1
|
El-Sewify IM, Shenashen MA, Mekawy M, Selim MS, Emran MY, Khairy M, El-Agamy RF, Selim MM, Shahat A, Khalil MMH, Elmarakbi A, Ebara M, El-Safty SA. Trapping/Monitoring of Toxic Arsenate in Human Skin Cell Lines: A Route for Preventing Skin Disorders. Colloids Surf B Biointerfaces 2025; 254:114773. [PMID: 40378545 DOI: 10.1016/j.colsurfb.2025.114773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
Prolonged exposure of human cells to toxic arsenate leads to significant skin diseases. To date, continuous and ultrasensitive assessments of toxic arsenate in water and human skin cell lines via simple trapping/monitoring technologies are urgently needed. Herein, nanomonitors based on self-organized multi-geode for trapping/monitoring ultra-trace arsenate concentrations (LOD=0.55ppb) in human skin cell lines were fabricated to prevent skin disorders. For the first time, the structural geode-like hierarchy was constructed via layer-by-layer assembly with nano/microscale features of wide pore openings and mesoporous cavities, enabling suitable diffusion, trapping, and binding of toxic arsenate in human skin cell lines. The biocompatible hierarchal geode with inner and outer receptor-functionalized surfaces revealed a fast in-vitro monitoring/trapping of arsenate in human skin cell lines in order of seconds, with a detection limit below the level affecting skin disorders. The nanomonitor's suitability for extracellular/intracellular tracking/monitoring/trapping toxic arsenate in human skin cell lines has been proven significantly under physiological conditions. Findings confirmed the exceptional characteristics of mesoscale geode-like pores for in-vitro trapping/quantifying toxic arsenate in human skin cell lines from the accumulation of carcinogenic toxicants, thus introducing a route for preventing skin disorders.
Collapse
Affiliation(s)
- Islam M El-Sewify
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan; Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mohamed A Shenashen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan
| | - Moataz Mekawy
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan
| | - Mohamed S Selim
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Mohammed Y Emran
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan
| | - Mohamed Khairy
- Chemistry Department, Faculty of Science, Sohag University, 82524, Egypt
| | - Rasha F El-Agamy
- College of Computer Science and Engineering, Taibah University, Yanbu 966144, Saudi Arabia
| | - Mahmoud M Selim
- Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj 710-11912, Saudi Arabia
| | - Ahmed Shahat
- Chemistry Department, Faculty of Science, Suez University, B.O.Box: 43221, Suez, Egypt
| | - Mostafa M H Khalil
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Ahmed Elmarakbi
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan
| | - Sherif A El-Safty
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken 305-0047, Japan.
| |
Collapse
|
2
|
Srinivasan P, Deivasigamani P. Solid-state naked-eye sensing of Cu(II) from industrial effluents and environmental water samples using probe integrated polymeric sensor materials. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Kuppusamy S, Deivasigamani P. Chromophoric Ion Receptor-Decorated Porous Monolithic Polymer for the Solid-State Naked Eye Sensing of Hg(II): An Experimental and Theoretical Approach. ACS OMEGA 2022; 7:41461-41471. [PMID: 36406566 PMCID: PMC9670289 DOI: 10.1021/acsomega.2c05239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 05/25/2023]
Abstract
The current work presents a perspective to obliterate toxic Hg(II) from an aqueous environment, a strategic environmental remediation and decontamination measure. We report a simple, efficient, and reusable solid-state visual sensing strategy for the selective detection and quantitative recovery of ultratrace Hg(II). The capture of Hg(II) ions was effectuated using a macro-/mesoporous polymer monolith uniformly decorated with an azo-based chromophoric ion receptor, i.e., 7-((1H-benzo[d]imidazol-2-yl)diazenyl)quinolin-8-ol (BIDQ). The porous polymer template was synthesized through free radical polymerization of gylcidylmethacrylate and ethylene glycol dimethacrylate, leading to distinct structural and surface properties that offer exclusive solid-state colorimetric selectivity for Hg(II) upon restricted spatial dispersion of the ion receptor. The sensor provides a broad linear response range of 1-200 μg/L, with an outstanding detection limit of 0.2 μg/L for Hg(II) ions, thus effectuating reliable and reproducible sensing. Optimizing analytical parameters such as solution pH, receptor concentration, sensor quantity, kinetics, temperature, and matrix interference proved to be promising for the real-time monitoring of toxic mercury ions from aqueous/industrial systems, with maximum response in the pH range of 7.5-8.0, with a response time of ≤80 s. Density functional theory (DFT) calculations were employed to study the electronic structure of BIDQ upon chelating with Hg(II) ions, using 6-311G and LAND2Z basis sets.
Collapse
|
4
|
González-Vergara A, Sánchez-González R, Bravo MA, Aguilar LF, Espinoza L, Mellado M. Assessment of chalcone-vanillin as a selective chemosensor of As(III) in aqueous solution. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Akceylan E, Erdemir S, Tabakci M, Sivrikaya A, Tabakci B. Fluorescence switchable sensor enabled by a calix[4]arene-Cu(II) complex system for selective determination of itraconazole in human serum and aqueous solution. Talanta 2022; 250:123742. [PMID: 35858530 DOI: 10.1016/j.talanta.2022.123742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
A switchable fluorescence sensor based on a calix (Monapathi et al., 2021) [4]arene:Cu2+ complex (FLCX/Cu) has been developed for the detection of itraconazole (ITZ) with high sensitivity and specificity. For the development of the sensor, the selective complexation of a fluorescent calix (Monapathi et al., 2021) [4]arene derivative (FL-CX) with the Cu2+ ion causing fluorescence quenching was utilized. In addition, the sensor properties of the FLCX/Cu prepared were investigated. For this purpose, various substances (selected anions, cations, and drugs) with which ITZ can be found together were studied in an aqueous solution. Limit of detection (LOD) and limit of quantification (LOQ) values were determined in the range of 1.00-60.0 μg/L as 3.34 μg/L and 11.1 μg/L for ITZ, respectively. Moreover, the real sample analyses were performed in human serum and tablet form. Furthermore, the effect of some possible serum contents on sensor performance was also studied. All these studies confirmed the development of a simple, precise, accurate, reproducible, highly sensitive, and very stable fluorescence sensor.
Collapse
Affiliation(s)
- Ezgi Akceylan
- Department of Chemistry, Faculty of Science, Selçuk University, Konya, 42130, Turkey
| | - Serkan Erdemir
- Department of Chemistry, Faculty of Science, Selçuk University, Konya, 42130, Turkey
| | - Mustafa Tabakci
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, 42250, Turkey
| | - Abdullah Sivrikaya
- Department of Medical Biochemistry, Faculty of Medicine, Selçuk University, Konya, 42131, Turkey
| | - Begum Tabakci
- Department of Chemistry, Faculty of Science, Selçuk University, Konya, 42130, Turkey.
| |
Collapse
|