1
|
Wu L, Li H, Gu Y, Shen Z, Zhou Y, Zuo J. Integrating dual-stage gas permeable membranes and humic acid recovery to optimize fenton oxidation of landfill leachate: Insights into full-process performance and DOM molecular-level transformation. WATER RESEARCH 2025; 280:123525. [PMID: 40174423 DOI: 10.1016/j.watres.2025.123525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/02/2025] [Accepted: 03/19/2025] [Indexed: 04/04/2025]
Abstract
This research introduces an innovative full-process treatment technology that integrates dual-stage gas permeable membranes (GPM) and humic acid (HA) recovery to enhance Fenton oxidation of landfill leachate (LFL). In terms of full-process performance, this integrated approach (LFL-GPM-HA (Fenton)) synergistically combines LFL concentration, ammonia recovery, HA recovery, purified water reclamation, and efficient Fenton oxidation, thereby achieving holistic minimization, detoxification, and resource recovery of LFL. Specifically, under the conditions of low-intensity aeration and a temperature gradient of 65-55-25 °C, the GPM achieved an ammonia recovery rate exceeding 96 %, while the LFL was concentrated by a factor of 4.72 within 12 h. During HA recovery at pH 2, the HA yield from the concentrated LFL reached 3.68 g/L, representing an 88.72 % increase compared to the raw LFL. Due to the significant consumption of bicarbonate alkalinity during the GPM process, the required dosage of H₂SO₄ per gram of HA recovered was reduced by 86.72 %. Under different dimensionless oxidant dosages, the LFL-GPM-HA (Fenton) demonstrated a significant improvement in COD removal efficiency compared to standalone Fenton oxidation. In terms of dissolved organic matter (DOM) molecular-level transformation, ESI FT-ICR-MS analysis showed a significant enhancement in the removal of CHOS and CHONS in LFL-GPM-HA (Fenton), with a concurrent reduction in the produced sulfurous byproducts. Additionally, the LFL-GPM-HA (Fenton) notably increased the frequency of decarboxylation, desulfurization, and dealkylation reactions. In terms of operational stability and economic feasibility, this integrated system demonstrates excellent long-term stability and robust membrane fouling-cleaning recovery properties, achieving LFL treatment at a cost of approximately 12.142 $/m³, which is significantly more cost-effective than conventional full-process advanced treatment technologies (20-30 $/m³). In conclusion, the findings offer a pathway for developing more efficient and cost-effective strategies for LFL management.
Collapse
Affiliation(s)
- Linjun Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanyue Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
2
|
Hu F, Ye J, Wang B, Zhang W, Chen P, Yuan Z, Xu Z. Transformation of dissolved organic matter during aquaculture wastewater treatment: Insights into the biological toxicity, spectral indices and molecular signatures. WATER RESEARCH 2025; 283:123834. [PMID: 40398059 DOI: 10.1016/j.watres.2025.123834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/27/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
China is a leading aquaculture producer globally and therefore, faces the critical challenge of effectively managing large volumes of aquaculture wastewater. In order to optimize treatment processes and evaluate the ecological risks from effluent discharge, it is important to understand the transformation of dissolved organic matter (DOM) and identify the key toxic components throughout the treatment process. This study focused on the 'three ponds, two dams, one wetland' (3P-2D-1W) treatment system, which has been widely adopted as an aquaculture wastewater treatment approach in China, investigating DOM transformation throughout the treatment process via spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and biotoxicity analyses. Correlation analysis indicated that biotoxicity was significantly positively correlated with dissolved organic carbon (DOC), chemical oxygen demand (COD), humification index (HIX) and modified aromaticity index (AImodwa). Molecule-centered correlations identified aliphatic compounds and highly unsaturated phenolic compounds as the key contributors to DOM toxicity. In terms of treatment effect, the 'three ponds, two dams' (3P-2D) system was found to effectively reduce pollutants (59.4 % DOC removal, 55.4 % toxicity reduction) in aquaculture wastewater. After adding the constructed wetland module (3P-2D-1W), the treated effluent reached a DOC of 12.3 mg/L and an inhibition rate (represent for biotoxicity) of 7.16 %, cleaner than the river water originally used for aquaculture (DOC 15.7 mg/L, inhibition rate 9.21 %). However, the overall process showed limited selectivity for toxic compound removal. Additionally, the aeration pond exhibited redundancy and contributed to increased effluent toxicity. Analysis of potential reaction pairs revealed that the constructed wetland exhibited the highest diversity of reaction pairs (1953), with notable CHO group losses (489) and a significant increase in organic nitrogen transformation processes (±CHON, 293). This study provides novel insights into the rapid assessment indicators that can be leveraged to predict aquaculture wastewater pollution levels and offers strategic recommendations for optimizing the 3P-2D-1W treatment process.
Collapse
Affiliation(s)
- Feng Hu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Jianfeng Ye
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| | - Bingqing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Wencan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Peipei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Zhanzhan Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Li H, Shi J, Fu T, Liu J, Peng X, Wang L, Sun H, Xu Y, Zhao H. The mechanism of alkali to inhibit the organics polymerization in improving the biodegradability of wastewater treated by heat/peroxydisulfate. WATER RESEARCH 2025; 274:123096. [PMID: 39787836 DOI: 10.1016/j.watres.2025.123096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
High-temperature wastewaters can themselves activate peroxydisulfate (PDS) to remove aromatic contaminants via polymerization. This, however, may result in an insufficient carbon source for denitrification during biochemical treatment, and the formed polymers, without a proper reuse method, will be costly to handle as hazardous waste. This study demonstrates that the addition of NaOH can suppress the polymerization of aromatic contaminants, which is observed not only in simulated wastewater but also in actual coking wastewater (ACW). Taking phenol as an example, the formation of phenoxy radical (PhO•) through the reaction between SO4•- and phenol is the crucial step for phenol polymerization. The addition of NaOH can convert sulfate radicals (SO4•-) to hydroxyl radicals (HO•), and simultaneously, HO• can quickly consume PhO•. Both processes contribute to the inhibition of phenol polymerization. After treatment with heat/NaOH/PDS, the biodegradability of ACW is significantly enhanced with a relatively low carbon source loss (around 16%). Moreover, Fourier transform-ion cyclotron resonance mass spectrometry analysis indicates that the transformation of polyphenols to highly unsaturated and phenolic compounds is beneficial for the biodegradability improvement of ACW. Therefore, the NaOH/PDS system is an effective way to utilize waste heat and enhance the biodegradability of wastewater.
