1
|
Wang Y, Dong J, Yu G, Liu L, Fan M, Kang Y, Guo Z, Zhang J. Efficient remediation of Hg in soils by iron-based materials: Environmental variable effect and regulatory mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125361. [PMID: 40233617 DOI: 10.1016/j.jenvman.2025.125361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
The effectiveness of iron-based materials in soil remediation has gained significant attention. The mechanisms underlying the methylation and demethylation of mercury (Hg) by iron materials were still elusive. In this study, the effect of typical iron materials (pyrrhotite, hematite, and zero-valent iron (ZVI)) on the transformation of Hg were investigated. The supplementation of various iron-based material increased the THg removal efficiency in soil, particularly with ZVI, which was 5.6-14.2 % higher than that of the control. The iron-based materials also reduced the stress of Hg on plants and soil by decreasing the transformation and translocation of Hg and increasing oxidative enzyme activity of plants. The ZVI decreased the MeHg content in plants (0.1 mg/kg) compared to the control group (0.3 mg/kg). The relative abundances of genes that encoded Hg transportation (e.g. merA), glycolysis, TCA, and iron reduction were increased with the addition of iron materials. Iron-based materials also increased the complexity of the bacterial network, thereby enhancing the robustness of the microbial environmental systems that against Hg stress. The present study provided a comprehensive assessment of the efficacy of iron-based materials in remediating Hg-contaminated soils.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jiahao Dong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Guangzhou Yu
- Shandong Huankeyuan Environmental Engineering Co., Ltd., Jinan, 250000, China
| | - Lixin Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Minghao Fan
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
2
|
Huang N, Wang Y, Ling C, Liu X, Cai Y, Deng M, Chao C, Yang G, Long L. Amorphous manganese silicate/PVDF membrane in the diffusive gradient in a thin-film for selective monitoring of lead. Chem Commun (Camb) 2025; 61:5601-5604. [PMID: 40105023 DOI: 10.1039/d4cc06239f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Herein, a simple co-precipitation and phase invasion technique was applied to prepare a MnSi-loaded PVDF membrane (PMn), which exhibited highly selective adsorption for Pb2+. By employing the PMn as the binding phase, the high selectivity and rapid desorption of PMn effectively achieved low-cost, in situ, and selective monitoring of bioavailable Pb.
Collapse
Affiliation(s)
- Na Huang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yating Wang
- Chengdu Academy of Environment Sciences, Fanglin Road, Chengdu, 610072, China
| | - Chenxue Ling
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xin Liu
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yuling Cai
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Min Deng
- Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu, 610041, China
| | - Chen Chao
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lulu Long
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Wang Y, Liu S, Pan J, Zhang H, Wang B, Yan W. MER Zeolite with Remarkable Pb 2+ and Cd 2+ Removal Capability Cost-Effectively Synthesized from Postprocessed Natural Stellerite. Inorg Chem 2025; 64:393-403. [PMID: 39701819 DOI: 10.1021/acs.inorgchem.4c04717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
MER zeolite, a low-silica zeolite with an 8-membered ring aluminosilicate framework, has been recognized as a promising material in sorption, separation, and ion-exchange applications. Herein, we developed a cost-effective and rapid method to convert parent zeolite H-STI, which was derived from natural stellerite, into MER zeolite through interzeolite conversion with a crystallization time of 8 h. This MER zeolite exhibits high efficiency in removing Pb2+ and Cd2+ from simulated heavy metal wastewater over a pH range of 3-8. It also shows excellent selectivity in the presence of competitive cations, including Na+, K+, Ca2+, Mg2+, Zn2+, Cu2+, and Co2+. At 25 °C, with a MER-S dosage of 1/3000 g·mL-1 for Pb2+ and 1/500 g·mL-1 for Cd2+, the removal efficiencies were 99.7 and 99.9%, respectively. The distribution coefficients were 1097 L·g-1 for Pb2+ and 550 L·g-1 for Cd2+, and the sorption capacities reached 513 mg·g-1 for Pb2+ and 171 mg·g-1 for Cd2+, indicating that the product MER zeolite is one of the highest sorbents for Pb2+ and Cd2+ reported for zeolitic materials. The sorption for Pb2+ and Cd2+ both follows the chemisorption-dominated mechanism, driven by the ion-exchange process between the K+ in the channels MER-S and the Pb2+ or Cd2+ in solution. This work highlights the potential of rapidly synthesized MER zeolite for the effective removal of heavy metal cations, emphasizing its performance and practical applicability.
