1
|
Bhatt M, Thakkar H, Patel J, Patel M, Thakore S. Valorization of waste pistachio shells to bimetallic magnetic hydrochar for sustainable dual-action wastewater remediation: A comprehensive study with mechanistic insights and life cycle assessment. CHEMOSPHERE 2024; 369:143818. [PMID: 39608656 DOI: 10.1016/j.chemosphere.2024.143818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
This research outlines an integrated experimental and theoretical strategy for converting Pistachio-shells by hydrothermal carbonization into a bimetallic magnetic hydrochar (BMHC), for effective adsorptive-degradation of organic pollutants. Environmental sustainability of BMHC is supported by life cycle assessment(LCA). Adsorption experiments showed rapid and efficient dye (MB, CV) and antibiotic (TC) removal within 50 min, with >97% efficiency. The catalytic properties of BMHC, facilitated Peroxymonosulfate (PMS)-driven complete degradation of targeted contaminants, through ROS generation. DFT calculations demonstrated the regioselectivity for targeted moieties. The degradation intermediates were identified by LCMS and possible degradation pathways were derived. In-silico toxicity assessment of these intermediates confirmed the process safety. Employing 'Hook and Destroy' approach, BMHC demonstrated magnetic separation and reusability over five cycles. This extensive research demonstrates waste-to-resource conversion of Pistachio-shells to BMHC, with dual functionality in adsorption and degradation, as well as magnetic recoverability, which advocates its potency for water treatment solutions.
Collapse
Affiliation(s)
- Monark Bhatt
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Harshil Thakkar
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Janki Patel
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Miraj Patel
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India; Institute of Interdisciplinary Studies, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India.
| |
Collapse
|
2
|
Alkhair S, Zouari N, Ibrahim Ahmad Ibrahim M, Al-Ghouti MA. Efficacy of adsorption processes employing green nanoparticles for bisphenol A decontamination in water: A review. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 22:100963. [DOI: 10.1016/j.enmm.2024.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Wang S, Xu J, Hu S. Tannic acid-assisted upcycling of Cu from waste printed circuit boards to an efficient peroxymonosulfate catalyst for the degradation of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170877. [PMID: 38360310 DOI: 10.1016/j.scitotenv.2024.170877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The recovery of metals from solid waste for use as heterogeneous catalysts to activate peroxymonosulfate (PMS) for organic wastewater treatment is a promising, environmentally friendly and economical strategy. Herein, we present a facile and versatile strategy for upcycling copper (Cu) from waste printed circuit boards (PCBs) to Cu oxides supported on a three-dimensional carbon framework (10PCBs-Cu-TA) with the aid of tannic acid (TA). Compared to the PCBs-Cu synthesized without TA, introducing TA into 10PCBs-Cu-TA reduced Cu leaching, enhanced crystallinity, promoted electron transfer, and increased the number of oxygen vacancies. Moreover, 10PCBs-Cu-TA exhibited superior catalytic activity in activating PMS for the degradation of reactive brilliant blue KN-R, exceeding the activity of 10Cu-TA prepared using commercial Cu(NO3)2·3H2O. This enhanced performance may be attributed to the higher specific surface area and oxygen vacancies of 10PCBs-Cu-TA. The 10PCBs-Cu-TA/PMS system also exhibited broad catalytic universality and adaptability to various contaminants and water matrices. Quenching experiments, electron paramagnetic resonance analysis, and electrochemical measurements indicated that radical and non-radical processes jointly contributed to KN-R degradation. The proposed strategy for upcycling Cu from waste PCBs into functional materials provides novel insights into the utilization of solid waste and the development of PMS activators.
