1
|
Lin L, Sun M, Pan X, Zhang W, Yang Y, Yang Y. Absence of synergistic effects between microplastics and copper ions on the spread of antibiotic resistance genes within aquatic bacteria at the community level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176591. [PMID: 39343406 DOI: 10.1016/j.scitotenv.2024.176591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Microplastics and copper ions (Cu2+) are favorable in accelerating the propagation of antibiotic resistance genes (ARGs) in the plastisphere, however, their combined effects on the ARG spread within the bacterial community of the natural environment were less understood. The influence of microplastic types and Cu2+ concentrations on the horizontal gene transfer (HGT) of ARGs mediated by RP4 plasmid within natural bacterial communities in aquatic environments was investigated. Both biodegradable polybutylene succinate (PBS) and non-biodegradable polyvinyl chloride (PVC) microplastics significantly enhanced the transfer of ARGs, with PBS showing a significant higher effect compared to PVC. Cu2+ also increased transconjugation rates at environmentally relevant concentrations (5 μg L-1), but higher levels (50 μg L-1) lead to decreased rates due to severe bacterial cell membrane damage. The transconjugation rates in the presence of both microplastics and Cu2+ were lower than the sum of their individual effects, indicating no synergistic effects between them on transconjugation. Proteobacteria dominated the composition of transconjugates for all the treatment. Transmission electron microscope images and reactive oxygen species production in bacterial cells indicated that the increased contact frequency due to extracellular polymeric substances, combined with enhanced membrane permeability induced by microplastics and Cu2+, accounted for the increasing transconjugation rates. The study provides valuable insight into the potential effects of microplastics and heavy metals on the spread of ARGs from donors to bacterial communities in natural environments.
Collapse
Affiliation(s)
- Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430014, China
| | - Mengge Sun
- China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430014, China
| | - Weihong Zhang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yang Yang
- Guizhou Normal University, Guiyang, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
2
|
Ifedinezi OV, Nnaji ND, Anumudu CK, Ekwueme CT, Uhegwu CC, Ihenetu FC, Obioha P, Simon BO, Ezechukwu PS, Onyeaka H. Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health. Antibiotics (Basel) 2024; 13:1087. [PMID: 39596781 PMCID: PMC11591122 DOI: 10.3390/antibiotics13111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is a serious global health issue, aggravated by antibiotic overuse and misuse in human medicine, animal care, and agriculture. This study looks at the different mechanisms that drive AMR, such as environmental contamination, horizontal gene transfer, and selective pressure, as well as the severe implications of AMR for human and animal health. This study demonstrates the need for concerted efforts across the scientific, healthcare, agricultural, and policy sectors to control the emergence of AMR. Some crucial strategies discussed include developing antimicrobial stewardship (AMS) programs, encouraging targeted narrow-spectrum antibiotic use, and emphasizing the significance of strict regulatory frameworks and surveillance systems, like the Global Antimicrobial Resistance and Use Surveillance System (GLASS) and the Access, Watch, and Reserve (AWaRe) classification. This study also emphasizes the need for national and international action plans in combating AMR and promotes the One Health strategy, which unifies environmental, animal, and human health. This study concludes that preventing the spread of AMR and maintaining the effectiveness of antibiotics for future generations requires a comprehensive, multidisciplinary, and internationally coordinated strategy.
