments, including commonly used adsorption kinetics models, isotherm models, and thermodynamic analysis methods. Moreover, we systematically analyzed key factors affecting heavy metal adsorption by biochar, such as its physicochemical properties, environmental pH, temperature, initial concentration, dosage, and the presence of coexisting ions, to identify the conditions that govern adsorption capacity. In addition, the adsorption performance of biochar toward eight significant heavy metals is reviewed in detail, with a focus on elucidating the underlying mechanisms, including complexation, ion exchange, cation-π bonding, electrostatic interactions, and precipitation. Finally, based on identified research gaps and critical challenges, we discuss emerging research tools, including machine learning and advanced surface modifications, to guide the targeted design of biochar materials for enhanced adsorption capacity.
Collapse
Affiliation(s)
- Yichuan Mei
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Shuting Zhuang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Yin Y, Zhao Z, Wang G, Xu Y, Luan YN, Xie Y, Zhao J, Liu C. Nanoconfinement of MgO in nitrogen pre-doped biochar for enhanced phosphate adsorption: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 414:131613. [PMID: 39393650 DOI: 10.1016/j.biortech.2024.131613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Advanced metal-doped biochar with superior phosphate (P) adsorption capacity plays a crucial role in combating eutrophication, depending on the rational design of the biochar structure for uniform and nanoscale dispersion of metal oxides. Herein, the nanoconfinement of magnesium oxide (MgO) was successfully attained in nitrogen pre-doped biochar (Mg/N-BC). The well-dispersed MgO was confined within nanoscale structure of Mg/N-BC, delivering P adsorption capacity of 108.41 mg g-1 and adsorption rate of 18.01 mg g-1h-1. More importantly, its adsorption performance at equilibrium 0.5 mg P/L was 17.70 times higher. Results suggested the decrease in pore size was positively correlated with the increase of N, confirming the role of N pre-doping in structure shaping and MgO confinement. The enhanced P adsorption was attributed to the well-dispersed MgO nanoparticles within the biochar. This study introduced a facile synthesis approach for biochar-incorporated nanoscale MgO, offering a new strategy for enhanced P removal.
Collapse
Affiliation(s)
- Yue Yin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Zhuo Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Guanglei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yanming Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Ya-Nan Luan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yi Xie
- Central and Southern China Municipal Engineering Design & Research Institute Co., Ltd., Wuhan 430010, PR China
| | - Jianchao Zhao
- Central and Southern China Municipal Engineering Design & Research Institute Co., Ltd., Wuhan 430010, PR China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| |
Collapse
|
4
|
Yasin MU, Haider Z, Munir R, Zulfiqar U, Rehman M, Javaid MH, Ahmad I, Nana C, Saeed MS, Ali B, Gan Y. The synergistic potential of biochar and nanoparticles in phytoremediation and enhancing cadmium tolerance in plants. CHEMOSPHERE 2024; 354:141672. [PMID: 38479680 DOI: 10.1016/j.chemosphere.2024.141672] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Cadmium (Cd) is classified as a heavy metal (HM) and is found into the environment through both natural processes and intensified anthropogenic activities such as industrial operations, mining, disposal of metal-laden waste like batteries, as well as sludge disposal, excessive fertilizer application, and Cd-related product usage. This rising Cd disposal into the environment carries substantial risks to the food chain and human well-being. Inadequate regulatory measures have led to Cd bio-accumulation in plants, which is increasing in an alarming rate and further jeopardizing higher trophic organisms, including humans. In response, an effective Cd decontamination strategy such as phytoremediation emerges as a potent solution, with innovations in nanotechnology like biochar (BC) and nanoparticles (NPs) further augmenting its effectiveness for Cd phytoremediation. BC, derived from biomass pyrolysis, and a variety of NPs, both natural and less toxic, actively engage in Cd removal during phytoremediation, mitigating plant toxicity and associated hazards. This review scrutinizes the application of BC and NPs in Cd phytoremediation, assessing their synergistic mechanism in influencing plant growth, genetic regulations, structural transformations, and phytohormone dynamics. Additionally, the review also underscores the adoption of this sustainable and environmentally friendly strategies for future research in employing BC-NP microaggregates to ameliorate Cd phytoremediation from soil, thereby curbing ecological damage due to Cd toxicity.
