1
|
Zhang N, Xu Y, He T, Zhou M, Yu Y, Wang P, Wang Q. Rapid aggregation of amyloid-like protein enhanced by mTGase to prepare functional wool fabrics for efficient and sustainable remove heavy metals from wastewater. Int J Biol Macromol 2024; 273:133066. [PMID: 38866294 DOI: 10.1016/j.ijbiomac.2024.133066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
To counteract the increasing severity of water pollution and purify water sources, wastewater treatment materials are essential. In particular, it is necessary to improve the bonding strength between the adsorption material and the substrate in a long-term humid environment, and resist the invasion of microorganisms to prolong the service life. In this study, an amyloid-like aggregation method of lysozyme catalyzed by microbial transglutaminase (mTGase). Lysozyme self-assembles into an amyloid-like phase-transited lysozyme (PTL) in the presence of a reducing agent. Simultaneously, mTGase catalyzes acyl transfer reactions within lysozyme molecules or between lysozyme and keratin molecules, and driving PTL assembly on the wool fiber (TG-PTL@wool). This process enhances the grafting amount and fastness of PTL on the wool. Moreover, the tensile strength of wool fabric increased to 523 N. TG-PTL@wool achieves a 97.32 % removal rate of heavy metals, maintaining a removal rate of over 95 % after 5 cycles. TG-PTL@wool has excellent antibacterial property (99 %), and it remains above 90 % after 50 times of circulating washing. This study proved that mTGase can enhance the amyloid aggregation of lysozyme and enhance the bonding strength between PTL coating and substrate. Moreover, TG-PTL@wool provides a sustainable, efficient and cleaner solution for removing heavy metals from water.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yujie Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Tong He
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
2
|
Peña-Díaz S, Olsen WP, Wang H, Otzen DE. Functional Amyloids: The Biomaterials of Tomorrow? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312823. [PMID: 38308110 DOI: 10.1002/adma.202312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Functional amyloid (FAs), particularly the bacterial proteins CsgA and FapC, have many useful properties as biomaterials: high stability, efficient, and controllable formation of a single type of amyloid, easy availability as extracellular material in bacterial biofilm and flexible engineering to introduce new properties. CsgA in particular has already demonstrated its worth in hydrogels for stable gastrointestinal colonization and regenerative tissue engineering, cell-specific drug release, water-purification filters, and different biosensors. It also holds promise as catalytic amyloid; existing weak and unspecific activity can undoubtedly be improved by targeted engineering and benefit from the repetitive display of active sites on a surface. Unfortunately, FapC remains largely unexplored and no application is described so far. Since FapC shares many common features with CsgA, this opens the window to its development as a functional scaffold. The multiple imperfect repeats in CsgA and FapC form a platform to introduce novel properties, e.g., in connecting linkers of variable lengths. While exploitation of this potential is still at an early stage, particularly for FapC, a thorough understanding of their molecular properties will pave the way for multifunctional fibrils which can contribute toward solving many different societal challenges, ranging from CO2 fixation to hydrolysis of plastic nanoparticles.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - William Pallisgaard Olsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus C, 8000, Denmark
| |
Collapse
|
3
|
Akkaya B. Preparation and characterization of lysozyme loaded cryogel for heavy metal removal. Int J Biol Macromol 2023; 253:127494. [PMID: 37858643 DOI: 10.1016/j.ijbiomac.2023.127494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
In the present study, monolithic poly(N-isopropylacrylamide-acrylamide)-acrilic acid (poly(npam-aam)-aac) cryogels were made. Swelling tests, SEM, XRD, and ATR-FTIR analyses revealed distinct cryogel and lysozyme-loaded cryogel properties. The equilibrium swelling degree was 6.2 g H2O/g cryogel. The created poly(npam-aam)-aac with pores of 10-100 μm was obviously seen in SEM images. Lysozyme adsorption capacity on poly(npam-aam)-aac was found to be 260 mg/g at pH 7.4 and 40 °C. After that, we used lysozyme adsorbed cryogel for the removal of the model heavy metal ion (cadmium). A series of pH, duration, and ionic strengths were used to conduct Cd2+ adsorption experiments. The results showed that the new adsorbent had a considerable chemical affinity for Cd2+ ions in its ability to bind them under eye ocular conditions (pH 7.4, 32-36 °C, 0,15 M NaCl). The traditional Langmuir adsorption model was the most suitable, achieving maximum uptake of ∼185 mg/g. Chemical adsorption was found to be the rate-controlling step, and the process was also compatible with the pseudo-second-order model. For the treatment of ocular pathologies, the most effective enzyme, lysozyme, must show its function. That is why there is a need for using lysozyme, and lysozyme is selected as a lignad to adsorb heavy metal ions because of its high heavy metal binding affinity. This material could be used for the treatment of ocular pathologies in the future.