Collapse
Affiliation(s)
| | - Nnabueze Darlington Nnaji
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
| | | | | | | | | | - Promiselynda Obioha
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Blessing Oteta Simon
- Department of Public Health Sciences, National Open University of Nigeria, Abuja 900108, Nigeria
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Alav I, Buckner MMC. Non-antibiotic compounds associated with humans and the environment can promote horizontal transfer of antimicrobial resistance genes. Crit Rev Microbiol 2024; 50:993-1010. [PMID: 37462915 PMCID: PMC11523920 DOI: 10.1080/1040841x.2023.2233603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 02/15/2024]
Abstract
Horizontal gene transfer plays a key role in the global dissemination of antimicrobial resistance (AMR). AMR genes are often carried on self-transmissible plasmids, which are shared amongst bacteria primarily by conjugation. Antibiotic use has been a well-established driver of the emergence and spread of AMR. However, the impact of commonly used non-antibiotic compounds and environmental pollutants on AMR spread has been largely overlooked. Recent studies found common prescription and over-the-counter drugs, artificial sweeteners, food preservatives, and environmental pollutants, can increase the conjugative transfer of AMR plasmids. The potential mechanisms by which these compounds promote plasmid transmission include increased membrane permeability, upregulation of plasmid transfer genes, formation of reactive oxygen species, and SOS response gene induction. Many questions remain around the impact of most non-antibiotic compounds on AMR plasmid conjugation in clinical isolates and the long-term impact on AMR dissemination. By elucidating the role of routinely used pharmaceuticals, food additives, and pollutants in the dissemination of AMR, action can be taken to mitigate their impact by closely monitoring use and disposal. This review will discuss recent progress on understanding the influence of non-antibiotic compounds on plasmid transmission, the mechanisms by which they promote transfer, and the level of risk they pose.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michelle M. C. Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Liu L, Deng K, Zeng Z, Zou D, Xu Y, Liu Y, Guo B, Li Y, Xu X. Interrupting Antibiotic Resistance Transmission via Natural Product-Embedded Lipopeptide–Polymeric Nanoblockers. ACS MATERIALS LETTERS 2024; 6:4461-4471. [DOI: 10.1021/acsmaterialslett.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Liguo Liu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Kefurong Deng
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zenan Zeng
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Dongzhe Zou
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yini Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yiming Liu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Beiling Guo
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yachao Li
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Xianghui Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
5
|
Deng J, Zhang W, Zhang L, Qin C, Wang H, Ling W. Micro-interfacial behavior of antibiotic-resistant bacteria and antibiotic resistance genes in the soil environment: A review. ENVIRONMENT INTERNATIONAL 2024; 191:108972. [PMID: 39180776 DOI: 10.1016/j.envint.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Overutilization and misuse of antibiotics in recent decades markedly intensified the rapid proliferation and diffusion of antibiotic resistance genes (ARGs) within the environment, thereby elevating ARGs to the status of a global public health crisis. Recognizing that soil acts as a critical reservoir for ARGs, environmental researchers have made great progress in exploring the sources, distribution, and spread of ARGs in soil. However, the microscopic state and micro-interfacial behavior of ARGs in soil remains inadequately understood. In this study, we reviewed the micro-interfacial behaviors of antibiotic-resistant bacteria (ARB) in soil and porous media, predominantly including migration-deposition, adsorption, and biofilm formation. Meanwhile, adsorption, proliferation, and degradation were identified as the primary micro-interfacial behaviors of ARGs in the soil, with component of soil serving as significant determinant. Our work contributes to the further comprehension of the microstates and processes of ARB and ARGs in the soil environments and offers a theoretical foundation for managing and mitigating the risks associated with ARG contamination.
Collapse
Affiliation(s)
- Jibao Deng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenkang Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingyu Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Dadeh Amirfard K, Moriyama M, Suzuki S, Sano D. Effect of environmental factors on conjugative transfer of antibiotic resistance genes in aquatic settings. J Appl Microbiol 2024; 135:lxae129. [PMID: 38830804 DOI: 10.1093/jambio/lxae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/25/2024] [Accepted: 06/02/2024] [Indexed: 06/05/2024]
Abstract
Antimicrobial-resistance genes (ARGs) are spread among bacteria by horizontal gene transfer, however, the effect of environmental factors on the dynamics of the ARG in water environments has not been very well understood. In this systematic review, we employed the regression tree algorithm to identify the environmental factors that facilitate/inhibit the transfer of ARGs via conjugation in planktonic/biofilm-formed bacterial cells based on the results of past relevant research. Escherichia coli strains were the most studied genus for conjugation experiments as donor/recipient in the intra-genera category. Conversely, Pseudomonas spp., Acinetobacter spp., and Salmonella spp. were studied primarily as recipients across inter-genera bacteria. The conjugation efficiency (ce) was found to be highly dependent on the incubation period. Some antibiotics, such as nitrofurantoin (at ≥0.2 µg ml-1) and kanamycin (at ≥9.5 mg l-1) as well as metallic compounds like mercury (II) chloride (HgCl2, ≥3 µmol l-1), and vanadium (III) chloride (VCl3, ≥50 µmol l-1) had enhancing effect on conjugation. The highest ce value (-0.90 log10) was achieved at 15°C-19°C, with linoleic acid concentrations <8 mg l-1, a recognized conjugation inhibitor. Identifying critical environmental factors affecting ARG dissemination in aquatic environments will accelerate strategies to control their proliferation and combat antibiotic resistance.