Collapse
Affiliation(s)
- Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zulqarnain Haider
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rehman
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Haseeb Javaid
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Irshan Ahmad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chen Nana
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Sulaman Saeed
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bahar Ali
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Liu D, Cai H, Zhou W, Lei D, Cao C, Xia X, Xiao L, Qian Q, Chen Q. Application of 3D printing technology for green synthesis of Fe 2O 3 using ABS/TPU/chlorella skeletons for methyl orange removal. RSC Adv 2024; 14:1501-1512. [PMID: 38178810 PMCID: PMC10765781 DOI: 10.1039/d3ra07143j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Photocatalysis is widely acknowledged as an efficient and environmentally friendly method for treating dye-contaminated wastewater. However, the utilization of powdered photocatalysts presents significant challenges, including issues related to recyclability and the potential for secondary pollution. Herein, a novel technique based on 3D printing for the synthesizing of iron oxide (Fe2O3) involving chlorella was presented. Initially, chlorella powders were immobilized within acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU) substrate plastics using melt extrusion technology. Subsequently, these composite materials were transformed into ABS/TPU/chlorella skeletons (ATCh40), through fused deposition molding (FDM) technology. The integration of Fe2O3 onto the ATCh40 (ATCh40-Fe2O3) skeletons was accomplished by subjecting them to controlled heating in an oil bath. A comprehensive characterization of the synthesized materials confirms the successful growth of Fe2O3 on the surface of 3D skeletons. This strategy effectively addresses the immobilization challenges associated with powdered photocatalysts. In photocatalytic degradation experiments targeting methyl orange (MO), the ATCh40-Fe2O3 skeletons exhibited a remarkable MO removal rate of 91% within 240 min. Under conditions where the pH of MO solution was maintained at 3, and the ATCh40-Fe2O3 skeletons were subjected to a heat treatment in a 150 °C blast drying oven for 2 hours, the degradation rate of MO remained substantial, achieving 90% removal after 6 cycles. In contrast, when the same synthetic procedure was applied to ABS/TPU (AT) skeletons, the resulting product was identified as α-FeOOH. The MO removal rate by the AT-α-FeOOH skeletons was considerably lower, reaching only 49% after 240 min. This research provided a practical approach for the construction of photocatalytic devices through the use of 3D printing technology.
Collapse
Affiliation(s)
- Dingyong Liu
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
- Fujian Key Laboratory of Pollution Control & Resource Reuse Fuzhou 350117 China
| | - Hongjie Cai
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
- Fujian Key Laboratory of Pollution Control & Resource Reuse Fuzhou 350117 China
| | - Weiming Zhou
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University Fuzhou 350117 China
| | - Dandan Lei
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
- Fujian Key Laboratory of Pollution Control & Resource Reuse Fuzhou 350117 China
| | - Changlin Cao
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
- Fujian Key Laboratory of Pollution Control & Resource Reuse Fuzhou 350117 China
| | - Xinshu Xia
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
- Fujian Key Laboratory of Pollution Control & Resource Reuse Fuzhou 350117 China
| | - Liren Xiao
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
- Fujian Key Laboratory of Pollution Control & Resource Reuse Fuzhou 350117 China
| | - Qingrong Qian
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
- Fujian Key Laboratory of Pollution Control & Resource Reuse Fuzhou 350117 China
| | - Qinghua Chen
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University Fuzhou 350117 China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education Fuzhou 350117 China
- Fujian Key Laboratory of Pollution Control & Resource Reuse Fuzhou 350117 China
| |
Collapse
|
6
|
Zhang J, Liu C, Wu Y, Li X, Zhang J, Liang J, Li Y. Adsorption of tetracycline by polycationic straw: Density functional theory calculation for mechanism and machine learning prediction for tetracyclines' remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122869. [PMID: 37926411 DOI: 10.1016/j.envpol.2023.122869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
The abuse of antibiotics causes serious environmental pollution, whose removal has become a hot topic. The adsorption of tetracycline (TC) on a prepared polycationic straw (MMS) was investigated. The kinetic, thermodynamic and adsorption isotherm models showed that adsorption of TC by MMS was a spontaneous, monolayer reaction with coexistence of physical and chemical process. Density functional theory indicated that the adsorption of TC resulted from electrostatic interaction and hydrogen bonds, which proved the mechanism of TC by macromolecular biomass for the first time. The expected and empirical values of TC adsorption showed a high fit degree, through predication of machine learning, indicating the feasibility and avoiding lots of experiments. Further, the adsorption ability of MMS to other TCs was predicted, founding that the highest removal efficiency was doxycycline, which provides a novel strategy for removal of other pollution and reduce of economic and time cost in practical application.