Collapse
Affiliation(s)
- Han Li
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, PR China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Jinrui Shi
- Yellow River Laboratory of Shanxi Province, Shanxi University, Taiyuan, 030006, PR China
| | - Tao Fu
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Jinwei Liu
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Xiangtian Peng
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Liangjie Wang
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Huifang Sun
- Yellow River Laboratory of Shanxi Province, Shanxi University, Taiyuan, 030006, PR China
| | - Yi Xu
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Huazhang Zhao
- Yellow River Laboratory of Shanxi Province, Shanxi University, Taiyuan, 030006, PR China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
4
|
Li Q, Fang F, Chen W. Effect of a high Cl - concentration on the transformation of waste leachate DOM by the UV/PMS system: A mechanistic study using the Suwannee River natural organic matter (SRNOM) as a simulator of waste leachate DOM. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137038. [PMID: 39813921 DOI: 10.1016/j.jhazmat.2024.137038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 01/18/2025]
Abstract
The ultraviolet-activated peroxymosnofulate (UV/PMS) system, an effective advanced oxidation process for removing dissolved organic matter (DOM) from wastewater, is limited by high chloride ion (Cl-) concentrations in landfill leachate. This study used Fourier transform ion cyclotron resonance mass spectrometry to explore the transformation of DOM in the UV/PMS system with a high Cl- concentration. The results revealed that elevated Cl- levels generate reactive chlorine species, including chlorine radicals, dichlorine radicals, and hypochlorous acid/hypochlorite, reducing the total organic carbon (TOC) removal efficiency of Suwannee River natural organic matter (SRNOM) from 78.9 % to 39.3 % at 10,000 mg/L Cl-, 0.5 mM PMS, and 60 min. In the absence of Cl-, the UV/PMS system removes almost all molecular species from SRNOM and generates aliphatic substances with low oxygen contents. When high concentrations of Cl- are present, it preferentially removes aromatic and highly unsaturated molecules and produces 408 unknown chlorinated DOMs with highly unsaturated and high-oxygen content features, including CHOCl, CHONCl, and CHOSCl species. We find that in the UV/PMS system without Cl-, DOM is degraded primarily by dealkylation, decarboxylation, hydrogenation, and dearomatization; high concentrations of Cl- impair these reactions, and chlorinated DOM forms via chlorine addition/substitution along with other oxidative reactions.
Collapse
Affiliation(s)
- Qingyang Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Feiyan Fang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Weiming Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China.
| |
Collapse
|
5
|
Chen W, Gu Z, He C, Li Q. Molecular composition of hydroxyl radical-resistant organics in municipal solid waste leachate. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137014. [PMID: 39787858 DOI: 10.1016/j.jhazmat.2024.137014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Although hydroxyl radicals (•OH) degrade organic pollutants nonselectively, their mineralization rate during the treatment of waste leachate biological treatment effluent (BTL) using Fenton or Fenton-like systems is not high, and the reason is unknown. In this study, we investigated three typical Fenton-like systems that act on dissolved organic matter (DOM) in BTL. We analyzed the molecular composition of DOM resistant to •OH, using ultrahigh resolution mass spectrometry. We find that DOM resistant to •OH is more oxidized, less unsaturated/aromatic, has higher molecular weights, and contains more unsaturated oxygen-containing functional groups than does DOM reactive to •OH. Resistant-DOM is further categorized into DOM derived by the action of •OH (DOMderived) and DOM initially present (DOMintrinsic), whose quantities account for approximately 20 % and 80 %, respectively. The DOMderived is gradually removed under extended reaction time, while DOMintrinsic is relatively unreactive with •OH and is always present in the treated effluent. Based on the molecular composition of resistant-DOM, we propose a method to increase the mineralization rate (up to 95 % TOC removal with only 5 mM persulfate). This study provides direct evidence for the first time that the presence of resistant-DOM (mainly stemming from DOMintrinsic) in BTL is an important reason for the unideal mineralization rate in the advanced treatment of Fenton or Fenton-like systems.
Collapse
Affiliation(s)
- Weiming Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China; Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, Chengdu, Sichuan 610066, China
| | - Zhepei Gu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Qibin Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China.
| |
Collapse
|
6
|
Teng C, Jing X, Xu Z, Chen W. Transformation of dissolved organic matter in membrane-concentrated landfill leachate during Cu-Fenton-biological treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124462. [PMID: 39933373 DOI: 10.1016/j.jenvman.2025.124462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Membrane-concentrated landfill leachate (MCLL) is a highly concentrated and recalcitrant wastewater with remarkably low biodegradability. In this study, a multi-stage Cu-Fenton oxidation coupled with biological process was proposed for MCLL treatment. Importantly, Fourier transform ion cyclotron resonance mass spectrometry was employed to unveil the molecular transformation of dissolved organic matter (DOM) in MCLL during this integrated treatment process. The multi-stage Cu-Fenton process exhibited a high capacity to remove CHON compounds, resulting in a decrease in their relative abundance from 43% to 28%. Conversely, CHOS compounds displayed an increased relative abundance. For compound classes, the relative abundance of aliphatic/protein groups increased from 11% to 20%, whereas lignin/CRAM-like structures decreased from 36% to 12%, resulting significant improvement of the effluent biodegradability. The recalcitrant species during the multi-stage Cu-Fenton process were 300-400 Da lignin/carboxylic rich alicyclic molecules and tannins with high O/C ratios, which were effectively degraded by the subsequent biological treatment, particularly for the higher molecular weight organic fractions. This work provides new insights into the transformation characteristics of DOM in MCLL at a molecular level and offers technical guidance for the treatment of this refractory organic wastewater.
