1
|
Men C, Jiang H, Ma Y, Cai H, Fu H, Li Z. A nationwide probabilistic risk assessment and a new insight into source-specific risk apportionment of antibiotics in eight typical river basins in China: Human health risk and ecological risk. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136674. [PMID: 39642732 DOI: 10.1016/j.jhazmat.2024.136674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
China is the largest producer and consumer of antibiotics, a nationwide study on the contamination of antibiotics in China is urgently needed, and source apportionment towards risks associated with antibiotics is now attracting increasing attention. In this study, based on eight antibiotics at 666 sampling sites, spatial variations and probabilistic risks (human health and ecological risk) of antibiotics in eight river basins in China were analyzed. Source-specific health and ecological risk associated with antibiotics in a typical basin was apportioned quantitatively. Results showed that mean antibiotic concentration in Haihe River Basin (HaiRB) and Yellow River Basin (178.25 and 257.36 ng·L-1, respectively) was higher than other basins. In HaiRB, the contribution of livestock and poultry breeding (31.89 %) was the largest of all sources for health risk, whereas pharmaceutical wastewater (35.97 %) was the most dominant source for ecological risk. To determine the most important source for risks associated with antibiotics, the concept of risks-targeted key source was proposed, and a risks-targeted key source apportionment model was developed. Results showed that pharmaceutical wastewater should be prior controlled among all sources. The concept and apportionment model of risks-targeted key source proposed in this study are applicable and referential for related studies.
Collapse
Affiliation(s)
- Cong Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoquan Jiang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuting Ma
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Hengjiang Cai
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Han Fu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
Lee J, Xiang K, Au E, Sarabi S, Acosta N, Bhatnagar S, Van Doorn J, Bertazzon S, Conly JM, Rennert-May E, Pitout JDD, Lee BE, Pang X, O'Grady C, Frankowski K, Hubert CRJ, Parkins MD. Longitudinal monitoring of sewershed resistomes in socioeconomically diverse urban neighborhoods. COMMUNICATIONS MEDICINE 2025; 5:7. [PMID: 39775111 PMCID: PMC11707339 DOI: 10.1038/s43856-024-00729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Understanding factors associated with antimicrobial resistance (AMR) distribution across populations is a necessary step in planning mitigation measures. While associations between AMR and socioeconomic-status (SES), including employment and education have been increasingly recognized in low- and middle-income settings, connections are less clear in high-income countries where SES remains an important influence on other health outcomes. METHODS We explored the relationship between SES and AMR in Calgary, Canada using spatially-resolved wastewater-based surveillance of resistomes detected by metagenomics across eight socio-economically diverse urban neighborhoods. Resistomes were established by shotgun-sequencing of wastewater pellets, and qPCR of targeted-AMR genes. SES status was established using 2021 Canadian census data. Conducting this comparison during the height of COVID-related international travel restrictions (Dec. 2020-Oct. 2021) allowed the hypotheses linking SES and AMR to be assessed with limited confounding. These were compared with sewage metagenomes from 244 cities around the world, linked with Human Development Index (HDI). RESULTS Wastewater metagenomes from Calgary's socioeconomically diverse neighborhoods exhibit highly similar resistomes, with no quantitative differences (p > 0.05), low Bray-Curtis dissimilarity, and no significant correlations with SES. By comparison, dissimilarity is observed between globally-sourced resistomes (p < 0.05), underscoring the homogeneity of resistomes in Calgary's sub-populations. The analysis of globally-sourced resistomes alongside Calgary's resistome further reveals lower AMR burden in Calgary relative to other cities around the world. This is particularly pronounced for the most clinically-relevant AMR genes (e.g., beta-lactamases, macrolide-lincosamide-streptogramin). CONCLUSIONS This work showcases the effectiveness of inclusive and comprehensive wastewater-based surveillance for exploring the interplay between SES and AMR.
Collapse
Affiliation(s)
- Jangwoo Lee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Kevin Xiang
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Emily Au
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Shahrzad Sarabi
- Department of Geography, University of Calgary, Calgary, Canada
| | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Srijak Bhatnagar
- Department of Biological Sciences, University of Calgary, Calgary, Canada
- Faculty of Science and Technology, Athabasca University, Athabasca, Alberta, Canada
| | - Jennifer Van Doorn
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | - John M Conly
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Department of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
| | - Elissa Rennert-May
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Department of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, Canada
| | - Johann D D Pitout
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
| | - Bonita E Lee
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Women & Children's Health Research Institute; Li Ka Shing Institute of Virology, Edmonton, Alberta, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Precision Laboratories, Public Health Laboratory, Alberta Health Services, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Christine O'Grady
- Advancing Canadian Water Assets, University of Calgary, Calgary, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Canada
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
- Department of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada.
