1
|
Ke Q, Zhang Y, Qin Z, Meng Q, Huang X, Kou X, Zhang Y. Polydopamine-functionalized capsules: From design to applications. J Control Release 2025; 378:1114-1138. [PMID: 39724949 DOI: 10.1016/j.jconrel.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
In recent years, polydopamine (PDA)-functionalized capsules have garnered significant interest from researchers in the field of materials, owing to its remarkable properties of adhesion, biocompatibility, photothermal conversion capabilities, chemical reactivity, and so on. At present, numerous studies have reported various structures and morphologies of PDA-functionalized capsules fabricated via diverse strategies, that have found applications across a broad spectrum of disciplines. However, there are few comprehensive and systematic reviews focusing on various preparation strategies of PDA-functionalized capsules with various structures. This paper systematically reviewed the preparation strategies and related applications of PDA-functionalized capsules. These strategies of PDA-functionalized capsules were discussed in detail from four parts including PDA-functionalized capsules based on hollow PDA, mesoporous PDA (MPDA), directly encapsulating emulsion, and surface modification of capsules. Then the review outlined the applications of PDA-functionalized capsules in biomedicine, energy, textiles, and the environment. Furthermore, this review summarized the current research findings on PDA-functionalized capsules and outlines their future development directions. Overall, we aim for this review to inspire researchers and offer valuable guidance for the synthesis and application of advanced PDA-functionalized capsules.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Yifei Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhaoyuan Qin
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
2
|
Wang H, Hao L, Guo Y, Wang C, Wu Q, Wang Z. Construction of magnetic recoverable porous electron-rich organic frameworks for efficiently enrichment of phenylurea herbicides from water and milk samples prior to HPLC detection. Food Chem 2024; 461:140812. [PMID: 39178545 DOI: 10.1016/j.foodchem.2024.140812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Porous electron-rich organic frameworks have attracted an increased attention in the adsorption and removal of pollutants due to their abundant electron-rich nitrogen atoms, which can effectively interact with positively charged substance. In this study, a porous electron-rich organic framework (Car-POF) and positively charged amino-functionalized magnetic nanoparticles (Fe3O4-NH2) were used to construct a magnetic electron-rich Fe3O4-NH2@Car-POF for the enrichment of some phenylurea herbicides from water and milk samples prior to high performance liquid chromatographic detection. The adsorption capacity of Fe3O4-NH2@Car-POF for the phenylureas ranged from 14.93 to 28.83 mg g-1. The LODs were observed in the range of 0.05-0.20 ng mL-1 and 0.5-1.5 ng mL-1, and LOQs in the range of 0.17-0.66 ng mL-1 and 1.7-5.0 ng mL-1 for water and milk samples with RSD less than 9.0. The adsorption studies with cationic and anionic dyes revealed that Fe3O4-NH2@Car-POF is favorable for the adsorption of positively charged compounds.
Collapse
Affiliation(s)
- Hua Wang
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China
| | - Lin Hao
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China.
| | - Yaxing Guo
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China
| | - Chun Wang
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China
| | - Qiuhua Wu
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China.
| | - Zhi Wang
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China.
| |
Collapse
|
3
|
Cao S, Wei X, Tang Y, Tian J, Wu D, Chen Z. Unraveling how hydrogen-bonding networks affect the capture of amphetamine-type stimulants by polymerized deep eutectic solvent modified magnetic biochar: Coupling quantum chemical calculations with experiment. ENVIRONMENTAL RESEARCH 2024; 262:119892. [PMID: 39222729 DOI: 10.1016/j.envres.2024.119892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The abuse of amphetamine-type stimulants (ATSs) has caused irreversible harm to public safety and ecosystems. A novel polymerized deep eutectic solvent modified magnetic pomelo peel biochar (PMBC) was prepared, and the differences in adsorption of four abused amphetamine-type stimulants (ATSs: AMP, MAMP, MDA and MDMA) were due to varying hydrogen bonds quantities and strengths. PMBC showed excellent chemical reactivity to MDMA, with a maximum adsorption capacity of 926.13 μg g-1, which was 3.25, 2.52 and 1.15 times higher than that of AMP, MAMP and MDA, respectively. Modern spectral analysis showed that there were a series of active centers (-COOH, -NH2 and -OH) on the PMBC, which could form hydrogen bond networks with the nitrogen and oxygen functional groups of ATSs. In various chemical environments: pH level (4-11), inorganic ion and organic matter (humic acid), PMBC maintained high activity towards four ATSs. Additionally, the quantum chemical calculations revealed that the methylenedioxy bridge of ATSs can increase the active sites, and the -NH- and -NH2 groups had different hydrogen bond formation capabilities, which together resulted in the adsorption order of PMBC on the four ATSs: MDMA > MDA > MAMP > AMP. Moreover, the hydrogen-bonding binding energies of several common hydrogen-bonding types were compared, including O-H····O, N-H····O/O-H····N and N-H···N. This study laid an empirical and theoretical foundation for the efficient capture of ATSs in water and contributed to the innovative design of materials.