Collapse
Affiliation(s)
- Chunying Teng
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Xinyu Jing
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Zhi Xu
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China.
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
7
|
Fang F, Li Q. Molecular composition and formation mechanism of chlorinated organic compounds in biological waste leachate treated by electrochemical oxidation with a boron-doped diamond anode. CHEMOSPHERE 2024; 369:143788. [PMID: 39577805 DOI: 10.1016/j.chemosphere.2024.143788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
The use of electrochemical oxidation with boron-doped diamond (BDD) as an anode has been demonstrated to be an effective means of removing dissolved organic matter (DOM) from biologically treated waste leachate. However, in the presence of chloride ions, undesired chlorine evolution occurs on the anode; this forms chlorinated DOM, mostly of unknown molecular composition. We investigate the molecular composition and formation mechanism of chlorinated DOM during electrochemical oxidation process of biologically treated leachate DOM. At a current density of 8 mA/cm2, after 120 min of electrolysis, 479 unknown chlorinated DOMs were detected in the treated effluent, comprising 21.55% of the total. The unknown species are dominated by oxygen-rich, highly unsaturated structures, and exhibit higher oxidation degrees, lower unsaturation, and lower aromaticity compared to the removed nonchlorinated DOM. An additional 43.63 mg/L of known chlorinated DOM species, predominantly dichloroacetic and trichloroacetic acids, also accumulate in the treated effluent. Introducing hydroxyl radicals (HO•) to the anode surface forms reactive chlorine species including chlorine radical (Cl•), dichlorine radical (Cl2•-), and hypochlorous acid/hypochlorite (HOCl/OCl-); the concentration of HOCl/OCl- reaches 529.2 mg/L. These species react with reduced and aromatic dissolved organic matter via reaction pathways such as chlorine substitution for hydrogen (Cl+H-) and the HOCl addition reaction (HO+Cl+) to generate unknown chlorinated DOM species; the known chlorinated DOM are formed afterward via ring opening and dealkylation pathways. Our results provide a theory for the prevention and control of chlorinated DOM during treatment of chlorine-laden organic wastewater by an electrochemical oxidation system with a boron-doped diamond anode.
Collapse
Affiliation(s)
- Feiyan Fang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qibin Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
8
|
Liu L, Zhao L, Jin S, Zou W, Wang H, Xie Y, Hou C, Zhai Y, Luo P. Treatment of sludge hydrothermal carbonization wastewater by ferrous/sodium percarbonate system: Effect of wastewater composition and role of coagulation and oxidation. WATER RESEARCH 2024; 267:122531. [PMID: 39366323 DOI: 10.1016/j.watres.2024.122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
It is crucial to explore the effect of complex wastewater compositions on the ferrous/sodium percarbonate (Fe(Ⅱ)/SPC) system and the role of oxidation-coagulation in designing water treatment processes. This study employed redundancy analysis to investigate the effects of wastewater constituents on oxidation and coagulation. Raman analysis, X-ray Photoelectron Spectroscopy, and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry were used to determine the roles of oxidation and coagulation in the system. The results showed that sulfates and phosphates formed amorphous complexes with iron species via coprecipitation, thereby promoting coagulation to remove organics. Some heavy metals can also be removed by coagulation. The co-activation of SPC by pre-existing transition metals and the added Fe(Ⅱ) facilitated the oxidative removal of organics, while chloride and arsenic were the main inhibitory inorganic substances in the system. Aromatic compounds mainly promoted coagulation, polysaccharides promoted oxidation, humic acid promoted oxidation and coagulation, and C=C/C=O inhibited the Fe(Ⅱ)/SPC system. The oxidation process removed graphitic structures and unsaturated organic matter in the region of (O/C, H/C) = (0.2-0.4, 0.9-2.0) through free radicals and generated amorphous carbon structures and saturated organic matter in the region of (O/C, H/C) = (0.3-0.7, 1.2-1.9). The coagulation process removed aromatic organics with 2-5 rings and unsaturated organics in the region of (O/C, H/C) = (0.2-0.6, 0.7-1.6) with oxygen-containing organics. The combined effects of coagulation and oxidation enhanced the removal efficiency of organic carbon by approximately 40%. This study facilitates the optimization of hydrothermal carbonization wastewater treatment and advanced oxidation processes.
