1
|
Lang JQ, Liu Q, Ma MG. Advanced development of smart stimulus-responsive cellulose-based composites through polymer science and nanoscale engineering: Preparation approaches and applications. Carbohydr Polym 2025; 360:123611. [PMID: 40399020 DOI: 10.1016/j.carbpol.2025.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/26/2025] [Accepted: 04/13/2025] [Indexed: 05/23/2025]
Abstract
With the advancement of intelligent materials and technology, cellulose offers notable advantages, such as high mechanical strength, good degradability, and high sensor sensitivity, making it one of the most promising stimulus-responsive materials. Stimulus-responsive cellulose-based composites have garnered significant attention due to their unique benefits in environmental adaptability, functionality, and sustainability. The aim of this review is to highlight the preparation methods, stimulus-responsive types, and promising applications of cellulose-based composites. We reviewed the preparation methods of stimulus-responsive cellulose-based composites including cellulose/MXene composites, cellulose/GO composites, cellulose/carbon nanotube composites, cellulose/inorganic nano-functional composites. Moreover, we also discussed the stimulus-responsive types (such as light stimulation, electrical stimulation, humidity stimulation, magnetic stimulation, dual/multiple stimulation) and potential applications (such as wearable devices, smart fabric, energy field, biomedical field). This review aims to provide a comprehensive review of the current research status of stimulus-responsive cellulose-based composites, with the intention of offering valuable insights and references for researchers in related fields.
Collapse
Affiliation(s)
- Jia-Qi Lang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qi Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Ming-Guo Ma
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Wang W, Zhi B, Wang Y, Shao Z. Maintaining ocean ecosystem health with hydrocarbonoclastic microbes. ISME COMMUNICATIONS 2025; 5:ycae135. [PMID: 40308514 PMCID: PMC12041423 DOI: 10.1093/ismeco/ycae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/12/2024] [Accepted: 10/31/2024] [Indexed: 05/02/2025]
Abstract
Accidental spills and persisting hydrocarbon pollution caused by petroleum exploitation have deeply disrupted marine ecosystems, including those in the deep oceans and the Arctic Ocean. While physicochemical methods are available for emergency cleanup, microorganisms are ultimately responsible for mineralizing the hydrocarbons. The understanding of environmental effects on the composition and efficiency of hydrocarbon-degrading microbial communities has greatly improved current microorganism-based remediation strategies. This review summarizes recent findings on the physiology, metabolism, and ecology of marine obligate hydrocarbonoclastic microorganisms. Strategies for improved biotechnological solutions based on the use of hydrocarbon-degrading microbes are discussed for hydrocarbon remediation in marine water columns, sediments, beaches, and the Arctic.
Collapse
Affiliation(s)
- Wanpeng Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Bin Zhi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Yong Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, 184 Daxue Road, Xiamen, Fujian 361005, China
| |
Collapse
|
3
|
Rasool A, Sri S, Zulfajri M, Sri Herwahyu Krismastuti F. Nature inspired nanomaterials, advancements in green synthesis for biological sustainability. INORG CHEM COMMUN 2024; 169:112954. [DOI: 10.1016/j.inoche.2024.112954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Rasitha TP, Krishna NG, Anandkumar B, Vanithakumari SC, Philip J. A comprehensive review on anticorrosive/antifouling superhydrophobic coatings: Fabrication, assessment, applications, challenges and future perspectives. Adv Colloid Interface Sci 2024; 324:103090. [PMID: 38290251 DOI: 10.1016/j.cis.2024.103090] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Superhydrophobicity (SHP) is an incredible phenomenon of extreme water repellency of surfaces ubiquitous in nature (E.g. lotus leaves, butterfly wings, taro leaves, mosquito eyes, water-strider legs, etc). Historically, surface exhibiting water contact angle (WCA) > 150° and contact angle hysteresis <10° is considered as SHP. The SHP surfaces garnered considerable attention in recent years due to their applications in anti-corrosion, anti-fouling, self-cleaning, oil-water separation, viscous drag reduction, anti-icing, etc. As corrosion and marine biofouling are global problems, there has been focused efforts in combating these issues using innovative environmentally friendly coatings designs taking cues from natural SHP surfaces. Over the last two decades, though significant progress has been made on the fabrication of various SHP surfaces, the practical adaptation of these surfaces for various applications is hampered, mainly because of the high cost, non-scalability, lack of simplicity, non-adaptability for a wide range of substrates, poor mechanical robustness and chemical inertness. Despite the extensive research, the exact mechanism of corrosion/anti-fouling of such coatings also remains elusive. The current focus of research in recent years has been on the development of facile, eco-friendly, cost-effective, mechanically robust chemically inert, and scalable methods to prepare durable SHP coating on a variety of surfaces. Although there are some general reviews on SHP surfaces, there is no comprehensive review focusing on SHP on metallic and alloy surfaces with corrosion-resistant and antifouling properties. This review is aimed at filling this gap. This review provides a pedagogical description with the necessary background, key concepts, genesis, classical models of superhydrophobicity, rational design of SHP, coatings characterization, testing approaches, mechanisms, and novel fabrication approaches currently being explored for anticorrosion and antifouling, both from a fundamental and practical perspective. The review also provides a summary of important experimental studies with key findings, and detailed descriptions of the evaluation of surface morphologies, chemical properties, mechanical, chemical, corrosion, and antifouling properties. The recent developments in the fabrication of SHP -Cr-Mo steel, Ti, and Al are presented, along with the latest understanding of the mechanism of anticorrosion and antifouling properties of the coating also discussed. In addition, different promising applications of SHP surfaces in diverse disciplines are discussed. The last part of the review highlights the challenges and future directions. The review is an ideal material for researchers practicing in the field of coatings and also serves as an excellent reference for freshers who intend to begin research on this topic.