Collapse
Affiliation(s)
- Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China; Criminal Investigation Law School, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Xin Wei
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yao Tang
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Jie Tian
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Duanhao Wu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Cao Z, Zhou J. Research progress on pretreatment technology for the analysis of amphetamine biological samples. J Sep Sci 2024; 47:e2400337. [PMID: 39189599 DOI: 10.1002/jssc.202400337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
Sample pretreatment technology is crucial for drug analysis and detection, because the effect of sample pretreatment directly determinates the final analysis results. In recent years, with the continuous innovation of microextraction and other technologies like material preparation technologies and assistant technologies for extraction, the sample pretreatment techniques in the process of drug analysis have become more and more mature and diverse. This article takes amphetamine (AM) or methamphetamine as an example to review the recent development of pretreatment methods for AM-containing biological samples from the perspectives of extraction techniques, extraction media and auxiliary technologies. Extraction techniques are summarized with the categories of contact microextraction, separate microextraction and membrane-based microextraction for better guidance of application according to their features. Prevailing and innovative extraction media including carbon-based material, silicon-based material, metal organic framework, molecularly selective materials, supramolecular solvents and ionic liquids are reviewed. Auxiliary technologies like magnetic field, electric field, microwave, ultrasound and so on which can enhance extraction efficiency and accuracy are also reviewed. In the last, prospects of the future development of pretreatment technology for the analysis of AM biological samples are provided.
Collapse
Affiliation(s)
- Zebin Cao
- College of Biological and Chemical Engineering, Zhe Jiang University of Science and Technology, Hangzhou, China
| | - Jianping Zhou
- Key Laboratory of Agro-products Chemistry and Bioprocessing Technology of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
5
|
Li X, Jiang L, Di B, Hu C. Preparation of amphiphilic poly(divinylbenzene- co-N-vinylpyrrolidone)-functionalized polydopamine magnetic nanoadsorbents for enrichment of synthetic cannabinoids in wastewater. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3968-3982. [PMID: 38853581 DOI: 10.1039/d4ay00711e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Concerns have been raised about synthetic cannabinoids (SCs), which are among the most often trafficked and used illegal substances. An analytical method that holds promise for determining illicit drug use in the general population is wastewater-based epidemiology (WBE). Unfortunately, the concentration of SCs in wastewater is often extremely low on account of their hydrophobic nature, thus presenting a significant obstacle to the accurate detection and quantification of SCs using WBE. In this study, we present novel magnetic nanomaterials as amphiphilic adsorbents for pretreatment of wastewater using magnetic solid phase extraction (MSPE). Polydopamine-modified Fe3O4 nanoparticles were used as the magnetic core and further functionalized with poly(divinylbenzene-N-vinylpyrrolidone). Coupled with UHPLC-MS/MS analysis, an analytical method to simultaneously detect nine SCs at trace-levels in wastewater was developed and validated, enriching 50 mL wastewater to 100 μL with limits of detection (LOD) being 0.005-0.5 ng L-1, limits of quantification (LOQ) being 0.01-1.0 ng L-1, recoveries ranging from 73.99 to 110.72%, and the intra- and inter-day precision's relative standard deviations less than 15%. In comparison to the time-consuming conventional column-based solid phase extraction, the entire MSPE procedure from sample pre-treatment to data acquisition could be finished in one hour, thus largely facilitating the WBE method for drug surveillance and control.
Collapse
Affiliation(s)
- Xiuchen Li
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China.
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Le Jiang
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China.
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Bin Di
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China.
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Chi Hu
- Department of Pharmaceutical Engineering, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China.