Collapse
Affiliation(s)
- Katayoun Dadeh Amirfard
- Department of Frontier Science for Advanced Environment, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Miyagi 980-8579, Japan
| | - Momoko Moriyama
- Department of Frontier Science for Advanced Environment, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Miyagi 980-8579, Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Bunkyōchō 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Miyagi 980-8579, Japan
- Department of Civil and Environmental Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Miyagi 980-8579, Japan
| |
Collapse
|
7
|
Yu Z, Liu Z, Sun L, Dong C, Jin Y, Hu B, Cheng D. Mobile genetic elements mediate the cross-media transmission of antibiotic resistance genes from pig farms and their risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172115. [PMID: 38569972 DOI: 10.1016/j.scitotenv.2024.172115] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Manure composting in traditional small-scale pig farms leads to the migration and diffusion of antibiotics and antibiotics resistance genes (ARGs) along the chain of transmission to the surrounding environment, increasing the risk of environmental resistance. Understanding the transmission patterns, driving factors, and health risks of ARGs on small-scale pig farms is important for effective control of ARGs transmission. This study was conducted on a small pig farm and its surrounding environment. The cross-media transmission of ARGs and their risks in the farming habitat were investigated using Metagenomic annotation and qPCR quantitative detection. The results indicate that ARGs in farms spread with manure pile-soil-channel sediment-mudflat sediment. Pig farm manure contributed 22.49 % of the mudflat sediment ARGs. Mobile genetic elements mediate the spread of ARGs across different media. Among them, tnpA and IS26 have the highest degree. Transmission of high-risk ARGs sul1 and tetM resulted in a 50 % and 116 % increase in host risk for sediment, respectively. This study provides a basis for farm manure management and control of the ARGs spread.
Collapse
Affiliation(s)
- Zhendi Yu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lingtao Sun
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chifei Dong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yan Jin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Dongqing Cheng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
8
|
Yu J, Lu H, Zhu L. Mutation-driven resistance development in wastewater E. coli upon low-level cephalosporins: Pharmacophore contribution and novel mechanism. WATER RESEARCH 2024; 252:121235. [PMID: 38310801 DOI: 10.1016/j.watres.2024.121235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Cephalosporins have been widely applied in clinical and veterinary settings and detected at increasing concentrations in water environments. They potentially induce high-level antibiotic resistance at environmental concentrations. This study characterized how typical wastewater bacteria developed heritable antibiotic resistance under exposure to different cephalosporins, including pharmacophore-resistance correlation, resistance mechanism, and occurrence of resistance-relevant mutations in different water environments. Wastewater-isolated E. coli JX1 was exposed to eight cephalosporins individually at 25 µg/L for 60 days. Multidrug resistance developed and diverse mutations arose in selected mutants, where a single mutation in ATP phosphoribosyltransferase encoding gene (hisG) resulted in up to 128-fold increase in resistance to meropenem. Molprint2D pharma RQSAR analysis revealed that hydrogen-bond acceptors and hydrophobic groups in the R1 and R2 substituents of cephalosporins contributed positively to antibiotic resistance. Some of these pharmacophores may persist during bio- or photo-degradation in the environment. hisG mutation confers a novel resistance mechanism by inhibiting fatty acid degradation, and its variants were more abundant in water-related E. coli (especially in the effluent of wastewater treatment plants) compared with those in non-water environments. These results suggest that specific degradation of particular pharmacophores in cephalosporins could be useful for controlling resistance development, and mutations in previously unreported resistance genes (e.g., hisG) can lead to overlooked antibiotic resistance risks in water environments.
