1
|
Jia P, Wang M, Ma C, Chen D, Zhang Y, Liu J. Quantum-level investigation of air decomposed pollutants gas sensor (Pd-modified g-C 3N 4) influenced by micro-water content. CHEMOSPHERE 2024; 358:142198. [PMID: 38697566 DOI: 10.1016/j.chemosphere.2024.142198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
In the electrical industry, there are many hazardous gases that pollute the environment and even jeopardize human health, so timely detection and effective control of these hazardous gases is of great significance. In this work, the gas-sensitive properties of Pd-modified g-C3N4 interface for each hazardous gas molecule were investigated from a microscopic viewpoint, taking the hazardous gases (CO, NOx) that may be generated in the power industry as the detection target. Then, the performance of Pd-modifiedg-C3N4 was evaluated for practical applications as a gas sensor material. Novelly, an unconventional means was designed to briefly predict the effect of humidity on the adsorption properties of this sensor material. The final results found that Pd-modified g-C3N4 is most suitable as a potential gas-sensitizing material for NO2 gas sensors, followed by CO. Interestingly, Pd-modified g-C3N4 is less suitable as a potential gas-sensitizing material for NO gas sensors, but has the potential to be used as a NO cleaner (adsorbent). Unconventional simulation explorations of humidity effects show that in practical applications Pd-modified g-C3N4 remains a promising material for gas sensing in specific humidity environments. This work reveals the origin of the excellent properties of Pd-modified g-C3N4 as a gas sensor material and provides new ideas for the detection and treatment of these three hazardous gases.
Collapse
Affiliation(s)
- Pengfei Jia
- Data Recovery Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641100, China; School of Electrical Engineering, Guangxi University, Nanning 530004, China
| | - Mingxiang Wang
- School of Electrical Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, Guangxi University, Nanning 530004, China.
| | - Changyou Ma
- Data Recovery Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641100, China
| | - Dachang Chen
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yiyi Zhang
- School of Electrical Engineering, Guangxi University, Nanning 530004, China
| | - Jiefeng Liu
- School of Electrical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
2
|
Min H, Zhang K, Guo Z, Chi F, Fu L, Li B, Qiao X, Wang S, Cao S, Wang B, Ma Q. N-rich chitosan-derived porous carbon materials for efficient CO 2 adsorption and gas separation. Front Chem 2023; 11:1333475. [PMID: 38156020 PMCID: PMC10752987 DOI: 10.3389/fchem.2023.1333475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023] Open
Abstract
Capturing and separating carbon dioxide, particularly using porous carbon adsorption separation technology, has received considerable research attention due to its advantages such as low cost and ease of regeneration. In this study, we successfully developed a one-step carbonization activation method using freeze-thaw pre-mix treatment to prepare high-nitrogen-content microporous nitrogen-doped carbon materials. These materials hold promise for capturing and separating CO2 from complex gas mixtures, such as biogas. The nitrogen content of the prepared carbon adsorbents reaches as high as 13.08 wt%, and they exhibit excellent CO2 adsorption performance under standard conditions (1 bar, 273 K/298 K), achieving 6.97 mmol/g and 3.77 mmol/g, respectively. Furthermore, according to Ideal Adsorption Solution Theory (IAST) analysis, these materials demonstrate material selectivity for CO2/CH4 (10 v:90 v) and CO2/CH4 (50 v:50 v) of 33.3 and 21.8, respectively, at 1 bar and 298 K. This study provides a promising CO2 adsorption and separation adsorbent that can be used in the efficient purification process for carbon dioxide, potentially reducing greenhouse gas emissions in industrial and energy production, thus offering robust support for addressing climate change and achieving more environmentally friendly energy production and carbon capture goals.