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China
| |
Collapse
|
6
|
Zhu R, Cao S, Su H, Ming D, Tang Y, Chen Z. Efficient magnetic solid-phase extraction, UPLC-MS/MS detection, and consumption assessment of five trace psychoactive substances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31455-31466. [PMID: 38635094 DOI: 10.1007/s11356-024-33284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Wastewater-based epidemiology (WBE) has become an objective and updated surveillance strategy for monitoring and estimating consumption trends of psychoactive substances (PSs) in the population. Firstly, magnetic shrimp shell biochar-based adsorbent (DZMBC) was synthesized and employed for extraction trace PSs from municipal wastewater. Proper pyrolysis temperature and increased KOH activator content favored the pore structure and surface area, thus facilitating extraction. DZMBC delivered exceptional extraction performance such as pH stability, anti-interference property, fast magnetic separation ability, reusability, and reproducibility. Then, a method based on magnetic solid-phase extraction (MSPE) followed by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed, validated, and utilized for the quantitative determination of five PSs in real wastewater samples. Methodological validation results indicated a favorable linearity, low method limits of detection (1.00-4.75 ng/L), and good precisions (intra-day and inter-day relative standard deviations < 4.8%). Finally, an objective snapshot of Chongqing drug use and consumption pattern was obtained. Methamphetamine (MAMP) and 3,4-methylenedioxymethamphetamine (MDMA) were the prevalent illegal drugs in local. Both concentrations and per capita consumption of MDMA displayed a change (P < 0.05) between July and September, while no statistical differences were observed for each week.
Collapse
Affiliation(s)
- Rong Zhu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China.
- Criminal Investigation Law School, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Hongtao Su
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Dewang Ming
- The Inspection Technical Center of Chongqing Customs, Chongqing, 400020, China
| | - Yao Tang
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
7
|
Yuan S, Xiang Y, Chen L, Xiang P, Li Y. Magnetic solid-phase extraction based on polydopamine-coated magnetic nanoparticles for rapid and sensitive analysis of eleven illicit drugs and metabolites in wastewater with the aid of UHPLC-MS/MS. J Chromatogr A 2024; 1718:464703. [PMID: 38340459 DOI: 10.1016/j.chroma.2024.464703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The quantification of illicit drugs in wastewater has become a valuable tool for monitoring illicit drug abuse. The commonly utilized methods for detecting drugs in wastewater require a substantial sample volume, extended pretreatment durations, and intricate procedures. This study first employed polydopamine-coated magnetic nanocomposites as adsorbents for magnetic solid-phase extraction, combined with UPLC-MS/MS, to simultaneously determine the concentrations of eleven common illicit drugs in wastewater. The synthesis process for Fe3O4@PDA is straightforward and high-yield. Benefiting from the strong magnetic response, good dispersibility, and abundant binding sites of the prepared nanocomposites, the extraction of illicit drugs from wastewater could be achieved in just 15 min. The method exhibited satisfactory limits of quantitation (ranging from 5 to 10 ng/L), commendable accuracy (ranging from 90.59 % to 106.80 %), good precision (with RSDs below 10 %), and less sample consumption (only 1 mL). The efficacy of this method was successfully validated through its application to actual wastewater samples collected from ten wastewater treatment plants. The results indicated that morphine, codeine, methamphetamine, and ketamine were the predominant illicit drugs present in the samples. The method developed is able to meet the needs of common illicit drug monitoring and high-throughput analysis requirements.
Collapse
Affiliation(s)
- Shuai Yuan
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Yangjiayi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lizhu Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ping Xiang
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai 200063, China.
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
8
|
Zhou Q, Lei P, Cheng S, Wang H, Dong W, Pan X. Recent progress in magnetic polydopamine composites for pollutant removal in wastewater treatment. Int J Biol Macromol 2024; 262:130023. [PMID: 38340929 DOI: 10.1016/j.ijbiomac.2024.130023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Various water pollution issues pose a significant threat to human water safety. Magnetic polydopamine composites (MPCs), which can be separated by magnetic fields after the adsorption process, exhibit outstanding adsorption capacity and heterogeneous catalytic properties, making them promising materials for water treatment applications. In particular, by modifying the polydopamine (PDA) coating, MPCs can acquire enhanced high reactivity, antibacterial properties, and biocompatibility. This also provides an attractive platform for further fabrication of hybrid materials with specific adsorption, catalytic, antibacterial, and water-oil separation capabilities. To systematically provide the background knowledge and recent research advances in MPCs, this paper presents a critical review of MPCs for water treatment in terms of both structure and mechanisms of effect in applications. Firstly, the impact of different PDA positions within the composite structure is investigated to summarize the optimization of properties contributed by PDA when acting as the shell, core, or bridge. The roles of various secondary modifications of magnetic materials by PDA in addressing water pollution problems are explored. It is anticipated that this work will be a stimulus for further research and development of magnetic composite materials with real-world application potential.