Collapse
Affiliation(s)
- Liming Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P.R. China; Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto, 612-8236, Japan
| | - Luna Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P.R. China
| | - Shiyun Jin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P.R. China
| | - Wei Zou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P.R. China
| | - Hongxia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P.R. China
| | - Yu Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P.R. China
| | - Changlan Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P.R. China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P.R. China.
| | - Pingping Luo
- School of Water and Environment, Chang'an University, Xi'an 710054, P.R. China
| |
Collapse
|
9
|
Yang S, Yang J, Zhang X, Tang J, Li J, Zhang A. Degradation of refractory organic matter in MBR effluent from treating landfill leachate by UV/PMS and UV/H 2O 2: a comparative study. ENVIRONMENTAL TECHNOLOGY 2024; 45:1313-1325. [PMID: 36322432 DOI: 10.1080/09593330.2022.2143285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
This study applied ultraviolet/peroxymonosulfate (UV/PMS) and UV/hydrogen peroxide (UV/H2O2) processes to the advanced treatment of membrane bioreactor (MBR) effluent. The degradation efficiency of refractory organic matter and the reaction mechanisms of the two processes were systematically investigated. The results showed that the degradation efficiency of the UV/PMS processes was significantly lower than that of the UV/H2O2 process when the PMS concentration was significantly lower than the H2O2 concentration, e.g. the UV254 removals under optimal conditions were 72.92% and 82.21%, respectively. Additionally, the UV/PMS process could operate over a broader pH range. The degradation efficiency of the UV/PMS process was slightly increased by HCO3- and Cl- due to the activation of PMS, while in the UV/H2O2 process, HCO3- and Cl- depressed the degradation efficiency by competing with organic matter to react with reactive oxygen species (ROS). After the two processes, the aromaticity, humification, condensation degree, and molecular weight of refractory organic matter in the MBR effluent were considerably decreased. Fulvic- (HA) and humic-like substances (FA) were greatly degraded by the two processes. The UV/PMS had a superior degradation efficiency for macromolecular HA in the early stage of the reaction, and the UV/H2O2 could degrade HA to protein-like substances in the latter stage of the reaction. These differences between the two processes could be attributed to the dominance of different ROS, with SO4•- and HO• dominating in the UV/PMS, and HO• dominating in the UV/H2O2. The results of this study provide theoretical support for the application of MBR effluent treatment.Highlights Comparison on the MBR effluent treatment of UV/PMS and UV/H2O2 is studied.UV/PMS process can better destroy humic-like substances in the early reaction stage.Humic-like substances are transformed into protein-like compounds in UV/H2O2 process.UV/PMS and UV/PMS performs differently due to their different dominant ROS.
Collapse
Affiliation(s)
- Siping Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, People's Republic of China
| | - Jing Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, People's Republic of China
| | - Xiaoqin Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, People's Republic of China
| | - Jia Tang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, People's Republic of China
| | - Jinlan Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, People's Republic of China
| | - Aiping Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, People's Republic of China
| |
Collapse
|
10
|
Hu W, Qu Y, Xiong J, Li L, Wang X, Wang X, Liu W, Wu Y. Wastewater from natural gas Cansolv desulfurization process: Comprehensive characterization and effective removal of organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168681. [PMID: 37996026 DOI: 10.1016/j.scitotenv.2023.168681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The wastewater generated by the solvent amine desulfurization process in natural gas purification plants is characterized by its recalcitrant organic compounds and high salinity. Without effective treatment, it has the potential to inflict severe environmental harm. The composition of organic matter, however, exerts a profound influence on the outcomes of oxidation processes. To rectify the limitations associated with indiscriminate oxidation that yields suboptimal results, this investigation meticulously performed a molecular-level analysis of organic matter. Based on the organic matter composition in the influent, this study compared the treatment efficacy of three oxidation processes and determined O3/H2O2-Fenton as the optimal joint approach. After O3/H2O2 oxidation, long-chain unsaturated organic compounds (C > 40,DBE > 20) underwent degradation into short-chain aldehydes and low-molecular-weight fatty acids, with priority given to reactions involving CC, CO, and OH over CH reactions. Subsequent Fenton oxidation effectively removed the refractory organics (CHOS, CHONS) and significantly reduced the diversity of organic matter (from 7730 to 4237). The carboxylation, demethylation, and dehydrogenation reactions further facilitated the removal of recalcitrant organic compounds. In light of these findings, this study substantiates that the conversion of extended-chain unsaturated compounds into abbreviated-chain saturated compounds within the system through O3/H2O2 oxidation significantly enhances the subsequent efficacy of Fenton oxidation in organic matter removal. These insights offer valuable perspectives for the efficient remediation of analogous high-salinity organic wastewater scenarios.
Collapse
Affiliation(s)
- Wanjin Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Yang Qu
- Natural Gas Purification Plant General, PetroChina Southwest Oil & Gasfield Company, Chongqin 401259, China
| | - Jun Xiong
- Institute of Safety, Environmental Protection and Technical Supervision, PetroChina Southwest Oil & GasField Company, Chengdu 610095, China
| | - Lingli Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Wenshi Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Yan Wu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
11
|
Chen X, Mu S, Luo Y. Removal of total petroleum hydrocarbons from oil-based drilling cuttings by a heat activation persulfate-based process. ENVIRONMENTAL TECHNOLOGY 2024; 45:835-844. [PMID: 36152295 DOI: 10.1080/09593330.2022.2128894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Oil-based drilling cuttings (OBDC) are typical hazardous wastes generated during shale gas extraction. In this study, two persulfate-based advanced oxidation processes (AOPs), heat/PMS and heat/PDS, have been used to treat OBDC. The results showed that for the heat/PMS process, within a certain range, the oxidant dosage, temperature, and reaction time were significantly positively correlated with the degree of total petroleum hydrocarbon (TPH) removal. When these parameters were increased from their initial values to 3.57 mmol/g, 70°C, and 80 min, respectively, TPH removal rates increased significantly, by 20.95%, 18.68%, and 16.41%, respectively. However, further increases in these parameters had little effect on the TPH removal rate. Similar observations were made for the heat/PDS process. There are other differences between the two processes, including that the heat/PDS process required less oxidant to reach an effective activation state than the heat/PMS process, but required a higher temperature and a longer reaction time. Fourier-transform infrared spectrometry and gas chromatography-mass spectrometry have shown that both processes could effectively remove the light components of linear paraffins contained in OBDC. The heat/PMS process performed significantly better than the heat/PDS process in removing aromatic hydrocarbons and long-chain alkanes. Scanning electron microscopy, energy-dispersive spectrometry, and X-ray diffraction analysis implied that the elemental and mineral compositions of OBDC were not significantly modified by reaction in the heat/PMS and heat/PDS processes. This study may provide theoretical support for the technological development of heat activation and persulfate-based AOPs to remove TPH from OBDC.