Collapse
Affiliation(s)
- Han Min
- Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Ke Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zhongya Guo
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Fengyao Chi
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Lili Fu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Bin Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xueyi Qiao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Shuang Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Shaokui Cao
- Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Bing Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Qingxiang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
3
|
Khosrowshahi MS, Mashhadimoslem H, Shayesteh H, Singh G, Khakpour E, Guan X, Rahimi M, Maleki F, Kumar P, Vinu A. Natural Products Derived Porous Carbons for CO 2 Capture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304289. [PMID: 37908147 PMCID: PMC10754147 DOI: 10.1002/advs.202304289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Indexed: 11/02/2023]
Abstract
As it is now established that global warming and climate change are a reality, international investments are pouring in and rightfully so for climate change mitigation. Carbon capture and separation (CCS) is therefore gaining paramount importance as it is considered one of the powerful solutions for global warming. Sorption on porous materials is a promising alternative to traditional carbon dioxide (CO2 ) capture technologies. Owing to their sustainable availability, economic viability, and important recyclability, natural products-derived porous carbons have emerged as favorable and competitive materials for CO2 sorption. Furthermore, the fabrication of high-quality value-added functional porous carbon-based materials using renewable precursors and waste materials is an environmentally friendly approach. This review provides crucial insights and analyses to enhance the understanding of the application of porous carbons in CO2 capture. Various methods for the synthesis of porous carbon, their structural characterization, and parameters that influence their sorption properties are discussed. The review also delves into the utilization of molecular dynamics (MD), Monte Carlo (MC), density functional theory (DFT), and machine learning techniques for simulating adsorption and validating experimental results. Lastly, the review provides future outlook and research directions for progressing the use of natural products-derived porous carbons for CO2 capture.
Collapse
Affiliation(s)
- Mobin Safarzadeh Khosrowshahi
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Hossein Mashhadimoslem
- Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Hadi Shayesteh
- Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Elnaz Khakpour
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Mohammad Rahimi
- Department of Biosystems EngineeringFaculty of AgricultureFerdowsi University of MashhadMashhad9177948974Iran
| | - Farid Maleki
- Department of Polymer Engineering and Color TechnologyAmirkabir University of TechnologyNo. 424, Hafez StTehran15875‐4413Iran
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| |
Collapse
|
4
|
Zhang L, Gonçalves AAS, Jaroniec M. Synthesis of nanoporous carbonaceous materials at lower temperatures. Front Chem 2023; 11:1277826. [PMID: 37901162 PMCID: PMC10606552 DOI: 10.3389/fchem.2023.1277826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Nanoporous carbonaceous materials are ideal ingredients in various industrial products due to their large specific surface area. They are typically prepared by post-synthesis activation and templating methods. Both methods require the input of large amounts of energy to sustain thermal treatment at high temperatures (typically >600°C), which is clearly in violation of the green-chemistry principles. To avoid this issue, other strategies have been developed for the synthesis of carbonaceous materials at lower temperatures (<600°C). This mini review is focused on three strategies suitable for processing carbons at lower temperatures, namely, hydrothermal carbonization, in situ hard templating method, and mechanically induced self-sustaining reaction. Typical procedures of these strategies are demonstrated by using recently reported examples. At the end, some problems associated with the strategies and potential solutions are discussed.
Collapse
Affiliation(s)
- Liping Zhang
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen, China
| | | | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, United States
| |
Collapse
|
5
|
Qin X, Cheng S, Xing B, Qu X, Shi C, Meng W, Zhang C, Xia H. Preparation of pyrolysis products by catalytic pyrolysis of poplar: Application of biochar in antibiotic wastewater treatment. CHEMOSPHERE 2023; 338:139519. [PMID: 37459927 DOI: 10.1016/j.chemosphere.2023.139519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Poplar waste is acted as feedstock to produce renewable biofuel and green chemical by catalytic pyrolysis using ferric nitrate and zinc chloride as additive. The additive contributes to the generation of furfural in bio-oil. Additive promotes the generation of H2 and inhibits the generation of CO with bio-gas heating value of 12.16 MJ (Nm3)-1. Biochar exists ZnO and Fe3O4 with large surface area, which could be used as absorbent and photocatalyst for tetracycline and ciprofloxacin removal. The tetracycline and ciprofloxacin adsorption amount of biochar are 316.41 and 255.23 mg g-1 respectively. While the photocatalytic degradation removal of the tetracycline and ciprofloxacin is close to 100%. The adsorption and photocatalytic degradation mechanism are investigate and analyzed using the density functional theory and electron paramagnetic resonance analysis. Biochar can be quickly recycled and regenerated after use. Besides, biochar can be used in lithium ion battery industry for energy storage, which specific capacity is 535 mAh g-1.
Collapse
Affiliation(s)
- Xiaojing Qin
- School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Song Cheng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454003, China.
| | - Baolin Xing
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454003, China.
| | - XiaoXaio Qu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Changliang Shi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454003, China
| | - Weibo Meng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Chuanxiang Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454003, China
| | - Hongying Xia
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China
| |
Collapse
|