Collapse
Affiliation(s)
- Qinglin Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Pengli Lei
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Hao Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Xihao Pan
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
9
|
Ning H, Fan Y, Chen H, Liu H, Huang Z, Ke X, Xu Y, She Y. Preparation of mixed-mode weak cation exchange magnetic solid-phase extraction sorbent and its application in the extraction of 21 illicit drugs from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133007. [PMID: 37984142 DOI: 10.1016/j.jhazmat.2023.133007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
The detection of illicit drugs in wastewater can effectively monitor and evaluate the trend of illicit drug abuse. A novel mixed-mode cation exchange magnetic sorbent Fe3O4 @poly(ST/DVB/MA-COOH) was prepared and firstly applied as magnetically dispersed solid phase extraction material to efficiently, rapidly, and selectively extract 21 illicit drugs from wastewater. The selectivity of the sorbent was mainly attributed to the electrostatic interaction. The effects of Fe3O4 @poly(ST/DVB/MA-COOH) preparation and extraction conditions on the adsorption performance were thoroughly discussed. Among the 21 illicit drugs, the absolute extraction recovery values for 19 illicit drugs were greater than 80 % and the entire adsorption process could be achieved in one minute. Subsequently, the Fe3O4 @poly(ST/DVB/MA-COOH) sorbent combined with UHPLC-MS/MS was used to establish a quantitative method for the effectively extracted 19 illicit drugs in wastewater. The method had a good determination coefficient in the range of 0.2-200 ng/L and the limits of detection of the method were 0.03-0.67 ng/L. The spiked recovery values were in the range of 87.0-119.6 %. Finally, the method was successfully applied to the detection of 19 illicit drugs in wastewater samples and also compared with the commonly used SPE method. The obtained results indicate that Fe3O4 @poly(ST/DVB/MA-COOH) has great advantages in the detection of illicit drugs in wastewater.
Collapse
Affiliation(s)
- Hongyu Ning
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yilei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou 310053, China
| | - Hao Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou 310053, China
| | - Huijun Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhongping Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xing Ke
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou 310053, China
| | - Yu Xu
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Anti-Drug Laboratory Zhejiang Regional Center, Hangzhou 310053, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
10
|
Cao S, Zhu R, Wu D, Su H, Liu Z, Chen Z. How hydrogen bonding and π-π interactions synergistically facilitate mephedrone adsorption by bio-sorbent: An in-depth microscopic scale interpretation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123044. [PMID: 38042474 DOI: 10.1016/j.envpol.2023.123044] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
Mephedrone (4-methylmethcathinone, MEPH) exhibited severe ecologic hazards and health detriments. A novel deep eutectic solvent functionalized magnetic ZIF-8/hierarchical porous carbon (DMZH) with excellent selectivity, interference resistance and recyclability, was developed for the rapid adsorption of MEPH. Initially, potential adsorption sites of MEPH were predicted. Then, π-π and hydrogen bonding interactions were proposed and verified from characterizations, comparative experiments and theoretical calculations. The synergistic effects of the hydrogen bonding and π-π interactions increased the adsorption energies from -15.26 kcal⋅mol-1 to -21.83 kcal⋅mol-1, enhanced the degree of π-dissociation, enlarged the π-π isosurface area, extended the van der Waals surface mutual penetration distance, achieving stronger affinity and remarkable adsorption. Furthermore, offset (parallel-displaced) π-π stacking form existed between DMZH and MEPH. DMZH acted as the hydrogen bond donor and MEPH served as the hydrogen bond acceptor to form O-H⋯O and N-H⋯O hydrogen bonding interaction. Profiting from the synergistic effects, DMZH showed satisfactory adsorption for MEPH within 20 min with a maximum adsorption capacity of 3270.11 μg∙g-1, displayed excellent performance in wide pH range of 5∼11 and in the coexistence of multi-chemicals.