Collapse
Affiliation(s)
- Jianfeng Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunyu Liu
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yu Wu
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyu Li
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jiejing Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Liang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Yongguang Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
7
|
Fu X, Huo P, Wang W, Li D, Liu X, Zeng G, Lyu S. Simultaneous immobilization of heavy metals and nutrient elements in contaminated sediment using a novel composite agent product. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:288-303. [PMID: 37452548 PMCID: wst_2023_216 DOI: 10.2166/wst.2023.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In this research, an innovative type of sediment resource treatment agent (SRA) was synthesized successfully, which could immobilize ammonia nitrogen (NH3-N), total phosphorus (TP), potassium (K), and simultaneously stabilize cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn) in dredged sediment. The effects of SRA dosage on stabilizing the nutrient elements and heavy metals were investigated. The results demonstrated that the increase of SRA dosage significantly enhanced the stabilization of nutrients and heavy metals. The 14-day rainwater infiltration and rainwater scouring experiments were carried out. With the simulation test of rainwater infiltration, the stabilization ratios of Cr, Cu, Ni, Pb, Zn, Cd, NH3-N, TP, and K with 2% SRA addition reached 80.8%, 76.8%, 80.3%, 77.5%, 78.0%, 72.7%, 64.3%, 73.9%, and 73.9%, respectively. Under the action of rainwater scouring, the stabilization ratios of Cr, Cu, Ni, Pb, Zn, Cd, NH3-N, TP, and K with 6.4% SRA addition reached 84.6%, 84.0%, 77.6%, 87.3%, 80.0%, 61.5%, 76.2%, 77.8%, and 91.7%, respectively. Therefore, the results demonstrate that SRA is an excellent composite material in stabilizing heavy metals while reserving the nutrients in dredged sediment, thus showing great potential in the application for dredged sediment resource treatment.
Collapse
Affiliation(s)
- Xiaori Fu
- China Construction Sixth Engineering Bureau Hydropower Construction Co. Ltd, Tianjin 300222, China; These authors contributed to the work equally and should be regarded as co-first authors. E-mail:
| | - Peishu Huo
- China Construction Sixth Engineering Bureau Hydropower Construction Co. Ltd, Tianjin 300222, China; These authors contributed to the work equally and should be regarded as co-first authors
| | - Wenji Wang
- China Construction Sixth Engineering Bureau Hydropower Construction Co. Ltd, Tianjin 300222, China
| | - Dexiao Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojing Liu
- China Construction Eco-Environmental Group Co. Ltd, Beijing 100037, China
| | - Guilu Zeng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Kong Y, Huang Z, Chu H, Ma Y, Ma J, Nie Y, Ding L, Chen Z, Shen J. Enhanced removal of aqueous Cr(VI) by the in situ iron loaded activated carbon through a facile impregnation with Fe(II) and Fe(VI) two step method: Mechanism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38480-38499. [PMID: 36577825 DOI: 10.1007/s11356-022-24876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
In this study, a novel in situ iron-loaded activated carbon (AFPAC) was prepared by a FeSO4/K2FeO4 impregnation and oxidation combination two-step supported on activated carbon for enhanced removal of Cr(VI) from aqueous solutions. Cr(VI) removal efficiency greatly increased by AFPAC more than 70% than that of fresh activated carbon (AC), which is due to rich iron oxides formed in situ and the synergistic effect between iron oxides and activated carbon. Cr(VI) adsorption behaviors on AFPAC under different water quality parameters were investigated. The maximum monolayer adsorption capacities for Cr(VI) by AFPAC are as high as 26.24 mg/g, 28.65 mg/g, and 32.05 mg/g at 25 °C, 35 °C and 45 °C at pH 4, respectively. Density functional theory (DFT) results showed that the adsorption energy of K2Cr2O7 on the surface of FeOOH was - 2.52 eV, which was greater than that on the surface of bare AC, and more charge transfer occurred during the adsorption of K2Cr2O7 on the surface of FeOOH, greatly promoting the formation of Cr = O-Fe. Cr(VI) removal by AFPAC included electrostatic attraction, redox reaction, coordinate complexation, and co-precipitation. Cr(VI) adsorption process on AFPAC consisted of the three reaction steps: (1) AFPAC was fast protonation and Cr2O72- would electrostatically attract to the positively charged AFPAC surface. (2) Cr2O72- was reduced into Cr2O3 by the carbons bond to the oxygen functionalities on activated carbon and the redox reaction process of FeSO4 and K2FeO4. (3) The inner-sphere complexes were formed, and adsorbed on AFPAC by iron oxides and then co-precipitation.
Collapse
Affiliation(s)
- Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Zhiyan Huang
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Hangyu Chu
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Yaqian Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China.
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China.
