1
|
Cortés-Lobo A, Hernández JG. Calcium Carbide (CaC 2) as a C 2-Synthon by Mechanochemistry. Chempluschem 2024; 89:e202400257. [PMID: 38819438 DOI: 10.1002/cplu.202400257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Mechanochemical reactions by ball milling have opened new avenues in chemical synthesis. Particularly, mechanochemistry has facilitated the reaction of insoluble materials to simplify stablished synthetic protocols and develop new ones. One notable application involves the use of calcium carbide (CaC2) as a C2-synthon through mechanochemistry, which has offered a more practical alternative to incorporate C2-units compared to the conventional use of highly flammable gaseous acetylene. For example, by ball milling, the acetylenic anions [C2]2- found in CaC2 have been harnessed for the synthesis of diverse functional carbon materials as well as discrete organic molecules. This Concept aims to contribute to the conceptualization of this innovative approach while highlighting both its advantages and the challenges inherent in the use of CaC2.
Collapse
Affiliation(s)
- Alejandro Cortés-Lobo
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| | - José G Hernández
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| |
Collapse
|
2
|
Yılmaz Ö, Koyuncu İ. Determination of copper and cobalt in different tea samples at trace levels by FAAS after preconcentration with a novel iron PAMAM-OH-encapsulated magnetic nanoparticle as SPE sorbent. ANAL SCI 2024; 40:633-641. [PMID: 38252257 DOI: 10.1007/s44211-023-00495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024]
Abstract
Environmental contamination caused by heavy metals is a significant global concern. The presented study investigated the efficiency of iron PAMAM-OH encapsulated magnetic nanoparticles (Fe-MNP-G2-OH) as sorbent for the preconcentration of copper and cobalt from tea samples. High metal-chelating ethylenediamine core polyamidoethanol generation-2 (PAMAM-G2-OH) was encapsulated with iron oxide (Fe3O4) to synthesize the sorbent. Limit of detection (LOD) values for copper and cobalt extracted and detected by the developed Fe-MNP-G2-OH -SPE-FAAS method were 0.52 and 1.1 μg L-1, respectively. There were 230- and 101-fold improvement in detection limits for copper and cobalt, respectively, when compared to direct FAAS measurement. The percent recovery results for the analytes in green and black tea samples ranged from 93 to 107%, with low relative standard deviation (%RSD) values. The synthesis of nanoparticle was carried out through a unique method, which was characterized by thermogravimetric analysis (TGA), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) methods. The analytical results demonstrated the applicability and effectiveness of Fe-MNP-G2-OH nanoparticles on the preconcentration of copper and cobalt from tea samples and the developed method is suitable for the trace detection of heavy metals by FAAS method. To the best our knowledge, this is the first study where copper and cobalt in green and black tea samples were extracted by Fe-MNP-G2-OH adsorbent and precipitation of the adsorbent during its synthesis was carried out in acetone medium rather than aqueous one.
Collapse
Affiliation(s)
- Özge Yılmaz
- Faculty of Arts and Sciences, Department of Chemistry, Yıldız Technical University, Esenler, İstanbul, Türkiye.
| | - İkbal Koyuncu
- Faculty of Arts and Sciences, Department of Chemistry, Yıldız Technical University, Esenler, İstanbul, Türkiye
| |
Collapse
|
3
|
Ma R, Nie D, Sang M, Wang W, Nie G. Adsorption of Rhodamine B and Pb(II) from aqueous solution by MoS 2 nanosheet modified biochar: Fabrication, performance, and mechanisms. BIORESOURCE TECHNOLOGY 2023; 386:129548. [PMID: 37488014 DOI: 10.1016/j.biortech.2023.129548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Mediated by polydopamine, MoS2 nanosheets were immobilized on the porous biochar derived from fungus residue, forming a novel biochar-based nanocomposite (MoS2-PDA@FRC) for the removal of Rhodamine B(RhB) and Pb(II) from water. Utilizing MoS2 nanosheets with abundant active adsorption sites, MoS2-PDA@FRC showed higher adsorption capacities than raw biochar, with 2.76 and 1.78 times higher capacities for RhB and Pb(II) respectively. MoS2-PDA@FRC also exhibited fast adsorption kinetics for RhB (120 min) and Pb (180 min) removal, as well as satisfactory adsorption selectivity in the presence of coexisting substances. The underlying removal mechanism was explored via Fourier transform infrared and X-ray photoelectron spectroscopies. Furthermore, during cyclic adsorption-regeneration and the fixed-bed adsorption experiments, the nanocomposite removed RhB and Pb(II) with high effectiveness and stability. Collectively, the results demonstrated the bright prospects of MoS2-PDA@FRC as a highly efficient decontamination agent of RhB and Pb(II) from water.