Collapse
Affiliation(s)
- Yufei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shuang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Junyao Pan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Haoyang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Binyu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
4
|
Tian T, Wu C, Gong L, Yao C, Xiao H, Liu L, Li F. Insights on Immobilization of Cd Contamination in Soil: Synergic Impacts of Water Management and Bauxite Residue. ACS OMEGA 2024; 9:48497-48504. [PMID: 39676990 PMCID: PMC11635490 DOI: 10.1021/acsomega.4c07130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
To immobilize the activity and bioavailability of soil Cd, the single treatment only flooding (F) and the combined treatments with flooding plus bauxite residue (F-B) or lime (F-L) were designed to investigate the impacts of different treatments on the toxicity and bioavailability of Cd in contaminated soil. Compared with the single treatment (F), the combined treatments (F-B and F-L) improved soil-associated organic functional groups and aggregated stability in soil. The average particle sizes of soil aggregates increased from 126 nm (F-treated soil) to 256 and 270 nm following F-B and F-L treatments, respectively. Relative to F treatment, the combined treatments (F-B and F-L) increased soil pH, soil EC, and residual Cd content in soil and reduced exchangeable Cd and acid-soluble Cd content in soil. The exchangeable Cd contents in soils were decreased to 3.17 and 3.42 mg/kg following F-B and F-L treatments in comparison with F-treated soils (4.31 mg/kg), respectively. For the soils with F-B and F-L treatments, soil residual Cd contents increased from 54% (F treatment) to 57 and 56%, respectively, and soil acid-soluble Cd contents decreased from 46% (F treatment) to 37 and 43%, respectively. A negative correlation was found in soil pH versus soil exchangeable Cd and soil acid-soluble Cd. In addition, the F-B treatment exhibited superiority in suppressing toxicity and bioavailability of soil Cd, owing to that F-B treatment is easy to induce neutralization reaction and immobilization effect in contaminated soil. The findings offer evidences that F-B treatment is a facile approach to suppress toxicity and bioavailability of soil Cd, which shows potential for immobilization of Cd in soil.
Collapse
Affiliation(s)
- Tao Tian
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Chunyue Wu
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Liangshen Gong
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Chuangye Yao
- Microelectronics and Optoelectronics Technology Key Laboratory of Hunan Higher Education, School of Physics and Electronic Electrical Engineering, Xiangnan University, Chenzhou 423000, China
| | - Haifeng Xiao
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Lu Liu
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Feng Li
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| |
Collapse
|
5
|
Huang X, Wu M, Huang R, Yang G. How Doping Regulates As(III) Adsorption at TiO 2 Surfaces: A DFT + U Study. Molecules 2024; 29:3991. [PMID: 39274841 PMCID: PMC11396678 DOI: 10.3390/molecules29173991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024] Open
Abstract
The efficient adsorption and removal of As(III), which is highly toxic, remains difficult. TiO2 shows promise in this field, though the process needs improvement. Herein, how doping regulates As(OH)3 adsorption over TiO2 surfaces is comprehensively investigated by means of the DFT + D3 approach. Doping creates the bidentate mononuclear (Ce doping at the Ti5c site), tridentate (N, S doping at the O2c site), and other new adsorption structures. The extent of structural perturbation correlates with the atomic radius when doping the Ti site (Ce >> Fe, Mn, V >> B), while it correlates with the likelihood of forming more bonds when doping the O site (N > S > F). Doping the O2c, O3c rather than the Ti5c site is more effective in enhancing As(OH)3 adsorption and also causes more structural perturbation and diversity. Similar to the scenario of pristine surfaces, the bidentate binuclear complexes with two Ti-OAs bonds are often the most preferred, except for B doping at the Ti5c site, S doping at the O2c site, and B doping at the O3c site of rutile (110) and Ce, B doping at the Ti5c site, N, S doping at the O2c site, and N, S, B doping at the O3c site of anatase (101). Doping significantly regulates the As(OH)3 adsorption efficacy, and the adsorption energies reach -4.17, -4.13, and -4.67 eV for Mn doping at the Ti5c site and N doping at the O2c and O3c sites of rutile (110) and -1.99, -2.29, and -2.24 eV for Ce doping at the Ti5c site and N doping at the O2c and O3c sites of anatase (101), respectively. As(OH)3 adsorption and removal are crystal-dependent and become apparently more efficient for rutile vs. anatase, whether doped at the Ti5c, O2c, or O3c site. The auto-oxidation of As(III) occurs when the As centers interact directly with the TiO2 surface, and this occurs more frequently for rutile rather than anatase. The multidentate adsorption of As(OH)3 causes electron back-donation and As(V) re-reduction to As(IV). The regulatory effects of doping during As(III) adsorption and the critical roles played by crystal control are further unraveled at the molecular level. Significant insights are provided for As(III) pollution management via the adsorption and rational design of efficient scavengers.