- O'Brien Institute for Public Health, University of Calgary, Calgary, Canada.
- Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, Canada.
| |
Collapse
|
3
|
Carneiro RB, Nika MC, Gil-Solsona R, Diamanti KS, Thomaidis NS, Corominas L, Gago-Ferrero P. A critical review of wastewater-based epidemiology as a tool to evaluate the unintentional human exposure to potentially harmful chemicals. Anal Bioanal Chem 2025; 417:495-511. [PMID: 39422714 PMCID: PMC11700037 DOI: 10.1007/s00216-024-05596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Wastewater-based epidemiology (WBE) is a powerful tool to gather epidemiological insights at the community level, providing objective data on population exposure to harmful substances. A considerable portion of the human exposure to these potentially harmful chemicals occurs unintentionally, unlike substances such as pharmaceuticals, illicit drugs, or alcohol. In this context, this comprehensive review analyzes WBE studies focused on classes of organic chemicals to which humans are unintentionally exposed, namely organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFAS), benzotriazoles and benzothiazoles, phthalates and terephthalates, benzophenones, pesticides, bisphenols, and parabens. The review highlights some advantages of WBE for public health surveillance, e.g., non-invasive analysis, predictive capability, nearly real-time data, population-wide insights, no ethical approval, and unbiased sampling. It also discusses challenges and future research directions in WBE regarding exposure to harmful chemicals from various sources. The review emphasizes the critical role of wastewater sampling, sample preparation, quality control, and instrumental analysis in achieving accurate and reliable results. Furthermore, it examines the selection of human biomarkers for WBE studies and explores strategies to link WBE with human biomonitoring (HBM), which together enhance both the precision and effectiveness of exposure assessments.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Laboratory of Chromatography, São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil.
| | - Maria-Christina Nika
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Rubén Gil-Solsona
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Konstantina S Diamanti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Lluís Corominas
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, 17003, Girona, Catalonia, Spain
- University of Girona, Plaça de Sant Domènec 3, 17004, Girona, Catalonia, Spain
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
4
|
Price M, Simpson BS, Tscharke BJ, Ahmed F, Keller EL, Sussex H, Kah M, Sila-Nowicka K, Chappell A, Gerber C, Trowsdale S. Reporting population size in wastewater-based epidemiology: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176076. [PMID: 39244059 DOI: 10.1016/j.scitotenv.2024.176076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Knowledge of the number of people present in a catchment is fundamental for the assessment of spatio-temporal trends in wastewater-based epidemiology (WBE). Accurately estimating the number of people connected to wastewater catchments is challenging however, because populations are dynamic. Methods used to estimate population size can significantly influence the calculation and interpretation of population-normalised wastewater data (PNWD). This paper systematically reviews the reporting of population data in 339 WBE studies. Studies were evaluated based on their reporting of population size, the source of population data, the population calculation methods, and the uncertainties in population estimates. Most papers reported population size (96 %) and the source of population data (60 %). Fewer studies reported the uncertainties in their population data (50 %) and the methods used to calculate these estimates (28 %). This is relevant because different methods have unique strengths and limitations which can affect the accuracy of PNWD. Only 64 studies (19 %) reported all four components of population data. The reporting of population data has remained consistent in the past decade. Based on the findings, we recommend generalised reporting criteria for population data in WBE. As WBE is further mainstreamed and applied, the clear and comprehensive reporting of population data will only become increasingly important.