Collapse
Affiliation(s)
- Shuhua Wang
- College of Resources and Environmental Science, Quanzhou Normal University, 398 Donghai Road, Quanzhou 362000, China.
| | - Jinghua Xu
- College of Resources and Environmental Science, Quanzhou Normal University, 398 Donghai Road, Quanzhou 362000, China
| | - Sisi Hu
- College of Resources and Environmental Science, Quanzhou Normal University, 398 Donghai Road, Quanzhou 362000, China
| |
Collapse
|
4
|
Ma H, Feng G, Li X, Pan Z, Xu R, Wang P, Fan X, Song C. A novel copper oxide/titanium membrane integrated with peroxymonosulfate activation for efficient phenolic pollutants degradation. J Colloid Interface Sci 2023; 650:1052-1063. [PMID: 37459729 DOI: 10.1016/j.jcis.2023.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
Herein, a novel CuO catalyst functionalized Ti-based catalytic membrane (FCTM) was prepared via the regulated electro-deposition technique followed with low-temperature calcination. The morphology of CuO catalyst and oxygen vacancy (OV) content can be controlled by adjusting the preparation conditions, under optimal condition (400 °C, electrolyte as sulfuric acid), the fern-shaped CuO catalyst was formed and the OV content was up to its highest level. Under the optimal treatment condition, the 4-chlorophenol (4-CP) removal of the membrane filtration combined with peroxymonosulfate (PMS) activation (MFPA) process was up to 98.2% (TOC removal of 88.2%). Mechanism studying showed that the enhanced performance in this system was mainly due to the increased production of singlet oxygen (1O2) via the co-effect of fern-shaped CuO (increased specific surface area) and its fine-tuned OV (precursor of 1O2), which not only synergistically enhanced adsorption ability but also offered more active sites for PMS activation. Theoretical calculations showed that the OV-rich CuO displayed high adsorption energy for PMS molecule, leading to the change in OO and OH bond (tend to 1O2) of the PMS molecule. Finally, the possible three degradation pathways of 4-CP were formed by the electrophilic attacking of 1O2.
Collapse
Affiliation(s)
- Huanran Ma
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Guoqing Feng
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Xiaoyang Li
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| | - Ruisong Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Pengcheng Wang
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| |
Collapse
|
5
|
Chen W, Li X, Wei X, Liao G, Wang J, Li L. Activation of peroxymonosulfate for degrading ibuprofen via single atom Cu anchored by carbon skeleton and chlorine atom: The radical and non-radical pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160097. [PMID: 36368392 DOI: 10.1016/j.scitotenv.2022.160097] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 05/27/2023]
Abstract
Single atomic Cu catalysts (SACs Cu@C) anchored by carbon skeleton and chlorine atom was synthesized by hydrolyzing Cu-MOFs and then pickled by aqua-regia to remove Cu nanoparticles (NPs Cu). Comparative characterizations revealed that SACs Cu@C was a hierarchically porous nanostructure and Cu dispersed uniformly throughout the carbon skeletons. With less active components, SACs Cu@C behaved better in activating PMS over NPs Cu@C on ibuprofen removal (91.3 % versus 30.2 % in 30 min). Two Cu coordination environments were found by EXAF and DFT calculation, including four-coordinated Cu with 4C atoms and six-coordinated Cu with 4Cu and 2Cl atoms. The obvious interfacial electron delivery between PMS and SACs Cu@C was found, which was enhanced by Cl atom. Cu(I)/Cu(II) redox cycle would donate electron to peroxy bond of PMS for generating OH, SO4- and O2-. But electron transferred in opposite direction when PMS bonded to Cu atom through its terminal oxygen atom in sulfate, which formed 1O2. IBP degradation proceeded through both radical and non-radical route. IBP degradation was inhibited with the presence of TBA, methanol and furfuryl alcohol but accelerated by p-BQ, which could accelerate OH generation. Two degradation pathways were deducted. This study provided a new insight into catalysts designed for PMS activation.
Collapse
Affiliation(s)
- Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xukai Li
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Xipeng Wei
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Gaozu Liao
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Jing Wang
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Laisheng Li
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China.
| |
Collapse
|