Collapse
Affiliation(s)
- Rui Ma
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Daoyuan Nie
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Min Sang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weiwei Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guangze Nie
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
4
|
Wang F, Li S, Liang J, Wang Y, Song H, Yang J, Zou X, Li C. Removal and reuse of heavy metal ions on mildly oxidized Ti 3C 2 @BF membrane via synergistic photocatalytic-photothermal approach. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131954. [PMID: 37392643 DOI: 10.1016/j.jhazmat.2023.131954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
The pollution of heavy metal ions in water seriously affects the ecosystem and human health. Here, an efficient synergetic photocatalytic-photothermal system is designed by combining a mildly oxidized Ti3C2 (mo-Ti3C2) with a super hydrophilic bamboo fiber (BF) membrane. The mo-Ti3C2 heterojunction promotes the transfer and separation of photoinduced charges and thus enhances the photocatalytic reduction of heavy metal ions (Co2+, Pb2+, Zn2+, Mn2+ and Cu2+). The photoreduced metal nanoparticles with high conductivity and LSPR effect further accelerate the transfer and separation of photoinduced charges, and improve photothermal and evaporative performance. The mo-Ti3C2-2.4 @BF membrane in Co(NO3)2 solution can achieve an excellent evaporation rate of 4.6 kg·m-2·h-1 and a high solar-vapor efficiency of up to 97.5% under the light intensity of 2.44 kW·m-2, which are 27.8% and 19.6% higher than those in H2O, respectively, demonstrating the reuse of photoreduced Co nanoparticles. No heavy metal ions are detected in any of the condensed water, and the Co2+ removal rate in the concentrated Co(NO3)2 solution is up to 80.4%. The synergetic photocatalytic-photothermal approach on the mo-Ti3C2 @BF membrane provides a new scope for the continuous removal and reuse of heavy metal ions, as well as for obtaining clean water.
Collapse
Affiliation(s)
- Fangxian Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shihao Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Junwen Liang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuwei Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Haoran Song
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Junwei Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xuelin Zou
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Changping Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
5
|
Sustainable application of calcium carbide residue as a filler for 3D printing materials. Sci Rep 2023; 13:4465. [PMID: 36932172 PMCID: PMC10023683 DOI: 10.1038/s41598-023-31075-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Industrial activity results in ton-scale production of calcium carbide and generation of a significant amount of calcium carbide residue (CCR), which is often disposed of in the environment as waste. CCR is an active chemical, and rain washes away alkali from sludge, changing the pH of soils and water and damaging the environment. In this work, we explored new opportunities for the utilization of CCR in view of the coming industrial uptake of digital design and additive technologies. Amazingly, CCR can be successfully used as a filler for the modification of 3D printed materials towards the introduction of hybrid organic/inorganic frameworks. A series of commercially available plastics (PLA, ABS, Nylon, PETG, SBS) were successfully used as matrices for CCR-based composite production with high CCR contents up to 28%. Tensile analyses showed increases in tensile strength and Young's modulus of 9% and 60%, respectively. Moreover, in comparison with the pure plastics, the CCR-based materials better maintained the digitally designed shape (lower shrinkage). Importantly, CCR-filled materials are 3D printable, making them very promising components in the building sector. Considering the amount of already available CCR stored in the environment, this material is available in large quantities in the near future for hybrid materials, and anticipated opportunities exist in the additive manufacturing sector. The involvement of CCR in practical composite materials is equally important for environmental protection and reuse of already available multiple-ton wastes.
Collapse
|
6
|
Godínez-García FJ, Guerrero-Rivera R, Martínez-Rivera JA, Gamero-Inda E, Ortiz-Medina J. Advances in two-dimensional engineered nanomaterials applications for the agro- and food-industries. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 36922737 DOI: 10.1002/jsfa.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional nanomaterials, such as graphene, transition metal dichalcogenides, MXenes, and other layered compounds, are the subject of intense theoretical and experimental research for applications in a wide range of advanced technological solutions, given their outstanding physical, chemical, and mechanical properties. In the context of food science and technology, their contributions are starting to appear, based on the advantages that two-dimensional nanostructures offer to agricultural- and food-related key topics, such as sustainable water use, nano-agrochemicals, novel nanosensing devices, and smart packaging technologies. These application categories facilitate the grasping of the current and potential uses of such advanced nanomaterials in the field, backed by their advantageous physical, chemical, and structural properties. Developments for water cleaning and reuse, efficient nanofertilizers and pesticides, ultrasensitive sensors for food contamination, and intelligent nanoelectronic disposable food packages are among the most promising application examples reviewed here and demonstrate the tremendous impact that further developments would have in the area as the fundamental and applied research of two-dimensional nanostructures continues. We expect this work will contribute to a better understanding of the promising characteristics of two-dimensional nanomaterials that could be used for the design of novel and feasible solutions in the agriculture and food areas. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco Javier Godínez-García
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Rubén Guerrero-Rivera
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - José Antonio Martínez-Rivera
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Eduardo Gamero-Inda
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Josué Ortiz-Medina
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| |
Collapse
|