Collapse
Affiliation(s)
- Mackay Price
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Bradley S Simpson
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences, University of Queensland, 20 Cornwall Street, Queensland 4102, Australia
| | - Fahad Ahmed
- Independent researcher, Brisbane, Queensland, Australia
| | - Emma L Keller
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | | | - Melanie Kah
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Katarzyna Sila-Nowicka
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-357, Poland
| | - Andrew Chappell
- Institute of Environmental Science and Research (ESR) Ltd., 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Cobus Gerber
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Sam Trowsdale
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Ceolotto N, Jagadeesan K, Xu L, Standerwick R, Robertson M, Barden R, Barnett J, Kasprzyk-Hordern B. Personal care products use during SARS-CoV-2 pandemic: Environmental and public health impact assessment using wastewater-based epidemiology. WATER RESEARCH 2024; 268:122624. [PMID: 39490091 DOI: 10.1016/j.watres.2024.122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
The recent SARS-CoV-2 pandemic had profound consequences on people's wellbeing, societies and economy worldwide. This manuscript discusses public exposure to chemicals of concern in personal care products (parabens and benzophenones) during SARS-CoV-2 pandemic. These were monitored for two years in four catchments (two cities and two towns) in South West England accounting for >1 million people. Results showed slightly higher usage of personal care products in small towns than big cities. Major changes in usage of parabens (p values < 0.05) were observed during national lockdowns (NLs). This is likely due to increased awareness towards personal hygiene. In contrast, benzophenones showed seasonal trends; there were higher correlations with sunshine prevalence and temperature rather than NLs reflecting their usage in sunscreen products. Estimation of per capita intake of parabens and benzophenones using WBE revealed lower intake than the Acceptable Daily Intake (ADI) established by the EFSA; however, the metabolism factor used was considered putative due to the lack of pharmacokinetic studies. Prediction of environmental exposure revealed peaks of higher impact during NLs and first year of pandemic, nevertheless the overall predicted values were below Predicted No Effect Concentrations (PNEC).
Collapse
Affiliation(s)
- Nicola Ceolotto
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Institute for Sustainability, University of Bath, Bath BA2 7AY, UK; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK
| | - Kishore Jagadeesan
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK
| | - Like Xu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Richard Standerwick
- Wessex Water, Bath BA2 7WW, UK; Environment Agency, Horizon House, Deanery Road, Bristol, UK
| | - Megan Robertson
- Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK; Wessex Water, Bath BA2 7WW, UK
| | - Ruth Barden
- Institute for Sustainability, University of Bath, Bath BA2 7AY, UK; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK; Wessex Water, Bath BA2 7WW, UK
| | - Julie Barnett
- Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK; Department of Psychology, University of Bath, Bath BA2 7AY, UK
| | - Barbara Kasprzyk-Hordern
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Institute for Sustainability, University of Bath, Bath BA2 7AY, UK; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
6
|
Ceolotto N, Jagadeesan K, Xu L, Standerwick R, Robertson M, Barden R, Barnett J, Kasprzyk-Hordern B. Understanding treatment of pain during SARS-CoV-2 pandemic in a two-year intercity longitudinal study using wastewater-based epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134121. [PMID: 38636235 DOI: 10.1016/j.jhazmat.2024.134121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/20/2024]
Abstract
SARS-CoV-2 pandemic had a significant impact on the society, economy, and health of people around the world with consequences that need to be better understood for future pandemic preparedness. This manuscript provides insights into the usage of pharmaceuticals for pain treatment management throughout SARS-CoV-2 pandemic. Four towns and cities with a total population of > 1 million people covering an area of 2000 km2 in South West England were monitored for twenty-four months. Results showed different patterns in pain pharma usage, with small towns having higher population normalised daily loads (PNDLs) than big cities for majority of pain killers studied. This is likely due to demographics of these cities with smaller cities having older population. Per capita consumption of non-steroidal anti-inflammatory drugs (NSAIDs) increased compared to pre-pandemic usage in line with SARS-CoV-2 infections (ibuprofen and acetaminophen), while body pain drugs (diclofenac and naproxen) decreased in line with restrictions and closure of sports facilities. Changes in population normalised daily intake (PNDI) of pain killers were particularly apparent during the 1st and 3rd national lockdown. Comparison of PNDIs with prescriptions highlighted differences related to medication availability (OTC drugs) and patients' nonadherence (prescribed drugs). In addition, several instances of direct disposal events across the catchments were observed which raises an issue of lack of pharma compliance and general understanding of potential environmental impacts from pharma usage.