Collapse
Affiliation(s)
- Jinxian Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Wang T, Xu Y, Ling W, Mosa A, Liu S, Lin Z, Wang H, Hu X. Dissemination of antibiotic resistance genes is regulated by iron oxides: Insight into the influence on bacterial transformation. ENVIRONMENT INTERNATIONAL 2024; 185:108499. [PMID: 38368718 DOI: 10.1016/j.envint.2024.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
The transportation of antibiotic resistance genes (ARGs) in manure-soil-plant continuums poses risks to human health. Horizontal gene transfer, particularly for bacterial transformation, is an important way for ARG dissemination. As crucial components in soils, iron oxides impacted the fates of various abiotic and biotic contaminants due to their active properties. However, whether they can influence the transformation of ARGs is unknown, which waits to be figured out to boost the assessment and control of ARG spread risks. In this study, we have investigated the effects of goethite, hematite, and magnetite (0-250 mg/L, with sizes < 100 nm and > 100 nm) on the transfer of ampicillin resistance genes to Escherichia coli cells. At lower iron oxide concentrations, the transformation of ARGs was first facilitated (transformation frequency reached up to 3.38-fold higher), but the facilitating effects gradually weakened and eventually disappeared as concentrations further increased. Particle size and iron oxide type were not the universal determinants controlling the transformation. At lower concentrations, iron oxides interacted with proteins and phospholipids in E. coli envelope structures, and induced the overgeneration of intracellular reactive oxygen species. Consequently, they led to pore formation and permeability enhancement on the cell membrane, thus promoting the transformation. The facilitation was also associated with the carrier-like effect of iron oxides for antibiotic resistance plasmids. At higher concentrations, the weakened facilitations were attributed to the aggregation of iron oxides. In this study, we highlight the crucial roles of the concentrations (contents) of iron oxides on the dissemination of ARGs in soils; this study may serve as a reference for ARG pollution control in future agricultural production.
Collapse
Affiliation(s)
- Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanxing Xu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhipeng Lin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
10
|
Tang H, Liu Z, Hu B, Zhu L. D-Ring Modifications of Tetracyclines Determine Their Ability to Induce Resistance Genes in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1338-1348. [PMID: 38157442 DOI: 10.1021/acs.est.3c07559] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The widespread utilization of tetracyclines (TCs) in agriculture and medicine has led to the borderless spread of tetracycline resistance in humans, animals, and the environment, posing huge risks to both the ecosystem and human society. Changes in the functional group modifications resulted in a higher bacteriostatic efficacy of the new generation of TCs, but their effect on the emergence and evolution of antibiotic resistance genes (ARGs) is not yet known. To this end, four TCs from three generations were chosen to compare their structural effects on influencing the evolution of ARGs in soil microbial communities. The findings revealed that low-generation TCs, such as tetracycline and oxytetracycline, exhibited a greater propensity to stimulate the production and proliferation of ARGs than did high-generation tigecycline. Molecular docking analysis demonstrated that modifications of the D-ring functional group determined the binding capacity of TCs to the substrate-binding pocket of transcriptional regulators and efflux pumps mainly involved in drug resistance. This can be further evidenced by reverse transcription-quantitative polymerase chain reaction quantification and intracellular antibiotic accumulation assessment. This study sheds light on the mechanism of the structural effect of antibiotic-induced ARG production from the perspective of compound-protein binding, therefore providing theoretical support for controlling the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Huiming Tang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Liu Z, Jin Y, Yu Z, Liu Z, Zhang B, Chi T, Cheng D, Zhu L, Hu B. Vertical migration and dissipation of oxytetracycline induces the recoverable shift in microbial community and antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167162. [PMID: 37730066 DOI: 10.1016/j.scitotenv.2023.167162] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Antibiotic resistance gene (ARG) spread in anthropogenic polluted soils is believed to be accelerated by the incidental inputs of antibiotics via fertilizing