| | - Yong Nie
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
9
|
Yakout AA, Alshitari W. Selective and efficient solid phase extraction of cadmium (II) in sub-trace limits based on alizarin red-S cross-linked-2-mercapto-N-(3-(triethoxysilyl) propyl) acetamide bi-functionalized graphene oxide nanocomposite from different environmental water samples. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2135525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Amr A. Yakout
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Wael Alshitari
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Zhang Z, Li Y, Zong Y, Yu J, Ding H, Kong Y, Ma J, Ding L. Efficient removal of cadmium by salts modified-biochar: Performance assessment, theoretical calculation, and quantitative mechanism analysis. BIORESOURCE TECHNOLOGY 2022; 361:127717. [PMID: 35926559 DOI: 10.1016/j.biortech.2022.127717] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Modified biochar is a feasible adsorbent to solve cadmium pollution in water. However, few studies could elucidate the mechanism of cadmium adsorption by biochar from a molecular perspective. Furthermore, traditional modification methods are costly and have the risk of secondary contamination. Hence, several environmentally friendly sodium salts were used to modify the water chestnut shell-based biochar and employ it in the Cd2+ adsorption in this work. The modification of sodium salt could effectively improve the specific surface area and aromaticity of biochar. Na3PO4 modified biochar exhibited the highest Cd2+ adsorption capacity (112.78 mg/g). The adsorption of Cd2+ onto biochar was an endothermic, monolayer, chemisorption process accompanied by intraparticle diffusion. Microscopically, the enhancement of aromatization after modification made Cd2+ more likely to interact with the regions rich in π electrons and lone pair electrons. This study provided a new research perspective and application guidance for heavy metal adsorption on biochar.
Collapse
Affiliation(s)
- Zhilin Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yan Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China; Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
| | - Yiming Zong
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Jian Yu
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Heng Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China.
| |
Collapse
|
11
|
Mocová KA, Petrová Š, Pohořelý M, Martinec M, Tourinho PS. Biochar reduces the toxicity of silver to barley (Hordeum vulgare) and springtails (Folsomia candida) in a natural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37435-37444. [PMID: 35066846 DOI: 10.1007/s11356-021-18289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The use of biochar in soil remediation is a promising method to deal with metal contamination. In the present study, the influence of biochar amendment on the toxicity of silver (as AgNO3) to terrestrial organisms was assessed. For this, toxicity tests were conducted with terrestrial plant barley (Hordeum vulgare) and invertebrate springtails (Folsomia candida) in the standard natural Lufa soil amended or not with a wood-derived biochar at 5% (w/w). Biochar addition increased root length and mass in barley, compared to unamended soil. However, the effects of Ag on barley growth were masked by a great variation among replicates in biochar-amended soil. Photosynthetic pigment contents (total chlorophyll and carotenoids) were lower in plants exposed to Ag in Lufa soil, but not in biochar-amended soil. Moreover, Ag drastically decreased dehydrogenase activity in Lufa soil. For springtails, the addition of biochar clearly decreased the toxicity of Ag. The LC50 was 320 mg Ag/kg in Lufa soil, while no mortality was observed up to 500 mg Ag/kg in biochar-amended soil. The EC50 for effects on reproduction was significantly higher in biochar-amended soil compared to unamended Lufa soil (315 and 215 mg Ag/kg, respectively). The wood-derived biochar used in this study has shown a potential for remediation of contaminated soils, as a decrease in Ag toxicity was observed in most endpoints analysed in barley and springtails.
Collapse
Affiliation(s)
- Klára Anna Mocová
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | - Šárka Petrová
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the Czech Academy of Sciences V.V.I, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Michael Pohořelý
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, V. V. I, Rozvojová 135, 165 02, Prague 6, Czech Republic
| | - Marek Martinec
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Paula S Tourinho
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
12
|
Li F, Li Y, Ge B, Hu J, Yu C, Meng F. Effect of the coexistence of SO 32- and PO 43- on the adsorption performance of zeolite-loaded FeOOH@ZnO for S 2. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3641-3652. [PMID: 34928832 DOI: 10.2166/wst.2021.480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present study deals with the synthesis of zeolite-loaded FeOOH@ZnO by hydrothermal method and investigates the effects of coexisting SO32- and PO43- ions in the aqueous solution on the adsorption performance for S2-. The results showed that the HNO3-modified zeolite loaded with FeOOH@ZnO (FeOOH@ZnO/HZ) resulted in a maximum S2- removal rate of ≈98%. The adsorbent's performance on removing S2- was significantly enhanced, compared with NaOH and ZnCl2-modified zeolites loaded with FeOOH@ZnO, and the adsorption was proved to be a heat-absorbing process. When SO32- and PO43- coexisted with S2-, SO32- and PO43- had a significant influence on the adsorption properties of FeOOH@ZnO/HZ. When three ions of S2-, SO32- and PO43- were present simultaneously, the adsorption performance of FeOOH@ZnO/HZ on S2- was further, and the removal rate dropped to about 80%. Moreover, FeOOH@ZnO/HZ also adsorbed PO43- and SO32- in the system containing multiple ions, but the adsorption rates of PO43- and SO32- were much lower than S2-. This indicated that the adsorption of S2- in the presence of FeOOH@ZnO/HZ dominates under competitive conditions.
Collapse
Affiliation(s)
- Fen Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China E-mail:
| | - Youjing Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China E-mail:
| | - Baocai Ge
- Beijing Jingcheng Environmental Protection Co., Beijing 100044, China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Cailian Yu
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China E-mail:
| | - Fanzhu Meng
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China E-mail:
| |
Collapse
|