1
|
Wu Q, Zhang T, Pan R, Peng Z, Zhao H, Lu J, Dong Z, Zeng C, Gamal El-Din M, Xu B. Unveiling the adsorption mechanisms and key influencing factors of cyclic acetals on powdered activated carbon. ENVIRONMENTAL TECHNOLOGY 2025:1-11. [PMID: 40102724 DOI: 10.1080/09593330.2025.2478182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Cyclic acetals (CAs), such as 2-ethyl-5,5-dimethyl-1,3-dioxane (2-EDD) and 2-ethyl-4-methyl-1,3-dioxolane (2-EMD), are emerging odourants in drinking water, raising significant concerns due to their extremely low odour thresholds, high stability, and potential health risks. This study investigated 2-EDD and 2-EMD adsorption performance on six powdered activated carbons (PACs). The adsorption isotherms fitted well with Freundlich (R2 = 0.907∼0.996) and Temkin models (R2 = 0.874-0.997). The adsorption efficiency of 2-EDD (the Freundlich constant KF = 0.0847-0.802) was higher than 2-EMD (KF = 0.0435-0.239), because of its greater molecular mass and higher hydrophobicity. All PACs reached equilibrium in about 120 minutes, and the adsorption kinetics fitted better with the pseudo-second-order model (R2 = 0.920∼0.997), indicating that chemical adsorption significantly contributed to CAs' adsorption. The adsorption rates for 2-EDD (k2 = 0.123-1.235) were lower compared to 2-EMD (k2 = 0.245-4.770). Results from correlation analysis revealed that average pore size, pore volume, and mesoporous fraction were the key PAC properties in controlling CAs' adsorption. Diffusion-chemisorption model, Weber and Morris intraparticle diffusion kinetic model, and Boyd kinetic model were employed to elucidate the adsorption mechanism. The results indicated that the two CAs were interacted mainly through chemical adsorption, with film diffusion serving as the step controlling the rate. PACs exhibited effective performance under neutral to slightly alkaline conditions, as well as in source water and tap water. Meanwhile, 20 mg·L-1 PAC could reduce CAs' concentration from 40 ng·L-1 to 5 ng·L-1. This study provides a benchmark for selecting effective carbon to address odour issues caused by CAs.
Collapse
Affiliation(s)
- Qianxi Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Tianyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Renjie Pan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Zhu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Hengxuan Zhao
- College of Environmental Engineering, Wuxi University of Technology, Wuxi, People's Republic of China
| | - Jian Lu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Zhengyu Dong
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, People's Republic of China
| | - Chao Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Wang Q, Du Y, Li W, Wang C, Zhang J, Yang M, Yu J. Treatability of odorous dioxanes/dioxolanes in source water: How does molecular flexibility and pre-oxidation affect odorant adsorption. WATER RESEARCH 2024; 266:122364. [PMID: 39276475 DOI: 10.1016/j.watres.2024.122364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Odorous dioxanes and dioxolanes, a class of cyclic acetals often produced as byproducts in polyester resin manufacturing, are problematic in drinking water treatment due to their low odor thresholds and resistance to conventional treatment technology. Our research focuses on the removal of ten dioxane/dioxolane compounds through oxidation and adsorption processes, exploring the key molecular properties that govern the treatmentability. We discovered that both chlorination and permanganate oxidation were largely ineffective at degrading cyclic acetals, achieving less than 20% removal even at high applicable doses. Conversely, powdered activated carbon (PAC) adsorption proved to be a more effective method, with a removal of > 90% at a PAC dosage of 10 mg/L for seven out of ten compounds. The presence of natural organic matter (NOM) reduced PAC adsorbability for all odorants, but the deterioration level substantially varied and mostly affected by structural flexibility as indicated by the number of rotatable bonds. The results of both the experimental investigation and molecular simulation corroborated the hypothesis that more rotatable bonds (from one to three here) are indicative of greater structural flexibility, which in consequence determines the susceptibility of cyclic acetals to NOM competitive adsorption. Increased structural flexibility could facilitate greater entry into silt-like micropores or achieve preferential adsorption sites with more compatible morphology against NOM competition. When pre-oxidation (chlorination and permanganate oxidation) and adsorption were applied sequentially, additional low molecular weight NOM components produced by pre-oxidation resulted in intensified NOM competition and decreased odorant adsorbability. If this combination is inevitably required for algae and odorant control, it would be beneficial to utilize a wise screen for oxidants and a reduced oxidant dose (less than 2 mg/L) to mitigate the deterioration of odorant adsorption. This study elucidates the roles of structural flexibility in influencing the treatability of dioxanes and dioxolanes, extending beyond the solely well-established effects of hydrophobicity. It also presents rational practice guidelines for the combination of pre-oxidation and adsorption in addressing odor incidents associated with dioxane and dioxolane compounds.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Yuning Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 210023 Nanjing, China
| | - Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
3
|
Liu F, Wang Q, Zietzschmann F, Yang F, Nie S, Zhang J, Yang M, Yu J. Competition & UV 254 projection in odorants vs natural organic matter adsorption onto activated carbon surfaces: Is the chemistry right? WATER RESEARCH 2024; 268:122764. [PMID: 39566283 DOI: 10.1016/j.watres.2024.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Powdered activated carbon (PAC) adsorption remains an indispensable method for addressing odor problems in drinking water. While natural organic matter (NOM) is ubiquitous and competes strongly in deteriorating odorant adsorption capacity, it can also serve as a promising indicator for predicting odorant adsorption through online measurement. However, the impact of PAC surface chemistry on NOM competition and feasibility of prediction across various adsorbents are not well understood. Here, we examined the role of PAC properties (pore structure and surface chemistry) in the competitive adsorption between odorants and NOM components, aligned with the applicability assessment of using NOM optical properties for odorant adsorption projection across various PAC samples. Chemical oxidation and thermal treatment achieved considerable changes in surface functional group composition, alongside minimal changes in pore structure, of two typical PAC products with microporous/mesoporous pore characteristics. The effect of NOM interference on the reduction of odorant adsorption exhibited a similar level regardless of the PACs with different pore structure (average pore size of 1.7 nm vs. 4.2 nm). Surface modification increased the equilibrium adsorption capacity (qe50) of odorants by 15.1 % to 146.4 % (thermal treatment) or decreased by -81.3 % to -34.1 % (chemical oxidation), respectively, but minimal changes in odorant-NOM selectivity. For various odorants, hydrophobicity (log D) influenced the adsorption capacity while the structural flexibility (reflected by the rotatable bonds) affected the vulnerability of odorant adsorption to NOM competition. It was found for the first time that four-parameter Richards model (RMSE = 2.6 %) is superior to the linear model (RMSE = 12.5 %) or logarithmic model (RMSE = 77.6 %) to describe the S-shape UV254 projection curves associated with odorant adsorption on PAC. Moreover, the feasibility was confirmed to use UV254 projection curves of pristine PAC fitted with the Richards model to predict the odorant adsorption on surface-modified PAC in two different surface waters (RMSE 9.2 % and 7.4 %, respectively). This study provides insight into the role of PAC surface chemistry and pore characteristics in odorant adsorption in NOM-containing waters and enhances the feasibility of the NOM surrogate model for odorant monitor and control during PAC adsorption.
Collapse
Affiliation(s)
- Fang Liu
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | - Fan Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaozhen Nie
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Bach C, Boiteux V, Dauchy X. France-Wide Monitoring of 1,4-Dioxane in Raw and Treated Water: Occurrence and Exposure Via Drinking Water Consumption. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:95-104. [PMID: 39085588 PMCID: PMC11377507 DOI: 10.1007/s00244-024-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
In recent years, 1,4-dioxane has emerged as a pollutant of increasing concern following widespread detection in the aquatic environment of several countries. This persistent contaminant with specific physical and chemical properties can be rapidly dispersed and transported to river banks, groundwater and drinking water. Given the limited data on its occurrence in France, it was considered necessary to assess the potential exposure of the French population to this compound in drinking water. An analytical method based on solid-phase extraction (SPE) combined with gas chromatography tandem mass spectrometry (GC-MS/MS) was developed and validated during this study with a limit of quantification (LOQ) of 0.15 µg/L. Recoveries in natural water matrices ranged from 113 to 117% with a relative bias not exceeding 17%. This method was used for a nationwide campaign at almost 300 sites, evenly distributed over 101 French départements (administrative units), including some that were overseas. Of the 587 samples analysed, only 8% had a concentration that was greater than or equal to the LOQ. 1,4-Dioxane was detected mainly (63%) in raw and treated water from sites associated with historical industrial practices related to the use of chlorinated solvents. Concentrations of 1,4-dioxane ranging from 0.19 to 2.85 µg/L were observed in the raw water and from 0.18 to 2.46 µg/L in the treated water. Drinking water treatment plants using ozonation, granular activated carbon and chlorination have limited effectiveness in the removal of 1,4-dioxane. The results of this study are the first step towards bridging the knowledge gap in the occurrence of 1,4-dioxane in France.