Collapse
Affiliation(s)
- T P Rasitha
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - Nanda Gopala Krishna
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - B Anandkumar
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India
| | - S C Vanithakumari
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India
| | - John Philip
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India.
| |
Collapse
|
5
|
Khoo PS, Ilyas RA, Uda MNA, Hassan SA, Nordin AH, Norfarhana AS, Ab Hamid NH, Rani MSA, Abral H, Norrrahim MNF, Knight VF, Lee CL, Rafiqah SA. Starch-Based Polymer Materials as Advanced Adsorbents for Sustainable Water Treatment: Current Status, Challenges, and Future Perspectives. Polymers (Basel) 2023; 15:3114. [PMID: 37514503 PMCID: PMC10385024 DOI: 10.3390/polym15143114] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Over the past three decades, chemical and biological water contamination has become a major concern, particularly in the industrialized world. Heavy metals, aromatic compounds, and dyes are among the harmful substances that contribute to water pollution, which jeopardies the human health. For this reason, it is of the utmost importance to locate methods for the cleanup of wastewater that are not genuinely effective. Owing to its non-toxicity, biodegradability, and biocompatibility, starch is a naturally occurring polysaccharide that scientists are looking into as a possible environmentally friendly material for sustainable water remediation. Starch could exhibit significant adsorption capabilities towards pollutants with the substitution of amide, amino, carboxyl, and other functional groups for hydroxyl groups. Starch derivatives may effectively remove contaminants such as oil, organic solvents, pesticides, heavy metals, dyes, and pharmaceutical pollutants by employing adsorption techniques at a rate greater than 90%. The maximal adsorption capacities of starch-based adsorbents for oil and organic solvents, pesticides, heavy metal ions, dyes, and pharmaceuticals are 13,000, 66, 2000, 25,000, and 782 mg/g, respectively. Although starch-based adsorbents have demonstrated a promising future for environmental wastewater treatment, additional research is required to optimize the technique before the starch-based adsorbent can be used in large-scale in situ wastewater treatment.
Collapse
Affiliation(s)
- Pui San Khoo
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - R A Ilyas
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - M N A Uda
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Faculty of Mechanical Engineering and Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Shukur Abu Hassan
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - A H Nordin
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - A S Norfarhana
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - N H Ab Hamid
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - M S A Rani
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia
- Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang 25163, Indonesia
| | - M N F Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - V F Knight
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Chuan Li Lee
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - S Ayu Rafiqah
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
6
|
Haleem A, Pan JM, Shah A, Hussain H, He WD. A systematic review on new advancement and assessment of emerging polymeric cryogels for environmental sustainability and energy production. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Switha D, Khaleel Basha S, Sugantha Kumari V. A novel, biocompatible nanostarch incorporated Polyaniline-Polyvinyl alcohol-Nanostarch hybrid scaffold for tissue engineering applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Fang K, Deng L, Yin J, Yang T, Li J, He W. Recent advances in starch-based magnetic adsorbents for the removal of contaminants from wastewater: A review. Int J Biol Macromol 2022; 218:909-929. [PMID: 35914554 DOI: 10.1016/j.ijbiomac.2022.07.175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/03/2022] [Accepted: 07/22/2022] [Indexed: 02/09/2023]
Abstract
Considerable concern exists regarding water contamination by various pollutants, such as conventional pollutants (e.g., heavy metals and organics) and emerging micropollutants (e.g., consumer care products and interfering endocrine-related compounds). Currently, academics are continuously exploring sustainability-related materials and technologies to remove contaminants from wastewater. Magnetic starch-based adsorbents (MSAs) can combine the advantages of starch and magnetic nanoparticles, which exhibit unique critical features such as availability, cost-effectiveness, size, shape, crystallinity, magnetic properties, stability, adsorption properties, and excellent surface properties. However, limited reviews on MSAs' preparations, characterizations, applications, and adsorption mechanisms could be available nowadays. Hence, this review not only focuses on their activation and preparation methods, including physical (e.g., mechanical activation treatment, microwave radiation treatment, sonication, and extrusion), chemical (e.g., grafting, cross-linking, oxidation and esterification), and enzymatic modifications to enhance their adsorption properties, but also offers an all-round state-of-the-art analysis of the full range of its characterization methods, the adsorption of various contaminants, and the underlying adsorption mechanisms. Eventually, this review focuses on the recycling and reclamation performance and highlights the main gaps in the areas where further studies are warranted. We hope that this review will spark an interdisciplinary discussion and bring about a revolution in the applications of MSAs.
Collapse
Affiliation(s)
- Kun Fang
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China; College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Ligao Deng
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Jiangyu Yin
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Tonghan Yang
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China.
| | - Wei He
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
9
|
Idumah CI. Recently emerging advancements in polymeric cryogel nanostructures and biomedical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University Awka, Awka, Nigeria
| |
Collapse
|