Collapse
Affiliation(s)
- Nicola Ceolotto
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Institute for Sustainability, University of Bath, Bath BA2 7AY, UK
| | | | - Like Xu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Richard Standerwick
- Wessex Water, Bath BA2 7WW, UK; Environment Agency, Horizon House, Deanery Road, Bristol, UK
| | | | | | - Julie Barnett
- Department of Psychology, University of Bath, Bath BA2 7AY, UK
| | | |
Collapse
|
7
|
Wattanayon R, Proctor K, Jagadeesan K, Barden R, Kasprzyk-Hordern B. An integrated One Health framework for holistic evaluation of risks from antifungal agents in a large-scale multi-city study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165752. [PMID: 37499814 DOI: 10.1016/j.scitotenv.2023.165752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
A new framework for retrospective mass spectral data mining for antifungal agents (AFs) and Wastewater-Based Epidemiology (WBE) was developed as part of One Health framework to tackle risks from AFs. A large scale, multi-city study was undertaken in South-West England. Key drivers of AFs in the catchment were identified with communal wastewater discharges being the main driver for human AFs (fluconazole, ketoconazole) and agricultural runoff being the main driver for pesticide AFs (prochloraz, prothioconazole and tebuconazole). Average WBE-estimated human used fluconazole and ketoconazole PNDIs (population normalised daily intake) exceeded 300 mg day-1 1000 inh-1 and 2000 mg day-1 1000 inh-1. This is much higher than PNDPs (population normalised daily prescriptions <40 mg day-1 1000 inh-1 and <80 mg day-1 1000 inh-1 for fluconazole and ketoconazole respectively). This was expected due to both prescription and over-the-counter usage, and both oral and topical applications. Pesticide AF, prothioconazole had PNDIs <40,000 mg day-1 1000 inh -1, which gave intake: 0.43, 0.26, 0.07 mg kg-1 in City A, B, and C, likely due to accounting for external/non-human sources. This is higher than the acceptable daily intake (ADI) of 0.01 mg kg-1bw day-1, which warrants further study. Intake per kg of body weight estimated using tebuconazole was 0.86, 1.39, 0.12, 0.13, and 2.7 mg kg-1 in City A-E respectively and is likely due to external/non-human sources. Intake calculated using its metabolite was 0.02 and 0.01 mg kg-1 in City B and C respectively, which aligned with ADI (0.03 mg kg-1bw day-1). The environmental risk assessment of AFs indicated low/medium risk from fluconazole, prochloraz, and tebuconazole, medium risk from epoxiconazole, prothioconazole's metabolite, and tebuconazole, and high risk for prothioconazole in river water. High risk was estimated from fluconazole, epoxiconazole, prothioconazole and its metabolite, tebuconazole, ketoconazole in wastewater samples, which is important during raw sewage discharge events via sewer overflows.
Collapse
Affiliation(s)
| | - Kathryn Proctor
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | | | - Ruth Barden
- Wessex Water, Claverton Down Rd, Bath BA2 7WW, UK
| | | |
Collapse
|
8
|
Sims N, Kannan A, Holton E, Jagadeesan K, Mageiros L, Standerwick R, Craft T, Barden R, Feil EJ, Kasprzyk-Hordern B. Antimicrobials and antimicrobial resistance genes in a one-year city metabolism longitudinal study using wastewater-based epidemiology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122020. [PMID: 37336345 DOI: 10.1016/j.envpol.2023.122020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
This longitudinal study tests correlations between antimicrobial agents (AA) and corresponding antimicrobial resistance genes (ARGs) generated by a community of >100 k people inhabiting one city (Bath) over a 13 month randomised monitoring programme of community wastewater. Several AAs experienced seasonal fluctuations, such as the macrolides erythromycin and clarithromycin that were found in higher loads in winter, whilst other AA levels, including sulfamethoxazole and sulfapyridine, stayed consistent over the study period. Interestingly, and as opposed to AAs, ARGs prevalence was found to be less variable, which indicates that fluctuations in AA usage might either not directly affect ARG levels or this process spans beyond the 13-month monitoring period. However, it is important to note that weekly positive correlations between individual associated AAs and ARGs were observed where seasonal variability in AA use was reported: ermB and macrolides CLR-clarithromycin and dmCLR-N-desmethyl clarithromycin, aSPY- N-acetyl sulfapyridine and sul1, and OFX-ofloxacin and qnrS. Furthermore, ARG loads normalised to 16S rRNA (gene load per microorganism) were positively correlated to the ARG loads normalised to the human population (gene load per capita), which indicates that the abundance of microorganisms is proportional to the size of human population and that the community size, and not AA levels, is a major driver of ARG levels in wastewater. Comparison of hospital and community wastewater showed higher number of AAs and their metabolites, their frequency of occurrence and concentrations in hospital wastewater. Examples include: LZD-linezolid (used only in severe bacterial infections) and AMX-amoxicillin (widely used, also in community but with very low wastewater stability) that were found only in hospital wastewater. CIP-ciprofloxacin, SMX-sulfamethoxazole, TMP-trimethoprim, MTZ-metronidazole and macrolides were found at much higher concentrations in hospital wastewater while TET-tetracycline and OTC-oxytetracycline, as well as antiretrovirals, had an opposite trend. In contrast, comparable concentrations of resistant genes were observed in both community and hospital wastewater. This supports the hypothesis that AMR levels are more of an endemic nature, developing over time in individual communities. Both hospital and community wastewater had AAs that exceeded PNEC values (e.g. CLR-clarithromycin, CIP-ciprofloxacin). In general, though, hospital effluents had a greater number of quantifiable AAs exceeding PNECs (e.g. SMX-sulfamethoxazole, ERY-erythromycin, TMP-trimethoprim). Hospitals are therefore an important consideration in AMR surveillance as could be high risk areas for AMR.