Collapse
Affiliation(s)
- Cristina Bach
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France.
| | - Virginie Boiteux
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France
| | - Xavier Dauchy
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France
| |
Collapse
|
5
|
Wang C, Liu T, Qian Y, Zhang B, Liu W, Zhang Y, An W, Zhou X, Yang M, Yu J. Ubiquitous occurrence of 1,4-dioxane in drinking water of China and its ecological and human health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171155. [PMID: 38387591 DOI: 10.1016/j.scitotenv.2024.171155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The occurrence and distribution of 1,4-dioxane was investigated in 280 source and finished drinking water samples from 31 Chinese cities, based on which its ecological and health risks were systematically evaluated. The findings demonstrated that 1,4-dioxane was detected in about 80.0 % samples with values ranging from n.d. to 7757 ng/L in source water and n.d. to 2918 ng/L in drinking water. 1,4-Dioxane showed limited removal efficiency using conventional coagulation-sedimentation-filtration processes (14 % ± 48 %), and a removal efficiency of 35 % ± 44 % using ozonation-biological activated carbon advanced treatment processes. Relatively higher concentrations, detection frequency and environmental risk were observed in Taihu Lake, Yellow River, Yangtze River, Zhujiang River, and Huaihe River mainly in the eastern and southern regions, where there are considerable industrial activities and comparatively high population densities. The widespread presence as by-products during manufacturing consumer products e.g., ethoxylated surfactants, suggested municipal wastewater discharges were the dominant source for the ubiquitous occurrence of 1,4-dioxane, while industrial activities, e.g. resin manufacturing, also contribute considerably to the elevated concentrations of 1,4-dioxane. The estimated risk quotients were in the range of <1.5 × 10-4 for ecological risk, <5.0 × 10-3 by oral exposure and < 5.0 × 10-2 by inhalation exposure for health risk, illustrating limited ecological harm to water environment or chronic toxicity to human health. For carcinogenic risk, 1,4-Dioxane presented a mean risk of 1.8 × 10-6 by oral exposure, which slightly surpassed the recommended acceptable levels of U.S. EPA (<10-6), and risk from inhalation exposure could be negligible. The pervasiveness in drinking water, low removal efficiencies during water treatment processes, and suspected health impacts, highlighted the necessity to set related water quality standards of 1,4-dioxane in order to improve water environment in China.
Collapse
Affiliation(s)
- Chunmiao Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Tingting Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yaohan Qian
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wanqing Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongxin Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei An
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xujie Zhou
- Shanghai Chengtou Raw Water Co. Ltd., Beiai Rd. 1540, Shanghai 200125, China
| | - Min Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianwei Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Gutkoski JP, Schneider EE, Michels C. How effective is biological activated carbon in removing micropollutants? A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119434. [PMID: 39492392 DOI: 10.1016/j.jenvman.2023.119434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Micropollutants (MPs), also called emerging contaminants, are detected in various environmental compartments. Wastewater is their main entry pathway due to the incomplete removal of MPs in wastewater treatment plants (WWTPs). These contaminants are a risk to human health and the integrity of the ecosystem because they are persistent and toxic to organisms. Complementary treatments such as adsorption are studied to increase the efficiency of existing WWTPs. However, a disadvantage of using activated carbon is its high cost of production and regeneration. Biological activated carbon (BAC) is an alternative to overpass this scenario. In BAC, biofilm development occurs on the surface of activated carbon, which enables bioregeneration of the adsorbent and extends its lifetime. This review focused on the studies that applied BAC to remove MPs in aqueous matrices. The review methodology was based on bibliometric and systematic analysis. Tables and thematic maps were presented to investigate trends and gaps in research and related themes. The study points out the leading MPs researched in adsorption in the last ten years. The systematic analysis showed that most studies bring sequential treatments with real wastewater/water, in which BAC is the final process. BAC has the potential to be a complementary treatment for removing MPs. However, there is a lack of articles investigating only BAC as the main tertiary treatment. Topics that should be further investigated in this area are the microbiological community formed in the biofilm, the column's lifetime, and the cost analysis of BAC implementation and operation.