and irrigation, and endangering food and human health. However, due to the complex nature of substrates and uncertain microbial responses, the primary drivers of ARG dissemination remain unclear. To address this concern, the effects of antibiotic inputs on soil microbes and antibiotic resistance under simulated natural conditions was investigated in this study. Specifically, four flow-through reactors with gravity flow were established, and the oxytetracycline (OTC) a typical antibiotic in agricultural soils was studied at environmental concentrations (i.e. 0.1, 1 and 10 mg/kg) for 31 days. The vertical distribution and dissipation of OTC were profiled by measuring the residuals in layers over time. Correspondingly, the effects of antibiotic exposure on microbial communities and ARG abundances were studied. The results showed that the average exposure intensity of OTC in different soil layers ranged in 0.03-6.45 mg/kg, and resulted in different dissipation kinetics. In addition, top layer was found to be the main site of OTC reduction, where OTC dissipated at magnitude of 74.0-96.6 %, depending on the initial OTC concentration. OTC migration and dissipation resulted in the shift of community composition to the extent of 0.25-0.33 in terms of Bray-Curtis distance, which partially recovered over time. And the achievement of alternative community compositions was supposed to be largely affected by the microbial interaction. Along with the community changes, a short-term accumulation of resistance genes was detected, while the relative abundance of indicator ARGs, i.e. tetG and mexB, rising up to 10-fold higher than the initial, although eventually decayed. Collective findings of this study indicated that antibiotics at environmental concentrations might trigger extra microbial interactions and thereby reducing the demand for ARGs accumulation. It provided valuable understandings in the risk of antibiotic spillage, especially for the incident exposure at the environmentally relevant concentrations.
Collapse
Affiliation(s)
- Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yihao Jin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhendi Yu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Zhengzheng Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China.
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou 310007, China.
| | - Taolue Chi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Dongqing Cheng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
12
|
Hu Z, Yang L, Liu Z, Han J, Zhao Y, Jin Y, Sheng Y, Zhu L, Hu B. Excessive disinfection aggravated the environmental prevalence of antimicrobial resistance during COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163598. [PMID: 37094669 PMCID: PMC10122561 DOI: 10.1016/j.scitotenv.2023.163598] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
During COVID-19 pandemic, chemicals from excessive consumption of pharmaceuticals and disinfectants i.e., antibiotics, quaternary ammonium compounds (QACs), and trihalomethanes (THMs), flowed into the urban environment, imposing unprecedented selective pressure to antimicrobial resistance (AMR). To decipher the obscure character pandemic-related chemicals portrayed in altering environmental AMR, 40 environmental samples covering water and soil matrix from surroundings of Wuhan designated hospitals were collected on March 2020 and June 2020. Chemical concentrations and antibiotic resistance gene (ARG) profiles were revealed by ultra-high-performance liquid chromatography-tandem mass spectrometry and metagenomics. Selective pressure from pandemic-related chemicals ascended by 1.4-5.8 times in March 2020 and then declined to normal level of pre-pandemic period in June 2020. Correspondingly, the relative abundance of ARGs under increasing selective pressure was 20.1 times that under normal selective pressure. Moreover, effect from QACs and THMs in aggravating the prevalence of AMR was elaborated by null model, variation partition and co-occurrence network analyses. Pandemic-related chemicals, of which QACs and THMs respectively displayed close interaction with efflux pump genes and mobile genetic elements, contributed >50 % in shaping ARG profile. QACs bolstered the cross resistance effectuated by qacEΔ1 and cmeB to 3.0 times higher while THMs boosted horizon ARG transfer by 7.9 times for initiating microbial response to oxidative stress. Under ascending selective pressure, qepA encoding quinolone efflux pump and oxa-20 encoding β-lactamases were identified as priority ARGs with potential human health risk. Collectively, this research validated the synergistic effect of QACs and THMs in exacerbating environmental AMR, appealing for the rational usage of disinfectants and the attention for environmental microbes in one-health perspective.
