1
|
Wu W, Bao L, Chen X, Gong X, Wu M. Facile Fabrication of Photothermal Superhydrophobic Copper Foam Using the Ultrafast Electroplating Approach. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12973-12983. [PMID: 39961708 DOI: 10.1021/acsami.5c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Photothermal superhydrophobic coatings are ideal materials for high-viscosity crude oil adsorption or treatment. However, how to quickly prepare large-scale photothermal superhydrophobic coatings for real application is still a challenge. Here, we report that photothermal superhydrophobic copper foam with a water contact angle of 159.9° can be quickly prepared using a low-cost and easy-to-manipulate electroplating method within only 5 min, presenting a facile and fast approach to fabricate large-scale photothermal superhydrophobic materials. The prepared superhydrophobic copper foam showed good physical and chemical stability. Importantly, the superhydrophobic copper foam had good oil spill adsorption characteristics, and the adsorption capacity and efficiency for n-hexane (<ρwater) reached 6.48 g/g and 99%, respectively. The adsorption capacity and efficiency for dichloromethane (>ρwater) reached 9.42 g/g and 99.3%, respectively. In addition, the superhydrophobic copper foam possessed a good photothermal property, enabling it with the ability of crude oil adsorption, and each gram of copper foam could adsorb 11.326 g of crude oil. The excellent performance of this photothermal superhydrophobic copper foam prepared by the ultrafast electroplating approach should play a great role in the treatment of marine crude oil leakage pollution.
Collapse
Affiliation(s)
- Wanze Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Li Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuefeng Chen
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Biabani R, Ferrari P, Vaccari M. Best management practices for minimizing undesired effects of thermal remediation and soil washing on soil properties. A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103480-103495. [PMID: 37702866 DOI: 10.1007/s11356-023-29656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
The use of remediated soils as end-of-life materials raises some challenges including policy and regulation, permits and specifications, technological limitations, knowledge and information, costs, as well as quality and performance associated with using them. Therefore, a set of procedures must be followed to preserve the quality and fundamental properties of soil during a remediation process. This study presented a comprehensive review regarding the fundamental impacts of thermal desorption (TD) and soil washing (SW) on soil characteristics. The effects of main operating parameters of TD and SW on the physical, chemical, and biological properties of soil were systematically reviewed. In TD, temperature has a more remarkable effect on physic-chemical and biological characteristics of soil than heating time. Therefore, decrease in temperature within a suitable range prevents unreversible changes on soil properties. In SW, more attention should be paid to extraction process of contaminants from soil particles. Using the right dosage and type of chelating agents, surfactants, solvents, and other additives can help to avoid problems with recovery or treatment using conventional methods. In addition, this review introduced a framework for implementing sustainable remediation approaches based on a holistic approach to best management practices (BMPs), which, besides reducing the risks associated with different pollutants, might provide new horizons for decreasing the unfavourable impacts of TD and SW on soil.
Collapse
Affiliation(s)
- Roya Biabani
- Sanitary and Environmental Engineering, Department of Civil Engineering, Architecture, Land and Environment, University of Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - Piero Ferrari
- Research and Innovation, Brixiambiente Srl, 22 Via Molino Emili, Maclodio, Italy
| | - Mentore Vaccari
- Sanitary and Environmental Engineering, Department of Civil Engineering, Architecture, Land and Environment, University of Brescia, Via Branze 38, 25123, Brescia, Italy
| |
Collapse
|
3
|
Bao J, Lv Y, Liu C, Li S, Yin Z, Yu Y, Zhu L. Performance evaluation of rhamnolipids addition for the biodegradation and bioutilization of petroleum pollutants during the composting of organic wastes with waste heavy oil. iScience 2022; 25:104403. [PMID: 35663019 PMCID: PMC9157225 DOI: 10.1016/j.isci.2022.104403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 01/14/2023] Open
Abstract
Environmental pollution caused by petroleum hydrocarbons is being paid more and more attention worldwide. Surfactants are able to improve the solubility of petroleum hydrocarbons, but their effects on petroleum hydrocarbon degradation in composting systems are still unclear. In this study, the effects on microbial community succession were investigated by adding petroleum hydrocarbons and rhamnolipids during composting of organic wastes. The results showed that the compost and the addition of rhamnolipids could effectively reduce the petroleum hydrocarbon content with an efficiency of 73.52%, compared to 53.81% for the treatment without addition. Network analyses and Structural Equation Model suggested that there were multiple potential petroleum degraders microbes that might be regulated by nitrogen. The findings in this study can also provide an implication for the treatment of petroleum hydrocarbon pollutants from oil-polluted soil, and the technology can be potentially applied on an industrial scale in practice. Effects of rhamnolipids on the removal of petroleum hydrocarbons were investigated The relationship between PDM, APDM, and environmental factors was revealed There was a significant correlation between nitrogen and PDM and APDM Rhamnolipids are bio-resources for effectively removing petroleum hydrocarbons
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Yuanfei Lv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Chenchen Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Zhihong Yin
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| |
Collapse
|
4
|
Ambaye TG, Chebbi A, Formicola F, Prasad S, Gomez FH, Franzetti A, Vaccari M. Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. CHEMOSPHERE 2022; 293:133572. [PMID: 35016966 DOI: 10.1016/j.chemosphere.2022.133572] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Petroleum hydrocarbons (PHs) are used as raw materials in many industries and primary energy sources. However, excessive PHs act as soil pollutants, posing serious threats to living organisms. Various ex-situ or in-situ chemical and biological methods are applied to restore polluted soil. However, most of the chemical treatment methods are expensive, environmentally unfriendly, and sometimes inefficient. That attracts scientists and researchers to develop and select new strategists to remediate polluted soil through risk-based analysis and eco-friendly manner. This review discusses the sources of PHs, properties, distribution, transport, and fate in the environment, internal and external factors affecting the soil remediation and restoration process, and its effective re-utilization for agriculture. Bioremediation is an eco-friendly method for degrading PHs, specifically by using microorganisms. Next-generation sequencing (NGS) technologies are being used to monitor contaminated sites. Currently, these new technologies have caused a paradigm shift by giving new insights into the microbially mediated biodegradation processes by targeting rRNA are discussed concisely. The recent development of risk-based management for soil contamination and its challenges and future perspectives are also discussed. Furthermore, nanotechnology seems very promising for effective soil remediation, but its success depends on its cost-effectiveness. This review paper suggests using bio-electrochemical systems that utilize electro-chemically active microorganisms to remediate and restore polluted soil with PHs that would be eco-friendlier and help tailor-made effective and sustainable remediation technologies.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| | - Alif Chebbi
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy; Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Francesca Formicola
- Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Franco Hernan Gomez
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| |
Collapse
|