Collapse
Affiliation(s)
- Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China; Criminal Investigation Law School, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Rong Zhu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Duanhao Wu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Hongtao Su
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhenghong Liu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
11
|
Zhang T, Yu Y, Han S, Cong H, Kang C, Shen Y, Yu B. Preparation and application of UPLC silica microsphere stationary phase:A review. Adv Colloid Interface Sci 2024; 323:103070. [PMID: 38128378 DOI: 10.1016/j.cis.2023.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
In this review, microspheres for ultra-performance liquid chromatography (UPLC) were reviewed in accordance with the literature in recent years. As people's demands for chromatography are becoming more and more sophisticated, the preparation and application of UPLC stationary phases have become the focus of researchers in this field. This new analytical separation science not only maintains the practicality and principle of high-performance liquid chromatography (HPLC), but also improves the step function of chromatographic performance. The review presents the morphology of four types of sub-2 μm silica microspheres that have been used in UPLC, including non-porous silica microspheres (NPSMs), mesoporous silica microspheres (MPSMs), hollow silica microspheres (HSMs) and core-shell silica microspheres (CSSMs). The preparation, pore control and modification methods of different microspheres are introduced in the review, and then the applications of UPLC in drug analysis and separation, environmental monitoring, and separation of macromolecular proteins was presented. Finally, a brief overview of the existing challenges in the preparation of sub-2 μm microspheres, which required further research and development, was given.
Collapse
Affiliation(s)
- Tingyu Zhang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yaru Yu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Shuiquan Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China; Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Chuankui Kang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Akgönüllü S, Denizli A. Plasmonic nanosensors for pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2023; 236:115671. [PMID: 37659267 DOI: 10.1016/j.jpba.2023.115671] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
The detection and identification of clinical biomarkers with related sensitivity have become a source of considerable concern for biomedical analysis. There have been increasing efforts toward the development of single-molecule analytical platforms to overcome this concern. The latest developments in plasmonic nanomaterials include fascinating advances in energy, catalyst chemistry, optics, biotechnology, and medicine. Nanomaterials can be successfully applied to biomolecule and drug detection in plasmonic nanosensors for pharmaceutical and biomedical analysis. Plasmonic-based sensing technology exhibits high sensitivity and selectivity depending on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) phenomena. In this critical paper, we offer an overview of the methodology of the SPR, LSPR, surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), surface-enhanced fluorescence (SEF), and plasmonic nanoplatforms advanced for pharmaceutical and biomedical applications. First of all, we present here a brief discussion of the above trends. We have devoted the last section to the explanation of SPR, LSPR, SERS, SEIRA, and SEF platforms, which have found a wide range of applications, and reviewed recent advances for biomedical and pharmaceutical analysis.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
13
|
Tan D, Liang Y, Guo T, Wang Y, Li Y, Sun X, Wang D. Dummy molecularly imprinted polymers-agarose gel mixed matrix membrane for extraction of amphetamine-type stimulants in wastewater and urine. J Chromatogr A 2023; 1708:464368. [PMID: 37708673 DOI: 10.1016/j.chroma.2023.464368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Dummy molecularly imprinted polymers (DMIPs) with high selectivity for amphetamine-type stimulants (ATSs) were synthesized using synephrine molecule as a dummy template. The polymers were irregularly massive with a specific surface area of 330 m2g-1. Adsorption experiments found that the imprinting factors for five ATSs (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, and 3,4-methylenedioxy-N-ethylamphetamine) were 2.3∼3.7. The DMIPs-agarose gel mixed matrix membranes (MMMs) were further prepared by incorporating DMIPs in the agarose matrix. MMMs were used to extract five ATSs from wastewater and urine samples. Extraction conditions such as membrane matrix, sample pH, dissolved organic matter content, extraction time, and elution reagent were optimized. Under optimal conditions, the developed MMMs-HPLC-MS/MS method exhibited low limits of detection (0.1∼3.0ng L-1), satisfactory recoveries (91.7∼100%), and good repeatability (RSD<7%, n=3). It was then successfully applied to ATSs analysis in wastewater and urine samples. Recoveries of ATSs in spiked wastewater and urine were 82.0∼98.4% and 82.3∼95.7%, respectively. Moreover, compared with other methods, the present method possessed the advantages of high quantitative ability, suitable for typical environmental conditions, and low application cost. The above results suggested that the developed MMMs-HPLC-MS/MS method could be used as a feasible strategy to extract and determine trace ATSs in wastewater and urine samples.