Collapse
Affiliation(s)
- Zhichao Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuxiang Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihao Jin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaqi Sheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
13
|
Guidotti-Takeuchi M, Melo RTD, Ribeiro LNDM, Dumont CF, Ribeiro RAC, Brum BDA, de Amorim Junior TLIF, Rossi DA. Interference with Bacterial Conjugation and Natural Alternatives to Antibiotics: Bridging a Gap. Antibiotics (Basel) 2023; 12:1127. [PMID: 37508224 PMCID: PMC10376302 DOI: 10.3390/antibiotics12071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Horizontal gene transfer (HGT) in food matrices has been investigated under conditions that favor gene exchange. However, the major challenge lies in determining the specific conditions pertaining to the adapted microbial pairs associated with the food matrix. HGT is primarily responsible for enhancing the microbial repertoire for the evolution and spread of antimicrobial resistance and is a major target for controlling pathogens of public health concern in food ecosystems. In this study, we investigated Salmonella Heidelberg (SH) and Escherichia coli (EC) regarding gene exchange under conditions mimicking the industrial environment, with the coproducts whey (SL) and chicken juice (CJ). The S. Heidelberg strain was characterized by antibiotic susceptibility standards and PCR to detect the blaTEM gene. A concentration of 0.39 mg/mL was determined to evaluate the anti-conjugation activity of nanostructured lipid nanocarriers (NLCs) of essential oils to mitigate β-lactam resistance gene transfer. The results showed that the addition of these coproducts promoted an increase of more than 3.5 (whey) and 2.5 (chicken juice) orders of magnitude in the conjugation process (p < 0.01), and NLCs of sage essential oil significantly reduced the conjugation frequency (CF) by 74.90, 90.6, and 124.4 times when compared to the transfers in the absence of coproducts and the presence of SL and CJ, respectively. For NLCs from olibanum essential oil, the decrease was 4.46-fold for conjugations without inhibitors and 3.12- and 11.3-fold in the presence of SL and CJ. NLCs associated with sage and olibanum essential oils effectively control the transfer of antibiotic resistance genes and are a promising alternative for use at industrial levels.
Collapse
Affiliation(s)
- Micaela Guidotti-Takeuchi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Carolyne Ferreira Dumont
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Bárbara de Araújo Brum
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| |
Collapse
|
14
|
Zhou S, Li H, Wu Z, Li S, Cao Z, Ma B, Zou Y, Zhang N, Liu Z, Wang Y, Liao X, Wu Y. The addition of nano zero-valent iron during compost maturation effectively removes intracellular and extracellular antibiotic resistance genes by reducing the abundance of potential host bacteria. BIORESOURCE TECHNOLOGY 2023:129350. [PMID: 37352990 DOI: 10.1016/j.biortech.2023.129350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
Applying compost to soil may lead to the spread of antibiotic resistance genes (ARGs) in the environment. Therefore, removing ARGs from compost is critical. In this study, for the first time, nano zero-valent iron (nZVI) was added to compost during the maturation stage to remove ARGs. After adding 1 g/kg of nZVI, the abundance of total intracellular and total extracellular ARGs was decreased by 97.62% and 99.60%, and that of total intracellular and total extracellular mobile genetic elements (MGEs) was decreased by 92.39% and 99.31%, respectively. A Mantel test and network analysis indicated that the reduction in potential host bacteria and intI1 after nZVI treatment promoted the removal of intracellular and extracellular ARGs. The addition of nZVI during composting reduced the horizontal transfer of ARGs and improve the total nitrogen and germination index of compost, allowing it to meet the requirements for organic fertilizers.