Collapse
Affiliation(s)
- Xinglong Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Yuanfeng Luo
- Sichuan Academy of Environmental Policy and Planning, Department of Ecology and Environment of Sichuan Province, Chengdu, People's Republic of China
| |
Collapse
|
12
|
Xie Y, Chen W, Li H, Zeng Q, Yu X, Feng M. Promoted micropollutant degradation and structural evolution of natural organic matter by a novel S(IV)-based water treatment strategy. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132801. [PMID: 37871437 DOI: 10.1016/j.jhazmat.2023.132801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
The ubiquity of various organic micropollutants in global water and wastewater has raised considerable concern about their cost-efficient elimination. This study reported that the novel UV365/FeTiOX/S(IV) system could accomplish superior abatement of different micropollutants (e.g., carbamazepine, CMZ) in 30-45 min with excellent reusability and stability of FeTiOX. In addition, this system functioned effectively to remove roxarsone and As(III)/As(V) by catalytic oxidation and adsorption, respectively. Mechanistic investigations suggested the dual roles of S(IV) in enhancing pollutant oxidation, i.e., promoted Fe(II)/Fe(III) cycle and photocatalysis. These processes facilitated the continuous generation of multiple oxidizing intermediates (e.g., hydroxyl radicals, sulfate radicals, and singlet oxygen), in which the last one was first proposed as the main contributor in iron-mediated S(IV)-based oxidation processes. Based on the product identification, the transformation pathways of four different micropollutants were tentatively unraveled. The in silico prediction suggested the lower environmental risks of the final reaction products than the precursors. Particularly, the structural alteration of humic acid was analyzed, indicating an increased O/C ratio after oxidative treatment. Overall, this study has implications for developing an efficient oxidation technique for removing multiple micropollutants in water and facilitating the mechanistic reactivity modulation of the S(IV)-based oxidation strategies in water treatment.
Collapse
Affiliation(s)
- Yuwei Xie
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Wenzheng Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Haoran Li
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Qi Zeng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China.
| |
Collapse
|
13
|
Bai X, Mu S, Song B, Xie M. Combination of coagulation, Fe 0/H 2O 2 and ultra-high lime aluminium processes for the treatment of residual pollutants in biologically-treated landfill leachate. ENVIRONMENTAL TECHNOLOGY 2024; 45:667-680. [PMID: 36039399 DOI: 10.1080/09593330.2022.2119608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Refractory substances (humus) and salts (chloride (Cl-) and sulphate (SO42-) ions) remain in the biotreated landfill leachate treatment, and it is necessary to carry out further treatments by a suitable method before discharge. In this study, the effect and operational mechanism of a combination of the coagulation Fe0/H2O2 and ultra-high lime aluminium (UHLA) processes for the treatment of refractory organic substances and salts in the leachate effluent of a semi-aerobic aged refuse biofilter (SAARB) were investigated. The results showed that polyferric sulphate is a relatively efficient coagulant comparing to FeCl3, Al2(SO)4, and polyaluminium chloride. The Fe0/H2O2 process further removed refractory organics from wastewater, achieving 49.8% of total organic carbon removed. Further treatment by the UHLA process was carried. The results demonstrated that the amount of precipitant, reaction duration, and temperature had a significant impact on the Cl- and SO42- removals. After three treatments, the cumulative SO42- and Cl- removal efficiencies were 98% and 80%, respectively. The SO42- and Cl- were removed in the form of precipitates such as UHLA, specific components of which included calcium alumina, Fremy's salt of calcium, aluminium chloride, and calcium hydroxide. Overall, the UV254, CN, Cl-, and SO42- removal efficiencies from the SAARB effluent were 94.08%, 98.73%, 79.96%, and 98.44%, respectively, for the combined coagulation Fe0/H2O2 and UHLA processes. Therefore, the combined processes could effectively remove residual pollutants in the biologically-treated landfill leachate, and the study provides a useful reference for the removal of refractory organic matter and salts in landfill leachate.HighlightsCoagulation-Fe0/H2O2-UHLA process is effective to SAARB effluent treatment.Refractory organics are substantially degraded by the coagulation-Fenton-like stage.Both Cl- and SO42- in SAARB effluent are greatly removed by UHLA process.
Collapse
Affiliation(s)
- Xue Bai
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Bowen Song
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Mingde Xie
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| |
Collapse
|
14
|
Chen X, Zhao G, Yang Z, Li Q. Molecular comparison of organic matter removal from shale gas flowback wastewater: Ozonation versus Fenton process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167147. [PMID: 37730067 DOI: 10.1016/j.scitotenv.2023.167147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Shale gas extraction process generates a large amount of shale gas flowback wastewater (SGFW) containing refractory organic compounds, which can pose serious environmental threats if not properly treated. However, the extremely complex compositions of organics in SGFW are still unknown and their transformation pathways in O3- and •OH-dominated systems are not well recognized, which restrain the selection of treatment technology and optimization of operational parameters. The removal characteristics and reaction mechanism of dissolved organic matter (DOM) in SGFW treated by ozonation and Fenton processes were comparatively investigated using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The results showed that both processes could degrade low-oxygen highly unsaturated and phenolic organics, polyphenolics and polycyclic aromatics, and transform them into aliphatic organics and high-oxygen highly unsaturated and phenolic organics. With increasing action of reactive oxygen species (O3 for ozonation and •OH for Fenton process), the degradation products (mainly aliphatic organics) increased during ozonation. However, in Fenton process, a wider range of DOM was removed without aliphatic organics accumulation. The degradation mechanisms of DOM during ozonation and Fenton processes included oxygen addition reactions (+3O, +H2O2, and +2O) as dominant pathways. However, ozonation showed more violent oxygenation, hydroxylation, and carboxylation, while Fenton process presented more violent chain-breaking reactions. These results revealed the selective oxidation of ozone and nonselective oxidation of •OH during SGFW treatment, and provided theoretical support for selecting SGFW treatment approaches.