Collapse
Affiliation(s)
- Dongqin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China.
| | - Yi Liang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Ting Guo
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Yue Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Yanying Li
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Xiaoli Sun
- Department of Chemistry, Lishui University, Lishui 32300, China
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China.
| |
Collapse
|
14
|
Zhu Z, Wang L, Jia Y, Duan S, Li S, Jiang L, Lin X, Yan F, Hou C, Hu C, Di B. Magnetic Liposomes Infused with GPCR-Expressing Cell Membrane for Targeted Extraction Using Minimum Organic Solvent: An Investigative Study of Trace THC in Sewage. Anal Chem 2023; 95:12613-12622. [PMID: 37583350 DOI: 10.1021/acs.analchem.2c05397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Trace analysis of lipophilic substances in complex environmental, food, or biological matrices has proven to be a challenge, on account of their high susceptibility to adsorption by particulate matter and liquid-solid interfaces. For this purpose, liquid-liquid extraction (LLE) is often employed as the separation method, which uses water-immiscible organic solvents. As an alternative, magnetic solid-phase extraction (MSPE) allows for adsorption, separation, and recovery of analytes from large volumes of aqueous samples with minimum usage of organic solvents. However, the poor selectivity hampers its performance in various scenarios, especially in sewage samples where complicated and unpredictable interference exists, resulting in block of the active adsorption sites of the sorbent. To this end, we propose receptor-affinity MSPE employing magnetic liposomes decorated with cell membranes expressing G-protein-coupled receptor as the sorbents. Application of the novel sorbent CM@Lip@Fe infused with CB1 cannabinoid receptors was demonstrated for the targeted extraction and enrichment of tetrahydrocannabinol from sewage matrix. Thanks to the high affinity and molecular selectivity of the ligand-receptor interactions, a limit of quantitation of 5.17 ng/L was achieved coupled with HPLC-MS/MS in unfiltered raw sewage, featuring minimum usage of organic solvents, fivefold enhanced sensitivity, low sorbent dosage (75 mg/L of sewage), and high efficiency as major advantages over conventional LLE. This work establishes a framework for efficient separation of specific molecules from complex media, thus promising to extend and refine standard LLE as the clean-up procedure for trace analysis.
Collapse
Affiliation(s)
- Zhihang Zhu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Lancheng Wang
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Yan Jia
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Shiqi Duan
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Siyu Li
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Le Jiang
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Xiaoxuan Lin
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Fang Yan
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Chenzhi Hou
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Chi Hu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Bin Di
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| |
Collapse
|
15
|
Cao S, Huang J, Tian J, Liu Z, Su H, Chen Z. Deep insight into selective adsorption behavior and mechanism of novel deep eutectic solvent functionalized bio-sorbent towards methcathinone: Experiments and DFT calculation. ENVIRONMENTAL RESEARCH 2023; 227:115792. [PMID: 36997045 DOI: 10.1016/j.envres.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
This work designed and synthesized novelly selective, highly efficient and friendly environmental biochar nanomaterial (ZMBC@ChCl-EG) by screening suitable deep eutectic solvent (DES) as the functional monomer via Density Functional Theory (DFT). The prepared ZMBC@ChCl-EG achieved the highly efficient adsorption of methcathinone (MC) and exhibited excellent selectivity as well as good reusability. Selectivity analysis concluded that the distribution coefficient value (KD) of ZMBC@ChCl-EG towards MC was 3.247 L/g, which was about 3 times higher than that of ZMBC, corresponding to stronger selective adsorption capacity. The studies of isothermal and kinetics indicated that ZMBC@ChCl-EG had an excellent adsorption capacity towards MC and the adsorption was mainly chemically controlled. In addition, DFT was used to calculate the binding energies between MC and each component. The binding energies were -10.57 kcal/mol for ChCl-EG/MC, -3.15∼-9.51 kcal/mol for BCs/MC, -2.33 kcal/mol for ZIF-8/MC, respectively, suggesting that DES played a major role in enhancing methcathinone adsorption. Lastly, the adsorption mechanisms were revealed by variables experiment combined with characterizations and DFT calculation. The main mechanisms were hydrogen bonding and π-π interaction.