Collapse
Affiliation(s)
- Shizheng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| | - Hualing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| | - Zhiyin Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| | - Si Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| | - Zhen Cao
- Wen's Foodstuff Group Co., Ltd., Yunfu, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan, China
| | - Na Zhang
- Foshan Customs Comprehensive Technology Center, Foshan, China
| | - Ziyu Liu
- Jinnuo Biotech Co.Ltd., Beijing, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China.
| |
Collapse
|
15
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
16
|
Zhang Y, Xiang Y, Xu R, Huang J, Deng J, Zhang X, Wu Z, Huang Z, Yang Z, Xu J, Xiong W, Li H. Magnetic biochar promotes the risk of mobile genetic elements propagation in sludge anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117492. [PMID: 36863149 DOI: 10.1016/j.jenvman.2023.117492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Mobile genetic elements (MGEs) mediated horizontal gene transfer is the primary reason for the propagation of antibiotic resistance genes in environment. The behavior of MGEs under magnetic biochar pressure in sludge anaerobic digestion (AD) is still unknown. This study evaluated the effects of different dosage magnetic biochar on the MGEs in AD reactors. The results showed that the biogas yield was highest (106.68 ± 1.16 mL g-1 VSadded) with adding optimal dosage of magnetic biochar (25 mg g-1 TSadded), due to it increased the microorganism's abundance involved in hydrolysis and methanogenesis. While, the total absolute abundance of MGEs in the reactors with magnetic biochar addition increased by 11.58%-77.37% compared with the blank reactor. When the dosage of magnetic biochar was 12.5 mg g-1 TSadded, the relative abundance of most MGEs was the highest. The enrichment effect on ISCR1 was the most significant, and the enrichment rate reached 158.90-214.16%. Only the intI1 abundance was reduced and the removal rates yield 14.38-40.00%, which was inversely proportional to the dosage of magnetic biochar. Co-occurrence network explored that Proteobacteria (35.64%), Firmicutes (19.80%) and Actinobacteriota (15.84%) were the main potential host of MGEs. Magnetic biochar changed MGEs abundance by affecting the potential MGEs-host community structure and abundance. Redundancy analysis and variation partitioning analysis showed that the combined effect of polysaccharides, protein and sCOD exhibited the greatest contribution (accounted for 34.08%) on MGEs variation. These findings demonstrated that magnetic biochar increases the risk of MGEs proliferation in AD system.
Collapse
Affiliation(s)
- Yanru Zhang
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Jing Huang
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China
| | - Jiaqin Deng
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China
| | - Xuan Zhang
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China
| | - Zijian Wu
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China
| | - Zhongliang Huang
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenlong Xiong
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hui Li
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, China.
| |
Collapse
|
17
|
He Y, Zhao X, Zhu S, Yuan L, Li X, Feng Z, Yang X, Luo L, Xiao Y, Liu Y, Wang L, Deng O. Conversion of swine manure into biochar for soil amendment: Efficacy and underlying mechanism of dissipating antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162046. [PMID: 36758702 DOI: 10.1016/j.scitotenv.2023.162046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Livestock manure amendment, a common fertilization method for agricultural practice, can exacerbate antibiotic resistance gene (ARG) pollution, thus threatening food safety and human health. On the other hand, manure can also be produced as biochar to improve soil quality, which may reduce ARGs inside manure. However, it is unclear how and why shifting manure to biochar for soil amendment reduces ARG pollution. Thus, this study investigated the variations of ARGs and microbial communities in soil amended with swine manure (2 % and 5 %) and its biochar (2 % and 5 %) and then explored how shifting swine manure to biochar reduced ARG contamination. After 28 d incubation, ARG number in soil without amendment, manure-amended soils, and biochar-amended soils were 47, 112-136, and 43-52, respectively. ARG abundance in soil without amendment, manure-amended soils, and biochar-amended soils were 7.66 × 107, 4.32 × 109 - 1.42 × 1011, and 8.44 × 107-9.67 × 107 copies g-1 dry soil, respectively. Compared to manure-amended soils, its biochar amendments reduced ARG abundance by 2-4 orders of magnitude and ARG number by 70-93 in soil. Besides, manure amendment altered while biochar did not alter bacterial diversity and composition. The changed soil properties and mobile genetic elements (MGEs) could explain the changes in ARGs. Relative to manure amendments, its biochar amendments reduced mobile genetic elements (MGEs), Proteobacteria and Bacteroidetes in soil, which explained the reduced abundance and diversity of ARGs; however, the multidrug-resistance genes harbored in Proteobacteria and Bacteroidetes were still abundant in biochar-amended soil. This study suggests that converting manure to biochar as a soil amendment can help control the spread of manure ARGs.