Collapse
Affiliation(s)
- Natalie Sims
- University of Bath, Department of Chemistry, Bath, BA2 7AY, UK; Centre for Sustainable Circular Technologies, Bath, BA2 7AY, UK
| | - Andrew Kannan
- University of Bath, Department of Chemistry, Bath, BA2 7AY, UK
| | | | | | - Leonardos Mageiros
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | - Tim Craft
- Department of R&D, Royal United Hospitals Bath, NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Ruth Barden
- Wessex Water, Claverton Down Rd, Bath, BA2 7WW, UK
| | - Edward J Feil
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Barbara Kasprzyk-Hordern
- University of Bath, Department of Chemistry, Bath, BA2 7AY, UK; Centre for Sustainable Circular Technologies, Bath, BA2 7AY, UK.
| |
Collapse
|
9
|
Cantillon D, Roberts AP. Development and evaluation of TaqMan-based, one-step, real-time RT-PCR assays for pepper mild mottle virus detection for near source tracking and wastewater-based epidemiology validation. PLoS One 2022; 17:e0278784. [PMID: 36534927 PMCID: PMC9762892 DOI: 10.1371/journal.pone.0278784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Emergence of novel human pathogens pose significant challenges to human health as highlighted by the SARS-CoV-2 pandemic. Wastewater based epidemiology (WBE) has previously been employed to identify viral pathogens and outbreaks by testing samples from regional wastewater treatment plants. Near source tracking (NST) allows for more targeted WBE by analysing samples from individual buildings such as schools or even individual floors such as in multi-floor office buildings. Despite the public health advantages of WBE, few strategies exist for optimising NST sampling methodologies. Therefore, we developed a protocol to evaluate virus detection in NST sampling using Pepper Mild Mottle Virus (PMMoV) as a proxy for RNA viruses. PMMoV is the most abundant enteric human associated RNA virus and is present in peppers/pepper-containing foods. Two bespoke TaqMan RT-PCR assays were developed to detect a PMMoV genomic 5' region and a capsid associated gene. To evaluate the protocol against field samples, pepper homogenates were flushed down an in-use toilet (Liverpool School of Tropical Medicine, UK) to spike wastewater with PMMoV on multiple days, and samples collected from two sewage access points to validate NST samplers. These wastewater samples were assessed for PMMoV based on Ct values and results compared to pepper and Tabasco derived PMMoV positive controls. Positive detection of PMMoV was comparable and consistent in ten independent samples across two NST samplers regardless of pepper homogenate spiking. We have developed two novel one step TaqMan assays that amplify both PMMoV targets in viral RNA extractions from peppers, Tabasco, and wastewater samples with cDNA synthesis through to RT-PCR results taking approximately 30 minutes. Pepper homogenate flushing was not required to detect PMMoV in our wastewater samples, however this strategy of flushing PMMoV containing materials outlined here could be valuable in assessing and validating NST in buildings with no previous or current sewage flow.