Collapse
Affiliation(s)
- Xiaoxiao Huang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Mengru Wu
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Rongying Huang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Gang Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Jin W, Yang Y, Jin J, Xu M, Zhang Z, Dong F, Shao M, Wan Y. Characterization of phosphate modified red mud-based composite materials and study on heavy metal adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43687-43703. [PMID: 38904876 DOI: 10.1007/s11356-024-33969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
In this paper, Bayer red mud (RM) and lotus leaf powder (LL) were used as the main materials, and KH2PO4 was added to modify the material. Under the condition of high-temperature carbonization, RMLL was prepared and phosphate modified red mud matrix composite (PRMLL) was prepared based on KH2PO4 modification, which can effectively remove Pb2+ from water. The optimum preparation and application conditions were determined through orthogonal experiment: dosage 0.1g, ratio 1:1, and temperature 600 °C. The effects of pH, dosage, and initial concentration on the adsorption of Pb2+ were studied. The pseudo-first-order, pseudo-second-order, and Elovich kinetic models were fitted to the experimental data. It was found that RMLL and PRMLL were more consistent with the pseudo-second-order kinetic model and chemisorption. Langmuir, Freundlich, Timkin, and Dubinin-Radushkevich isothermal adsorption models were used to fit the experimental data. It was found that RMLL and PRMLL were more consistent with Langmuir model. In addition, the maximum adsorption capacity of RMLL and PRMLL was 188.1 mg/g and 213.4 mg/g, respectively. It is larger than the adsorption capacity of their monomers. Therefore, the use of RMLL and PRMLL as the removal of Pb2+ from water is a potential application material.
Collapse
Affiliation(s)
- Wenlou Jin
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yanzhi Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jiacheng Jin
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Mingchen Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Zhipeng Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Fan Dong
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Min Shao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yushan Wan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
7
|
Zhang Y, Fu P, Ni W, Zhang S, Li S, Deng W, Hu W, Li J, Pei F, Du L, Wang Y. A review of solid wastes-based stabilizers for remediating heavy metals co-contaminated soil: Applications and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170667. [PMID: 38331289 DOI: 10.1016/j.scitotenv.2024.170667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The remediation of heavy metals/metalloids (HMs) co-contaminated soil by solid wastes-based stabilizers (SWBS) has received major concern recently. Based on the literature reported in the latest years (2010-2023), this review systematically summarizes the different types of solid wastes (e.g., steel slag, coal fly ash, red mud, and sewage sludge, etc.) employed to stabilize HMs contaminated soil, and presents results from laboratory and field experiments. Firstly, the suitable solid wastes for soil remediation are reviewed, and the pros and cons are presented. Thereafter, the technical feasibility and economic benefit are evaluated for field application. Moreover, evaluation methods for remediation of different types of HMs-contaminated soil and the effects of SWBS on soil properties are summarized. Finally, due to the large specific surface, porous structure, and high reactivity, the SWBS can effectively stabilize HMs via adsorption, complexation, co/precipitation, ion exchange, electrostatic interaction, redox, and hydration process. Importantly, the environmental implications and long-term effectiveness associated with the utilization of solid wastes are highlighted, which are challenges for practical implementation of soil stabilization using SWBS, because the aging of soil/solid wastes has not been thoroughly investigated. Future attention should focus on modifying the SWBS and establishing an integrated long-term stability evaluation method.