Collapse
Affiliation(s)
- Yan He
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Xin Zhao
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China; College of Environmental & Resource Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Siman Zhu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Long Yuan
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Xinyi Li
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Zhihan Feng
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Xuan Yang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China.
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Lilin Wang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| |
Collapse
|
18
|
Lin Z, Lu P, Wang R, Liu X, Yuan T. Sulfur: a neglected driver of the increased abundance of antibiotic resistance genes in agricultural reclaimed subsidence land located in coal mines with high phreatic water levels. Heliyon 2023; 9:e14364. [PMID: 36994396 PMCID: PMC10040520 DOI: 10.1016/j.heliyon.2023.e14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Due to the shallow burial of groundwater in coal mines with a high phreatic water level, a large area of subsidence lakes is formed after the mine collapses. Agricultural and fishery reclamation activities have been carried out, which introduced antibiotics and exacerbated the contamination of antibiotic resistance genes (ARGs), but this has received limited attention. This study analyzed ARG occurrence in reclaimed mining areas, the key impact factors, and the underlying mechanism. The results show that sulfur is the most critical factor impacting the abundance of ARGs in reclaimed soil, which is due to changes in the microbial community. The species and abundance of ARGs in the reclaimed soil were higher than those in the controlled soil. The relative abundances of most ARGs increased with the depth of reclaimed soil (from 0 to 80 cm). In addition, the microbial structures of the reclaimed and controlled soils were significantly different. Proteobacteria, was the most dominant microbial phylum in the reclaimed soil. This difference is likely related to the high abundance of sulfur metabolism functional genes in the reclaimed soil. Correlation analysis showed that the differences in ARGs and microorganisms in the two soil types were highly correlated with the sulfur content. High levels of sulfur promoted the proliferation of sulfur-metabolizing microbial populations such as Proteobacteria and Gemmatimonadetes in the reclaimed soils. Remarkably, these microbial phyla were the main antibiotic-resistant bacteria in this study, and their proliferation created conditions for the enrichment of ARGs. Overall, this study underscores the risk of the abundance and spread of ARGs driven by high-level sulfur in reclaimed soils and reveals the mechanisms.
Collapse
|
19
|
Cui E, Zhou Z, Gao F, Chen H, Li J. Roles of substrates in removing antibiotics and antibiotic resistance genes in constructed wetlands: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160257. [PMID: 36402338 DOI: 10.1016/j.scitotenv.2022.160257] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics and corresponding antibiotic resistance genes (ARGs) are emerging pollutants in wastewater that pose a significant threat to the environment and human health. Constructed wetlands (CWs) are a cost-effective technology for eliminating these pollutants through substrates, plants, and microorganisms. Detailed reviews of the roles of CW substrates on antibiotic and ARG removal and recent progress in the field are lacking. This paper reviews the mechanisms influencing antibiotic and ARG (intracellular and extracellular) removal in CWs, and natural, biomass, chemical, modified, industrial, novel, and combined substrates on their removal efficiencies. Generally, substrates remove antibiotics and ARGs mainly through adsorption, biodegradation, chemical oxidation, and filtration. Other mechanisms, such as photolysis, may also contribute to removal. Natural substrates (e.g., gravel, zeolite) are more frequently employed than other types of substrates. The removal performance of antibiotics and intracellular ARGs by zeolite was better than that of gravel through enhanced substrate adsorption, filtration, and biodegradation processes. Moreover, Mn ore showed promising high capability to remove high concentration of antibiotics through various removal pathways. In addition, combined substrates of soil/sand/gravel and other substrates further facilitate antibiotic removal. Future research is suggested to explore the mechanisms of competitive adsorption and redox-controlled biodegradation, investigate the effect of Fe/Mn oxides on the removal of antibiotics and ARGs via chemical oxidation, evaluate the removal of extracellular ARGs by CWs with different substrates, and investigate the effect of substrates on removal of antibiotics and ARGs in full-scale CWs.
Collapse
Affiliation(s)
- Erping Cui
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenchao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Gao
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| |
Collapse
|