Collapse
Affiliation(s)
- Xinglong Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, 611756, China
| | - Guonan Zhao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, 611756, China
| | - Zhuowen Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, 611756, China.
| |
Collapse
|
15
|
Chen W, Gu Z, He C, Li Q. Molecular Characteristics and Formation Mechanisms of Unknown Ozonation Byproducts during the Treatment of Flocculated Nanofiltration Leachate Concentrates Using O 3 and UV/O 3 Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20349-20359. [PMID: 37942774 DOI: 10.1021/acs.est.3c05134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Both ozone (O3) and UV/O3 treatment processes can effectively remove organic matter in the flocculated membrane filtration concentrate from landfill leachate, but the ozonation byproducts (OBPs) generated in the processes remain unknown. Using electrospray ionization-coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS), this study investigated the molecular characteristics of unknown OBPs and their formation mechanisms during the treatment of flocculated nanofiltration concentrate (FNFC) using the O3 and UV/O3 processes. The results showed that after being treated by the O3 and UV/O3 processes, the average value of the oxygen-to-carbon ratio (O/Cavg) in the FNFC organic matter increased substantially from 0.49 to 0.61-0.64 and 0.63-0.71, respectively, with an O3 dosage of 13.4-54.4 mg/min. The main OBPs were CHO and CHON compounds, which were mainly produced through oxygenation (+O2/+O3 and -H2+O2), oxidative deamination (-NH3+O2), decyclopropyl (-C3H4), and deisopropyl (-C3H6) reactions. The hydroxyl radical (•OH) can intensify these reactions, resulting in an abundance of OBPs with a high oxidation degree and low molecular weight. OBPs at five m/z values were fragmented and analyzed with tandem mass spectrometry, and abundant hydroxyl groups, carboxyl groups, and carbonyl groups were tentatively identified, presenting a potential toxicity to aquatic organisms. Due to the high molecular diversity of the OBPs in FNFC, their lower ΔGCoxo compared to natural fulvic acid, and potential toxicity, their impact on the water environment should be given more attention.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| |
Collapse
|
16
|
Li T, Lü F, Zhang H, Xu Q, He PJ. Nontarget Insights into the Fate of Cl-/Br-Containing DOM in Leachate during Membrane Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16033-16042. [PMID: 37822265 DOI: 10.1021/acs.est.3c04422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Halogenated organic compounds in wastewater are persistent and bioaccumulative contaminants of great concern, but few are known at the molecular level. Herein, we focus on nontarget screening of halogenated dissolved organic matter (DOM) in highly concentrated organic matrices of waste leachates and their concentrates. Solid-phase extraction (SPE) was optimized before capturing halogenated signatures via HaloSeeker 2.0 software on mining full-scan high-resolution mass spectrometry (HRMS) fingerprints. This study identified 438 Cl-/Br-containing DOM formulas in 21 leachates and membrane concentrates. Among them, 334 formulas were achieved via SPE with mixed-sorbent cartridges (mixed-SPE), surpassing the 164 formulas achieved through Bond Elut PPL cartridges (PPL-SPE). Herein, only four samples identified via PPL-SPE exhibited a resolution of >50% for extracted Cl-/Br-containing DOM by either SPE. The halogenated DOM constituted 6.87% of the total DOM mass features. Nevertheless, more abundant adsorbable organic halogens deciphered waste leachates and highly concentrated waste streams as reservoirs for halogenated contaminants. Remarkably, 75.7-98.1% of Cl-/Br-containing DOM in primary membrane concentrates remained stable through the secondary membrane treatment, indicating the persistence of these unknown contaminants even post-treatment.
Collapse
Affiliation(s)
- Tianqi Li
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Pin-Jing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
17
|
Zhang Q, Lv J, He A, Cao D, He X, Zhao L, Wang Y, Jiang G. Investigation with ESI FT-ICR MS on sorbent selectivity and comprehensive molecular composition of landfill leachate dissolved organic matter. WATER RESEARCH 2023; 243:120359. [PMID: 37499543 DOI: 10.1016/j.watres.2023.120359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Molecular characterization of landfill leachate dissolved organic matter (LDOM) is essential for developing effective processing techniques. However, the molecular selectivity of extraction method and ionization modes often leads to the bias of molecular characterization of LDOM. Here, seven representative sorbents were selected and electrospray ionization negative ion mode (ESI (-)) and positive ion mode (ESI (+)) Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to investigate the molecular composition of different LDOM samples. Obvious sorbent selectivity during extraction procedure was observed, resulting in the underestimation of molecular diversity of LDOM from 32.7% to 69.3%. Totally, 14,000-18,000 unique molecules were obtained in a single sample, indicating the unprecedented molecular diversity of LDOM. Lignins, proteins and lipids are three major molecular groups in LDOM, and N or S containing molecules occupied 83%. Although much of total organic carbon was removed during biochemical treatment process, the molecular diversity of LDOM was not reduced because a considerable of bio-recalcitrant molecules was produced. The results uncover the sorbents selectivity and ionization modes selectivity in LDOM analysis and provided a comprehensive change of LDOM molecular composition during biochemical treatment, which benefits the development of accurate methods to remove organic carbon in landfill leachate.