Collapse
Affiliation(s)
- Yuliang Zhang
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Pingfeng Fu
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of the Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China.
| | - Wen Ni
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of the Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
| | - Siqi Zhang
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of the Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
| | - Sheng Li
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Deng
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wentao Hu
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of the Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
| | - Jia Li
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fuyun Pei
- CECEP Tech and Ecology & Environment Co., Ltd., Shenzhen 518017, China
| | - Linfeng Du
- CECEP Tech and Ecology & Environment Co., Ltd., Shenzhen 518017, China
| | - Yueling Wang
- CECEP Tech and Ecology & Environment Co., Ltd., Shenzhen 518017, China
| |
Collapse
|
8
|
Yin H, Zhou C, Wang J, Yin M, Wu Z, Song N, Song X, Shangguan Y, Sun Z, Zong Q, Hou H. Fe-CGS Effectively Inhibits the Dynamic Migration and Transformation of Cadmium and Arsenic in Soil. TOXICS 2024; 12:273. [PMID: 38668496 PMCID: PMC11054586 DOI: 10.3390/toxics12040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
The iron-modified coal gasification slag (Fe-CGS) material has excellent performance in purifying heavy-metal-contaminated water due to its good surface properties and adsorption capacities. However, it is unclear whether it can provide long-term simultaneous stabilization of Cd and As in composite-contaminated soils in extreme environments. This study investigated the long-term stabilization of Cd and As in acidic (JLG) and alkaline (QD) soils by simulating prolonged heavy rainfall with the addition of Fe-CGS. Multiple extraction methods were used to analyze the immobilization mechanisms of Cd and As in soil and their effects on bioavailability. The results indicate that the stabilization efficiency was related to the dosage of Fe-CGS. The concentrations of Cd and As in the JLG soil leachate were reduced by 77.6% (2.0 wt%) and 87.8% (1.0 wt%), respectively. Additionally, the availability of Cd and As decreased by 46.7% (2.0 wt%) and 53.0% (1.0 wt%), respectively. In the QD soil leachate, the concentration of Cd did not significantly change, while the concentration of As decreased by 92.3% (2.0 wt%). Furthermore, the availability of Cd and As decreased by 22.1% (2.0 wt%) and 40.2% (1.0 wt%), respectively. Continuous extraction revealed that Fe-CGS facilitated the conversion of unstable, acid-soluble Cd into oxidizable Cd and acid-soluble Cd. Additionally, it promoted the transformation of both non-specifically and specifically adsorbed As into amorphous iron oxide-bound and residual As. Fe-CGS effectively improved the soil pH, reduced the bioavailability of Cd and As, and blocked the migration of Cd and As under extreme rainfall leaching conditions. It also promoted the transformation of Cd and As into more stable forms, exhibiting satisfactory long-term stabilization performance for Cd and As.