Collapse
Affiliation(s)
- Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China; Criminal Investigation School, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Jing Huang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Tian
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhenghong Liu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Hongtao Su
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
16
|
Chen S, Qie Y, Hua Z, Zhang H, Wang Y, Di B, Su M. Preparation of poly(methacrylic acid-co-ethylene glycol dimethacrylate)-functionalized magnetic polydopamine nanoparticles for the extraction of six cannabinoids in wastewater followed by UHPLC-MS/MS. Talanta 2023; 264:124752. [PMID: 37276675 DOI: 10.1016/j.talanta.2023.124752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Phytocannabinoids and their synthetic analogs (natural and synthetic cannabinoids) are illicit drugs that are widely abused worldwide. Wastewater-based epidemiology (WBE) is an objective approach for the estimation of population-level exposure to a wide range of substances, especially drugs of abuse. However, the concentrations of cannabinoids in wastewater are extremely low (frequently at the levels of nanograms per liter), and the existing pretreatment procedures for wastewater have the disadvantages of time-consumption or low extraction recoveries. This study aimed to propose a novel poly (methacrylic acid-co-ethylene glycol dimethacrylate)-functionalized polydopamine-coated Fe3O4 nanoparticle (Fe3O4@PDA@poly (MAA-co-EGDMA)) as an adsorbent, and provide a highly sensitive quantitative analytical technique for the detection of five synthetic cannabinoids (SCs: 5 F-EDMB-PINACA, FUB-APINACA, MDMB-4en-PINACA, MDMB-FUBINACA, and PB-22) and one cannabis-related human metabolite (THC-COOH) in wastewater. The magnetic adsorbents were fully characterized by transmission electron microscopy (TEM), infrared spectroscopy (IR), vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS). Subsequently, an MSPE-UHPLC-MS/MS method was developed and validated for the determination of six trace analytes in wastewater. The validation results showed that the method has limits of quantification as low as 0.1-1.0 ng/L. Additionally, the recoveries ranged from 62.81 to 124.02%, and the relative standard deviations (RSDs) of intraday and interday precision were less than 15%. This MSPE-UHPLC-MS/MS method was successfully applied to real wastewater samples, and the whole analytical process of one sample from pretreatment to the obtained quantitative results was completed in less than 30 min. Thus, the proposed method based on Fe3O4@PDA@poly (MAA-co-EGDMA) is a convenient, rapid, sensitive and reliable method for the determination of trace psychoactive drugs in wastewater.
Collapse
Affiliation(s)
- Simin Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
| | - Yiqi Qie
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
| | - Zhendong Hua
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, 100741, China
| | - Haoyue Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
| | - Youmei Wang
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, 100741, China.
| | - Bin Di
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
| | - Mengxiang Su
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
| |
Collapse
|
17
|
Tang T, Chen W, Li L, Cao S. Design of experiments (DoE) to develop and to optimize extraction of psychoactive substances. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1601-1609. [PMID: 36896683 DOI: 10.1039/d3ay00059a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of experiments (DoE) method was employed to optimize the adsorption processes of seven psychoactive substances in magnetic solid phase extraction. Fe3O4/GO/ZIF-8 was utilized as an adsorbent for the efficient extraction of psychoactive substances from environmental water samples. The analytes were ephedrine, methylephedrine, amphetamine, methamphetamine, morphine, papaverine, and thebaine, which were determined by ultrahigh performance liquid chromatography-tandem mass spectrometry. Plackett-Burman design was employed to identify the significant factors responsible for adsorption, and Box-Behnken design was used for further optimization to obtain the optimum values for each variable. The predicted and experimental values were found to be in good agreement. The coefficient of determination (R2) values of 0.9500-0.9976 indicated that the model was significant. The linear ranges were 1-100 ng mL-1, and the correlation coefficient was good (r2 ≥ 0.995). The EF with values of about 2.5 was obtained with recoveries in the range of 74.92-94.47%. The limits of detection (LOD) and limits of quantification (LOQ) were 0.086-0.353 ng mL-1 and 0.286-1.175 ng mL-1, respectively. The intra-day and inter-day RSDs were in the range of 0.17-1.87% and 0.06-2.21%, respectively. By using the DoE method, the errors associated with inferring the influence and interaction between various factors can be reduced. The combination of MSPE and DoE improves the recovery, precision, and simultaneous detectability of the target analytes. It has a high potential for psychoactive substance analysis in environmental water.
Collapse
Affiliation(s)
- Tiantian Tang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China.