Collapse
Affiliation(s)
- Qiurui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Anen He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
de Melo Franco Domingos J, de Alencar Neves T, de Sousa Maia DL, Carvalho Siqueira R, Araújo Marques MV, Alves OL, Guimarães JR, Antunes Nolasco M, Rosa AH. Effect of the association of coagulation/flocculation, hydrodynamic cavitation, ozonation and activated carbon in landfill leachate treatment system. Sci Rep 2023; 13:9502. [PMID: 37308578 DOI: 10.1038/s41598-023-36662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023] Open
Abstract
Mature landfill wastewater is a complex effluent due to its low biodegradability and high organic matter content. Currently, mature leachate is treated on-site or transported to wastewater treatment plants (WWTPs). Many WWTPs do not have the capacity to receive mature leachate due to its high organic load leading to an increase in the cost of transportation to treatment plants more adapted to this type of wastewater and the possibility of environmental impacts. Many techniques are used in the treatment of mature leachates, such as coagulation/flocculation, biological reactors, membranes, and advanced oxidative processes. However, the isolated application of these techniques does not achieve efficiency to meet environmental standards. In this regard, this work developed a compact system that combines coagulation and flocculation (1st Stage), hydrodynamic cavitation and ozonation (2nd Stage), and activated carbon polishing (3rd Stage) for the treatment of mature landfill leachate. The synergetic combination of physicochemical and advanced oxidative processes showed a chemical oxygen demand (COD) removal efficiency of over 90% in less than three hours of treatment using the bioflocculant PGα21Ca. Also, the almost absolute removal of apparent color and turbidity was achieved. The remaining CODs of the treated mature leachate were lower when compared to typical domestic sewage of large capitals (COD ~ 600 mg L-1), which allows the interconnection of the sanitary landfill to the urban sewage collection network after treatment in this proposed system. The results obtained with the compact system can help in the design of landfill leachate treatment plants, as well as in the treatment of urban and industrial effluents which contains different compounds of emerging concern and persistence in the environment.
Collapse
Affiliation(s)
| | - Thiago de Alencar Neves
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (Universidade Federal de Minas Gerais), Belo Horizonte, Minas Gerais, Brazil.
| | | | - Rebeca Carvalho Siqueira
- Faculty of Civil Engineering, State University of Campinas (Universidade Estadual de Campinas), Campinas, SP, Brazil
| | - Marcus Vinícius Araújo Marques
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (Universidade Federal de Minas Gerais), Belo Horizonte, Minas Gerais, Brazil
| | - Oswaldo Luiz Alves
- Faculty of Civil Engineering, State University of Campinas (Universidade Estadual de Campinas), Campinas, SP, Brazil
| | - José Roberto Guimarães
- Faculty of Civil Engineering, State University of Campinas (Universidade Estadual de Campinas), Campinas, SP, Brazil
| | - Marcelo Antunes Nolasco
- School of Arts, Science and Humanities, University of São Paulo (Universidade de São Paulo), São Paulo, Brazil
| | - André Henrique Rosa
- Institute of Science and Technology, Sao Paulo State University (Universidade Estadual de São Paulo), São Paulo, Brazil
| |
Collapse
|
19
|
Guo N, Zhang R, Li J, Sun Z, Fei T, Sun P. Impact of aqueous environments on hydrogen peroxide activation by manganese oxides: Kinetics and the critical role of bicarbonate. CHEMOSPHERE 2023; 324:138338. [PMID: 36906003 DOI: 10.1016/j.chemosphere.2023.138338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
MnO2 activating H2O2 is a promising way in the field of advanced oxidation processes (AOPs) and in situ chemical oxidation (ISCO) to remove contaminants. However, few studies have focused on the influence of various environmental conditions on the performance of MnO2-H2O2 process, which restricts the application in real world. In this study, the effect of essential environmental factors (ionic strength, pH, specific anions and cations, dissolved organic matter (DOM), SiO2) on the decomposition of H2O2 by MnO2 (ε-MnO2 and β-MnO2) were investigated. The results suggested that H2O2 degradation was negatively correlated with ionic strength and strongly inhibited under low pH conditions and with phosphate existence. DOM had a slight inhibitory effect while Br-, Ca2+, Mn2+ and SiO2 placed negligible impact on this process. Interestingly, HCO3- inhibited the reaction at low concentrations but promoted H2O2 decomposition at high concentrations, possibly due to the formation of peroxymonocarbonate. This study may provide a more comprehensive reference for potential application of H2O2 activation by MnO2 in different water systems.