Collapse
Affiliation(s)
- Hongliang Yin
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Changzhi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Junhuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Mengxue Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Zhihao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Ningning Song
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
| | - Xin Song
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
| | - Yuxian Shangguan
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Zaijin Sun
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China;
| | - Quanli Zong
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| |
Collapse
|
9
|
Xu W, Xie X, Li Q, Yang X, Ren J, Shi Y, Liu D, Shaheen SM, Rinklebe J. Biochar co-pyrolyzed from peanut shells and maize straw improved soil biochemical properties, rice yield, and reduced cadmium mobilization and accumulation by rice: Biogeochemical investigations. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133486. [PMID: 38244456 DOI: 10.1016/j.jhazmat.2024.133486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/02/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Biochar is an eco-friendly amendment for the remediation of soils contaminated with cadmium (Cd). However, little attention has been paid to the influence and underlying mechanisms of the co-pyrolyzed biochar on the bioavailability and uptake of Cd in paddy soils. The current study explored the effects of biochar co-pyrolyzed from peanut shells (P) and maize straw (M) at different mixing ratios (1:0, 1:1, 1:2, 1:3, 0:1, 2:1 and 3:1, w/w), on the bacterial community and Cd fractionation in paddy soil, and its uptake by rice plant. Biochar addition, particularly P1M3 (P/M 1:3), significantly elevated soil pH and cation exchange capacity, transferred the mobile Cd to the residual fraction, and reduced Cd availability in the rhizosphere soil. P1M3 application decreased the concentration of Cd in different rice tissues (root, stem, leaf, and grain) by 30.0%- 49.4%, compared to the control. Also, P1M3 enhanced the microbial diversity indices and relative abundance of iron-oxidizing bacteria in the rhizosphere soil. Moreover, P1M3 was more effective in promoting the formation of iron plaque, increasing the Cd sequestration by iron plaque than other treatments. Consequently, the highest yield and lowest Cd accumulation in rice were observed following P1M3 application. This study revealed the feasibility of applying P1M3 for facilitating paddy soils contaminated with Cd.
Collapse
Affiliation(s)
- Weijie Xu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Xiaocui Xie
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Qi Li
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Renmin Road 58, Haikou 570228, China
| | - Jiajia Ren
- Agriculture and Rural of Jiaxing, Jiaxing 323500, China
| | - Yanping Shi
- Agriculture and Rural of Jiaxing, Jiaxing 323500, China
| | - Dan Liu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
10
|
Wang H, Chen D, Wen Y, Zhang Y, Liu Y, Xu R. Iron-rich red mud and iron oxide-modified biochars: A comparative study on the removal of Cd(II) and influence of natural aging processes. CHEMOSPHERE 2023; 330:138626. [PMID: 37028717 DOI: 10.1016/j.chemosphere.2023.138626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/19/2023] [Accepted: 04/04/2023] [Indexed: 05/14/2023]
Abstract
Red mud (RM) is a byproduct of various processes in the aluminum industry and has recently been utilized for synthesizing RM-modified biochar (RM/BC), which has attracted significant attention in terms of waste reutilization and cleaner production. However, there is a lack of comprehensive and comparative studies on RM/BC and the conventional iron-salt-modified biochar (Fe/BC). In this study, RM/BC and Fe/BC were synthesized and characterized, and the influence on environmental behaviors of these functional materials with natural soil aging treatment was analyzed. After aging, the adsorption capacity of Fe/BC and RM/BC for Cd(II) decreased by 20.76% and 18.03%, respectively. The batch adsorption experiments revealed that the main removal mechanisms of Fe/BC and RM/BC are co-precipitation, chemical reduction, surface complexation, ion exchange, and electrostatic attraction, etc. Furthermore, practical viability of RM/BC and Fe/BC was evaluated through leaching and regenerative experiments. These results can not only be used to evaluate the practicality of the BC fabricated from industrial byproducts but can also reveal the environmental behavior of these functional materials in practical applications.