- Criminal Investigation Law School, Southwest University of Political Science and Law, Chongqing, 401120, China
| |
Collapse
|
18
|
Shen Z, Ma X, Mujahid Ali M, Liang J, Sui H, Du Z. Study of the evolution of 3-MCPDEs and GEs in the infant formula production chain employing a modified indirect method based on magnetic solid phase extraction. Food Chem 2023; 399:134018. [DOI: 10.1016/j.foodchem.2022.134018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023]
|
19
|
Zhang S, Ange KU, Ali N, Yang Y, Khan A, Ali F, Sajid M, Tian CT, Bilal M. Analytical perspective and environmental remediation potentials of magnetic composite nanosorbents. CHEMOSPHERE 2022; 304:135312. [PMID: 35709848 DOI: 10.1016/j.chemosphere.2022.135312] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The synthesis and application of magnetic nanosorbents to remove emerging pollutants have been considered the best environmental remediation and sustainability option. Incorporating magnetism shortens the treatment time and allows the sorbent to be recovered quickly using external magnetic with many cycles. The implementation of magnetic solid-phase extraction (MSPE) using magnetic materials of different shapes, sizes, and surface morphology can be a valuable tool in applying materials to prepare analytical samples. In MSPE applications, materials with strong magnetic domain can be used as precursors for constructing magnetic composite as a promising sorbent. This article focuses on the most recent and exceptional applications of magnetic adsorbents for preconcentration and removal purposes. Magnetic adsorbents, such as nanoparticles (NPs), foam, sponges, nanocomposites, hydrogels, and beads with multifunctional attributes have been comprehensively studied in terms of preparation procedures, limitations, advantages, and interactions between pollutants and magnetic composites. The role of magnetic sorbents in sample preparation methods, such as simple solid-phase extraction and microextraction, as well as sorptive extraction using a stir bar, was also examined. The use of magnetic adsorbents with analytical techniques, such as solid-phase extraction and solid-phase microextraction improves the method for preparing samples concerning the influential role of magnetic adsorbents. Towards the end, promising features and future outlook are also directed.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Kunda Umuhoza Ange
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Chen Tian Tian
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
20
|
|
21
|
Ali TH, Mandal AM, Heidelberg T, Hussen RSD. Sugar based cationic magnetic core-shell silica nanoparticles for nucleic acid extraction. RSC Adv 2022; 12:13566-13579. [PMID: 35530382 PMCID: PMC9069700 DOI: 10.1039/d2ra01139e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/19/2022] [Indexed: 01/09/2023] Open
Abstract
Nucleic acid (NA) extraction is an essential step in molecular testing for a wide range of applications. Conventional extraction protocols usually suffer from time consuming removal of non-nucleic acid impurities. In this study, a new magnetic nanoparticle (MNP) is presented to simplify the NA extraction. A core-shell design, comprising of a ferromagnetic core coated with mesoporous silica, forms the basis of the functional nanoparticle. Chemical functionalization of the silica coating includes a multistep synthesis, in which an activated nanoparticle is coupled with a triethylene glycol spaced glycosyl imidazole. The molecular design aims for charge interactions between the imidazolium-based positive nanoparticle surface and nucleic acids, with specific hydrogen bonding between the surface bonded carbohydrate and nucleic acid targets to ensure nucleic acid selectivity and avoid protein contamination. Two different carbohydrates, differing in molecular size, were selected to compare the efficiency in terms of NA extraction. A triethylene glycol spacer provides sufficient flexibility to remove particle surface constraints for the interaction. The Brunauer-Emmett-Teller (BET) analysis shows a significantly larger surface area for the disaccharide-based particles NpFeSiImMalt (∼181 m2 g-1) compared to the monosaccharide analogue NpFeSiImGlc (∼116 m2 g-1) at small particles sizes (range ∼ 15 nm) and sufficient magnetization (29 emu g-1) for easy isolation by an external magnetic field. The particles enabled a high DNA particle loading ratio of 30-45 wt% (MNP/DNA ratio), reflecting an efficient extraction process. A high desorption rate (7 min) with more than 86% of unchanged DNA loading was recorded, indicating low damage to the target extract.
Collapse
Affiliation(s)
- Tammar Hussein Ali
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Al-Muthanna University 66001 Samawah Al Muthanna Iraq
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Amar Mousa Mandal
- College of Basic Education, Science Department, Al-Muthanna University 66001 Samawah Al Muthanna Iraq
| | - Thorsten Heidelberg
- Chemistry Department, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
| | | |
Collapse
|
22
|
Synthesis of a novel polydopamine and C18 dual-functionalized magnetic core-shell mesoporous nanocomposite for enrichment and analysis of widely abused illegal drugs in urine samples on site and in the laboratory. J Pharm Biomed Anal 2022; 212:114656. [DOI: 10.1016/j.jpba.2022.114656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023]
|