Collapse
Affiliation(s)
- Birnur Akkaya
- Sivas Cumhuriyet University Science Faculty, Department of Molecular Biology and Genetics, Sivas, Turkey.
| |
Collapse
|
4
|
Zhang X, Razanajatovo MR, Du X, Wang S, Feng L, Wan S, Chen N, Zhang Q. Well-designed protein amyloid nanofibrils composites as versatile and sustainable materials for aquatic environment remediation: A review. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:264-277. [PMID: 38435357 PMCID: PMC10902511 DOI: 10.1016/j.eehl.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 03/05/2024]
Abstract
Amyloid nanofibrils (ANFs) are supramolecular polymers originally classified as pathological markers in various human degenerative diseases. However, in recent years, ANFs have garnered greater interest and are regarded as nature-based sustainable biomaterials in environmental science, material engineering, and nanotechnology. On a laboratory scale, ANFs can be produced from food proteins via protein unfolding, misfolding, and hydrolysis. Furthermore, ANFs have specific structural characteristics such as a high aspect ratio, good rigidity, chemical stability, and a controllable sequence. These properties make them a promising functional material in water decontamination research. As a result, the fabrication and application of ANFs and their composites in water purification have recently gained considerable attention. Despite the large amount of literature in this field, there is a lack of systematic review to assess the gap in using ANFs and their composites to remove contaminants from water. This review discusses significant advancements in design techniques as well as the physicochemical properties of ANFs-based composites. We also emphasize the current progress in using ANFs-based composites to remove inorganic, organic, and biological contaminants. The interaction mechanisms between ANFs-based composites and contaminants are also highlighted. Finally, we illustrate the challenges and opportunities associated with the future preparation and application of ANFs-based composites. We anticipate that this review will shed new light on the future design and use of ANFs-based composites.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mamitiana Roger Razanajatovo
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xuedong Du
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shuo Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Li Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shunli Wan
- College of Life & Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Ningyi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingrui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
5
|
Gao J, Xia M, Cao Y, Yang Q, Xu P, Liu H, Chen Y. Regulable preparation of silk fibroin composite cryogel by dual-directional crosslink for achieving self-cleaning, superelasticity and multifunctional water purification. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131383. [PMID: 37080023 DOI: 10.1016/j.jhazmat.2023.131383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Recently, the cryogel as a special type of hydrogel was widely used in the field of medicine due to its porous structure and good biocompatibilit. However, great challenges existed for its irregular pore size and incompressible property, limiting its application in other fields. In this study, a novel silk fibroin-based cryogel (named SF@PVA/CS) with regulable pore size, excellent elasticity and durability was constructed using a green dual-directional crosslink strategy. The SF@PVA/CS was prepared by using silk fibroin (SF) as bone scaffold, and chitosan (CS) and polyvinyl alcohol (PVA) as polymer hydrogel which was introduced into the inner bone scaffold of SF. Such a brand-new cryogel possessed three-dimensional dual network structure, which can overcome the shortcoming of unregulatable pore size and incompressibility of traditional cryogel. Additionally, the developed SF@PVA/CS membrane was used for water purification for the first time, which exhibited superior selective permeation, excellent anti-fouling and brilliant self-cleaning property, and it can achieve the purification of both oil/water emulsion and methylene blue solution. This study expanded the application of SF-based cryogel, providing a novel routine for designing new-type composite cryogel and widening the application of dual-directional crosslink strategy developed in this study for facilitating the purification of wastewater.
Collapse
Affiliation(s)
- Junkai Gao
- School of Naval Architecture and Marinetime, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mengsheng Xia
- School of Naval Architecture and Marinetime, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yan Cao
- School of Naval Architecture and Marinetime, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qian Yang
- School of Naval Architecture and Marinetime, Zhejiang Ocean University, Zhoushan 316022, China
| | - Pengtao Xu
- School of Naval Architecture and Marinetime, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hong Liu
- School of Naval Architecture and Marinetime, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yan Chen
- School of Naval Architecture and Marinetime, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
6
|
Li L, Guo W, Zhang S, Guo R, Zhang L. Electrospun Nanofiber Membrane: An Efficient and Environmentally Friendly Material for the Removal of Metals and Dyes. Molecules 2023; 28:molecules28083288. [PMID: 37110521 PMCID: PMC10144585 DOI: 10.3390/molecules28083288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
With the rapid development of nanotechnology, electrospun nanofiber membranes (ENM) application and preparation methods have attracted attention. With many advantages such as high specific surface area, obvious interconnected structure, and high porosity, ENM has been widely used in many fields, especially in water treatment, with more advantages. ENM solves the shortcomings of traditional means, such as low efficiency, high energy consumption, and difficulty in recycling, and it is suitable for recycling and treatment of industrial wastewater. This review begins with a description of electrospinning technology, describing the structure, preparation methods, and factors of common ENMs. At the same time, the removal of heavy metal ions and dyes by ENMs is introduced. The mechanism of ENM adsorption on heavy metal ions and dyes is chelation or electrostatic attraction, which has excellent adsorption and filtration ability for heavy metal ions and dyes, and the adsorption capacity of ENMs for heavy metal ions and dyes can be improved by increasing the metal chelation sites. Therefore, this technology and mechanism can be exploited to develop new, better, and more effective separation methods for the removal of harmful pollutants to cope with the gradually increasing water scarcity and pollution. Finally, it is hoped that this review will provide some guidance and direction for research on wastewater treatment and industrial production.