Collapse
Affiliation(s)
- Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China.
| | - Dingxiang Chen
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China
| | - Yi Wen
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China
| | - Yong Zhang
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China
| | - Ying Liu
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming, 650500, PR China; Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Kunming, 650500, PR China.
| |
Collapse
|
11
|
Hama Aziz KH, Mustafa FS, Omer KM, Hama S, Hamarawf RF, Rahman KO. Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Adv 2023; 13:17595-17610. [PMID: 37312989 PMCID: PMC10258679 DOI: 10.1039/d3ra00723e] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Medical Laboratory Analysis Department, College of health sciences, Cihan University-Sulaimaniya Sulaimaniya 46001 Kurdistan region Iraq
| | - Fryad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Sarkawt Hama
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Rebaz Fayaq Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Kaiwan Othman Rahman
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Razga Company Sulaimani City 46001 Kurdistan Region Iraq
| |
Collapse
|
12
|
Zhao C, Yao J, Knudsen TŠ, Liu J, Zhu X, Ma B. Effect of goethite-loaded montmorillonite on immobilization of metal(loid)s and the micro-ecological soil response in non-ferrous metal smelting areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161283. [PMID: 36587687 DOI: 10.1016/j.scitotenv.2022.161283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In this work, the immobilization stabilization and mechanism of heavy metal(loid)s by goethite loaded montmorillonite (GMt) were investigated, and the soil microbial response was explored. The simulated acid rain leaching experiment showed that GMt had a higher acid tolerance and the more stable heavy metal(loid)s fixation ability. The soil incubation demonstrated that GMt significantly decreased the available Cd, Zn, Pb and As concentration. Interestingly, higher immobilization of heavy metals was observed by GMt in highly acid leached and acidic soils. The richness and diversity of bacterial communities improved after the addition of GMt. GMt induced the enrichment of the excellent functional bacteria of the phylum Proteobacteria as well as the genus Massilia and Sphingomonas. The main immobilization mechanisms of heavy metal(loid)s by GMt include electrostatic interaction, complexation, precipitation and oxidation. The addition of the GMt also optimizes the soil bacterial community structure, which further facilitates the immobilization of heavy metal(loid)s. Our results confirm that the novel GMt has a promising application in the immobilization and stabilization of heavy metal(loid)s contaminated soils in non-ferrous metal smelting areas.
Collapse
Affiliation(s)
- Chenchen Zhao
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jun Yao
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Tatjana Šolević Knudsen
- Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, University of Belgrade, Njegoševa 12, Belgrade 11000, Serbia
| | - Jianli Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaozhe Zhu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Bo Ma
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
13
|
Li Y, Chen Z, Yuan B, Xing L, Zhan G, Peng Y, Wang L, Li J. Synergistic promotion for CO2 absorption and solvent regeneration by fine waste red mud particles on in amine-based carbon capture: Performance and mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
14
|
Jiang Q, He Y, Wu Y, Dian B, Zhang J, Li T, Jiang M. Solidification/stabilization of soil heavy metals by alkaline industrial wastes: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120094. [PMID: 36067972 DOI: 10.1016/j.envpol.2022.120094] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Solidification/stabilization technology is one of the most desirable technologies for the remediation of heavy metal contaminated soils due to its convenience and effectiveness. The annual production of alkaline industrial wastes in China is in the hundreds of millions of tons. Alkaline industrial wastes have the potential to replace conventional stabilizers because of their cost effectiveness and performance in stabilizing heavy metals in soils. This paper systematically summarizes the use of four alkaline industrial wastes (soda residue, steel slag, carbide slag, and red mud) for the solidification/stabilization of heavy metal contaminated soils and provides a comprehensive analysis of the three mechanisms of action (hydration, precipitation, and adsorption) and factors that influence the process. In addition, the environmental risks associated with the use of alkaline industrial wastes are highlighted. We found that soda residues, steel slag and carbide slag are appropriate for solidification/stabilization of Pb, Cd, Zn and Cu, while red mud is a potential passivation agent for the stabilization of As in soils. However, implementation of remediation methods using alkaline industrial wastes has been limited because the long-term effectiveness, synergistic effects, and usage in soils containing multiple heavy metals have not been thoroughly studied. This review provides the latest knowledge on the mechanisms, risks, and challenges of using alkaline industrial wastes for solidification/stabilization of heavy metal contaminated soils.
Collapse
Affiliation(s)
- Qi Jiang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yonglin Wu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Bo Dian
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Jilai Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Tianguo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Ming Jiang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|