Collapse
Affiliation(s)
- Júlia Pedó Gutkoski
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Elisângela Edila Schneider
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Camila Michels
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
7
|
Lin X, Ma C, Wu D. New insight into the enhanced ozonation of malodorous compounds by Cu(II): Inhibiting the formation of free radicals to promote ozone utilization. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130190. [PMID: 36265383 DOI: 10.1016/j.jhazmat.2022.130190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Metal-enhanced ozonation can greatly improve the decay of organic matter; however, whether this method benefits the decay of malodorous compounds or not and the possible mechanism are not well understood. In this study, nine typical malodorous compounds were selected to reveal that Cu(II)-enhanced ozonation can greatly promote the decay of fatty amines because of the direct ozone oxidation, which was enhanced to promote ozone utilization. Moreover, trace Cu(II) can amplify the observed rate constants of dimethylamine and trimethylamine for 48.9% and 155.7%, respectively, and Cu(II) dosage was the determining factor using response surface methodology to investigate the interactions between initial pH, Cu(II) dosage and ozone dosage. These results demonstrated that the formation of •OH and O2•- was inhibited rather than promoted, which was quite different from some previously reported Cu(II)-enhanced ozonation counterparts. Moreover, the enhanced effect of trace Cu(II) was exhibited in both single and complex malodorous compounds. The conversion pathway of nitrogen and sulfur elements was clarified, with the targeted mineralization of nitrogen of nitrogen-containing malodorous compounds into NO3-N and the odor characteristics of sulfur-containing malodorous compounds disappeared. These findings provided new insight for utilizing metal ions to enhance the direct ozone oxidation capacity of malodorous compounds.
Collapse
Affiliation(s)
- Xiaoqing Lin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Canming Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
8
|
Geng M, Huang X, Shi B, Yu J, Wang C, Du Y, Wang Y. Enhancement of thioethers removal by pre-oxidation-coagulation: Effects of background organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159465. [PMID: 36257419 DOI: 10.1016/j.scitotenv.2022.159465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Swampy/septic odor caused by thioethers has become the main taste and odor (T&O) problem in drinking water of China. Improving its removal performance by commonly traditional water treatment process is significant. In our study, we have found that pre-oxidation could modify the background dissolved organic matter (DOM) properties and thus improve the coagulation performance of thioethers, increasing the coagulation removal rates by 1.5-3 times. Particularly, after pre-ozonation only protein-like substances remained, and thioethers removal was 1.5 times higher than that after pre-chlorination (only coagulation not including oxidation). Compared with humic acid (HA), the thioethers compounds removal efficiencies under bovine serum albumin (BSA) as background DOM was increased by 0.3-3 times. Through Freundlich model analysis, the binding strength of BSA (KF = 20.712, at 298 K) to dimethyl disulfide (DMDS) was enhanced by 60 % compared to HA (KF = 12.778, at 298 K). According to thermodynamic parameters, the binding effect between HA/BSA and thioethers compounds was mainly van der Waals forces and hydrogen bond. BSA with more amino structure and oxygen groups was more easily to adsorb DMDS through hydrogen bond and thus achieved better coagulation performance. Therefore, pre-ozonation combined with coagulation was suggested to be more suitable for thioethers compounds control.
Collapse
Affiliation(s)
- Mengze Geng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xin Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuning Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yili Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
9
|
Zhang L, Wang B, Wang Z, Li K, Fang R, Su Y, Wu D, Xie B. Spatiotemporal footprints of odor compounds in megacity's food waste streams and policy implication. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129423. [PMID: 35752052 DOI: 10.1016/j.jhazmat.2022.129423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Odor pollution is one of the most critical issues in food waste (FW) recycling and has significant implications for human health. However, knowledge of their occurrence and spatiotemporally dynamic in urban FW streams is limited, making it not conducive to implement targeted odor management. This work followed the occurrence of 81 odor compounds (OCs) in nine FW-air environments along the Shanghai's FW streams for one year. Results showed that NH3, acetic acid, acetaldehyde, acetone, 2-butanone, and methylene chloride were consistently the predominant OCs, despite the distinct differences in OCs profiles across seasons and treatment sites. Ridge regression and principal coordinate analysis demonstrated that seasons might play a non-negligible role in shaping odor profiles, and ambient temperature and humidity could account for the seasonal variation in OCs levels. Based on the modified fuzzy synthetic evaluation system, the screened priority pollutants in different FW-air environments were found broadly similar and the regulated air pollutants released via FW should be expanded to aldehyde and ketone compounds, especially for acetaldehyde. To our knowledge, this study is the first to track the spatiotemporal footprints of OCs within urban FW streams, and provides new insights into the control policy on FW-derived odor issues for megacities.
Collapse
Affiliation(s)
- Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zijiang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ru Fang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|