Collapse
Affiliation(s)
- Li Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Hu N, Yu J, Hou L, Shi C, Li K, Hang F, Xie C. Amine-functionalized MOF-derived carbon materials for efficient removal of Congo red dye from aqueous solutions: simulation and adsorption studies. RSC Adv 2022; 13:1-13. [PMID: 36545289 PMCID: PMC9761559 DOI: 10.1039/d2ra06513d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, a novel polyethyleneimine (PEI) modified MOF-derived carbon adsorbent (PEI@MDC) was proposed, which exhibited significant adsorption capacity for Congo Red (CR) in aqueous solutions. FT-IR and XPS results showed that PEI was successfully grafted onto MDC, increasing the content of amine groups on the surface of MDC. The adsorption process conformed to the Langmuir isotherm adsorption model and pseudo-second-order kinetic equation, indicating that the adsorption of CR on PEI@MDC was covered by a single layer, and the adsorption process was controlled by chemical processes. According to the Langmuir model, the maximum adsorption capacity at 30 °C was 1723.86 mg g-1. Hydrogen bonding and electrostatic interactions between CR and PEI@MDC surface functional groups were the main mechanisms controlling the adsorption process. After five adsorption-desorption cycles, PEI@MDC still showed a high adsorption capacity for CR, indicating that the adsorbent had an excellent regeneration ability.
Collapse
Affiliation(s)
- Na Hu
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 China
| | - Junzhe Yu
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 China
| | - Liran Hou
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 China
| | - Changrong Shi
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology Brisbane QLD 4000 Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 China
- Provincial and Ministerial Collaborative Innovation Center for Sugar Industry Nanning 530004 China
- Engineering Research Centre for Sugar Industry and Comprehensive Utilization, Ministry of Education Nanning 530004 China
| | - Fangxue Hang
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 China
- Provincial and Ministerial Collaborative Innovation Center for Sugar Industry Nanning 530004 China
- Engineering Research Centre for Sugar Industry and Comprehensive Utilization, Ministry of Education Nanning 530004 China
| | - Caifeng Xie
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 China
- Provincial and Ministerial Collaborative Innovation Center for Sugar Industry Nanning 530004 China
- Engineering Research Centre for Sugar Industry and Comprehensive Utilization, Ministry of Education Nanning 530004 China
| |
Collapse
|
8
|
Atoufi Z, Cinar Ciftci G, Reid MS, Larsson PA, Wågberg L. Green Ambient-Dried Aerogels with a Facile pH-Tunable Surface Charge for Adsorption of Cationic and Anionic Contaminants with High Selectivity. Biomacromolecules 2022; 23:4934-4947. [DOI: 10.1021/acs.biomac.2c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zhaleh Atoufi
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Goksu Cinar Ciftci
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Michael S. Reid
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Per A. Larsson
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Lars Wågberg
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Center (WWSC), KTH Royal Institute of Technology, SE-100 44Stockholm, Sweden
| |
Collapse
|
9
|
Electrospinning PAN/PEI/MWCNT-COOH nanocomposite fiber membrane with excellent oil-in-water separation and heavy metal ion adsorption capacity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Lv M, Du Y, Zhang T, Du X, Yin X. Cassava Starch-Based Thermo-Responsive Pb(II)-Imprinted Material: Preparation and Adsorption Performance on Pb(II). Polymers (Basel) 2022; 14:828. [PMID: 35215742 PMCID: PMC8963116 DOI: 10.3390/polym14040828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Heavy metal pollution is currently an increasing threat to the ecological environment, and the development of novel absorbents with remarkable adsorption performance and cost-effectiveness are highly desired. In this study, a cassava starch-based Pb(II)-imprinted thermo-responsive hydrogel (CPIT) had been prepared by using cassava starch as the bio-substrate, N-isopropyl acrylamide (NIPAM) as the thermo-responsive monomer, and Pb(II) as the template ions. Later, a variety of modern techniques including FTIR, DSC, SEM, and TGA were employed to comprehensively analyze the characteristic functional groups, thermo-responsibility, morphology, and thermal stability of CPIT. The obtained material exhibited superior performance in adsorption of Pb(II) and its maximum adsorption capacity was high-up to 114.6 mg/g under optimized conditions. Notably, the subsequent desorption (regeneration) process was fairly convenient by simply rinsing with cold deionized water and the highest desorption efficiency could be achieved as 93.8%. More importantly, the adsorption capacity of regenerated CPIT still maintained 88.2% of the value of starting material even after 10 recyclings. In addition, the excellence of CPIT in selective adsorption of Pb(II) should also be highlighted as its superior adsorption ability (97.9 mg/g) over the other seven interfering metal ions.
Collapse
Affiliation(s)
| | | | | | - Xueyu Du
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (M.L.); (Y.D.); (T.Z.)
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (M.L.); (Y.D.); (T.Z.)
| |
Collapse
|