Collapse
Affiliation(s)
- Daire Cantillon
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
10
|
Holton E, Sims N, Jagadeesan K, Standerwick R, Kasprzyk-Hordern B. Quantifying community-wide antimicrobials usage via wastewater-based epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129001. [PMID: 35594673 DOI: 10.1016/j.jhazmat.2022.129001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Increasing usage of antimicrobials is a significant contributor to the emergence and dissemination of antimicrobial resistance. Wastewater-based epidemiology is a useful tool for evaluating public health, via the monitoring of chemical and biological markers in wastewater influent, such as antibiotics. Sixteen antimicrobials and their metabolites were studied: sulfonamides, trimethoprim, metronidazole, quinolones, nitrofurantoin, cyclines, and antiretrovirals. Correction factors (CFs) for human drug excretion, for various drug forms, were determined via a systematic literature review of pharmacokinetic research. Analyte stability was examined over a 24 h study. The estimation of community-wide drug intake was evaluated using the corresponding catchment prescription data. Overall, antimicrobials excreted in an unchanged form were often observed to over-estimate daily intake. This could be attributed to biotransformation, e.g., via glucuronide cleavage, or direct disposal of unused drugs. Acetyl-sulfonamides, trimethoprim, hydroxy-metronidazole, clarithromycin, ciprofloxacin, ofloxacin, tetracycline, and oxytetracycline generally performed well in the estimation of drug intake, relative to prescription records. The low prevalence of quinolone and trimethoprim metabolites, and the low stability of nitrofurantoin, limited the ability to evaluate these metabolites and their respective CFs.
Collapse
Affiliation(s)
| | - Natalie Sims
- University of Bath, Department of Chemistry, Bath BA2 7AY, UK
| | | | | | | |
Collapse
|
11
|
Cai S, Wang N, Xu L, Yan F, Jiang Q, Zhao X, Wang W, Wang H, Jiang L, Cong W, Sheppard SK, Weeks J, Kasprzyk-Hordern B, Fu C, Lambert H. Impacts of Antibiotic Residues in the Environment on Bacterial Resistance and Human Health in Eastern China: An Interdisciplinary Mixed-Methods Study Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138145. [PMID: 35805804 PMCID: PMC9266211 DOI: 10.3390/ijerph19138145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
Antibiotic resistance is a global health challenge that threatens human and animal lives, especially among low-income and vulnerable populations in less-developed countries. Its multi-factorial nature requires integrated studies on antibiotics and resistant bacteria in humans, animals, and the environment. To achieve a comprehensive understanding of the situation and management of antibiotic use and environmental transmission, this paper describes a study protocol to document human exposure to antibiotics from major direct and indirect sources, and its potential health outcomes. Our mixed-methods approach addresses both microbiological and pathogen genomics, and epidemiological, geospatial, anthropological, and sociological aspects. Implemented in two rural residential areas in two provinces in Eastern China, linked sub-studies assess antibiotic exposure in population cohorts through household surveys, medicine diaries, and biological sampling; identify the types and frequencies of antibiotic resistance genes in humans and food-stock animals; quantify the presence of antibiotic residues and antibiotic resistance genes in the aquatic environment, including wastewater; investigate the drivers and behaviours associated with human and livestock antibiotic use; and analyse the national and local policy context, to propose strategies and systematic measurements for optimising and monitoring antibiotic use. As a multidisciplinary collaboration between institutions in the UK and China, this study will provide an in-depth understanding of the influencing factors and allow comprehensive awareness of the complexity of AMR and antibiotic use in rural Eastern China.
Collapse
Affiliation(s)
- Shenghan Cai
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Na Wang
- Key Laboratory of Public Health Safety of Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Shanghai 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Like Xu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Fei Yan
- Key Laboratory of Public Health Safety of Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Shanghai 200032, China
- Department of Social Medicine, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Shanghai 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xinping Zhao
- Key Laboratory of Public Health Safety of Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Shanghai 200032, China
- Department of Social Medicine, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Key Laboratory of Public Health Safety of Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Shanghai 200032, China
- Department of Social Medicine, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Shanghai 200032, China
| | - Lufang Jiang
- Key Laboratory of Public Health Safety of Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Shanghai 200032, China
| | - Wenjuan Cong
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- Department of Zoology, University of Oxford, Oxford OX1 2JD, UK
| | | | | | - Chaowei Fu
- Key Laboratory of Public Health Safety of Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Shanghai 200032, China
- Department of Social Medicine, School of Public Health, Fudan University, Shanghai 200032, China
| | - Helen Lambert
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| |
Collapse
|