Collapse
Affiliation(s)
- Na Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ruochun Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Jingchen Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, China
| | - Zhihan Sun
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Teng Fei
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
20
|
Yang S, Tang J, Zhang X, Zhang A. Degradation of refractory organic matter in MBR effluent from treating landfill leachate by the UV-nZVI-H 2O 2 system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50295-50308. [PMID: 36792858 DOI: 10.1007/s11356-023-25756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/01/2023] [Indexed: 04/16/2023]
Abstract
In this study, nano zero-valent iron (nZVI) was used as the Fe2+ source in the Fenton reaction, and a UV-nZVI-H2O2 system was constructed to efficiently degrade and mineralize refractory organic matter in landfill leachate. The results showed that under the optimal conditions (initial pH = 3, UV = 14 W, nZVI = 0.5 g/L, and [H2O2] = 30 mM), the removal efficiencies of total organic carbon, absorbance at 254 nm, and color number were 61.38%, 83.89%, and 85.79%, respectively. Control experiments show that the UV-nZVI-H2O2 system has the highest removal rate and mineralization rate of refractory organic matter. The excellent performance of the UV-nZVI-H2O2 system is related to a higher H2O2 utilization rate. The H2O2 residue in the UV-nZVI-H2O2 system was the lowest, and the effective utilization rate of H2O2 was as high as 98.80%. Alcohol quenching experiments and hydroxyl radical quantitative experiments showed that the dominant reactive oxygen species in the UV-nZVI-H2O2 system was HO• and the yield of HO• was as high as 2007.80 μM, which was much higher than that in other systems. The results of spectra analysis showed that the low molecular weight, high fluorescence frequency organic matter, and relatively stable aromatic organic matter were significantly degraded after treatment with the UV-nZVI-H2O2 system and the aromatic degree, humification degree, molecular weight, and molecular polymerization degree of refractory organic matter were also significantly decreased. The mechanism of the UV-nZVI-H2O2 reaction includes homogeneous and heterogeneous Fenton reactions and adsorption and precipitation of organic matter by iron-based colloids. This study can provide theoretical and technical support for the advanced treatment of refractory organic matter in landfill leachate.
Collapse
Affiliation(s)
- Siping Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Jia Tang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Xiaoqin Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Aiping Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| |
Collapse
|
21
|
Chen X, Mu S, Luo Y. Degradation of petroleum pollutants in oil-based drilling cuttings using an Fe 2+-based Fenton-like advanced oxidation processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37669-37678. [PMID: 36574125 DOI: 10.1007/s11356-022-24925-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Oil-based drilling cuttings (OBDC) contain a large amount of total petroleum hydrocarbon (TPH) pollutants, which are hazardous to the environment. In this study, Fe2+-activating hydrogen peroxide (Fe2+/H2O2), peroxymonosulfate (Fe2+/PMS), and peroxydisulfate (Fe2+/PDS) advanced oxidation processes (AOPs) were used to treat OBDC due to the difference in the degradation capacity of TPH caused by the type of free radical generated and effective activation conditions observed for the different oxidants studied. The results showed that the oxidant concentration, Fe2+ dosage, and reaction time in the three AOPs were greatly positively correlated with the TPH removal rate in a certain range. The initial pH value had a significant effect on the Fe2+/H2O2 process, and its TPH removal rate was negatively correlated in the pH range from 3 to 11. However, the Fe2+/PMS and Fe2+/PDS processes only displayed lower TPH removal rates under neutral conditions and tolerated a wider range of pH conditions. The optimal TPH removal rates observed for the Fe2+/H2O2, Fe2+/PMS, and Fe2+/PDS processes were 45.04%, 42.75%, and 44.95%, respectively. Fourier transform infrared spectrometer and gas chromatography-mass spectrometer analysis showed that the alkanes in OBDC could be effectively removed using the three processes studied, and their degradation ability toward straight-chain alkanes was in the order of Fe2+/PMS > Fe2+/PDS > Fe2+/H2O2, among which Fe2+/PMS exhibited the optimal removal effect for aromatic hydrocarbons. Scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction results showed no significant changes in the elemental and mineral composition of OBDC before and after treatment. Therefore, this study provided a theoretical reference for the effective degradation of TPH pollutants in OBDC.
Collapse
Affiliation(s)
- Xinglong Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yuanfeng Luo
- Department of Ecology and Environment of Sichuan Province, Sichuan Academy of Environmental Policy and Planning, Chengdu, 610093, China.
| |
Collapse
|
22
|
Kou Y, Jiang J, Yang B, Sun H, Wang L, Wang Q, El-Din MG, Shi Q, Chen C. Transformation of dissolved organic matter at a full-scale petrochemical wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117021. [PMID: 36542886 DOI: 10.1016/j.jenvman.2022.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Transformation of dissolved organic matter (DOM) in petrochemical wastewater (PCW) treatment has rarely been studied. In this work, low- and high-salinity PCW were collected from a treatment plant and the transformations of DOM at molecular level along the treatment processes of both PCW were comparatively investigated. By using Orbitrap MS, the polar DOM constituents were categorized into five molecular classes namely saturated compounds, aliphatics, highly unsaturated and phenolic compounds (Huph), polyphenols and condensed polycyclic aromatics (Cpla). Aliphatics (58.62%) with low molecular weight (150-250 Da) and O/C (0-0.2) were dominant in raw low-salinity PCW; while Huph (65.03%) with O/C at 0.2-0.8 were rich in raw high-salinity PCW. After full-scale treatment, differentiated DOM constituents in both raw PCWs were transformed into aliphatics and Huph with O/C at 0.3-0.5. Anoxic/Oxic treatment of low-salinity system (L-A/O) removed a high fraction of aliphatics (53.05%); while Huph with low O/C (0.1-0.3) (65.68%) in the effluent of L-A/O were further mineralized by ozonation of low-salinity system (L-ozonation). In comparison, anoxic/oxic treatment of high-salinity system (H-A/O) mainly removed unsaturated Huph (34.10%) and aliphatics (30.86%). This resulted in a decrease of dissolved organic carbon as indicated via Spearman correlation. Different from L-ozonation, ozonation of high-salinity system (H-ozonation) degraded aliphatics (26.09%) and Huph (41.85%) with a relatively high O/C (0.2-1.2). After L-A/O and L-ozonation treatments, remaining saturated compounds that were originated from raw low-salinity PCW, were removed by subsequent biological aerated filter. Comparatively, after H-A/O and H-ozonation treatments, residual Huph and aliphatics which were mainly bio-derivates and ozonated intermediates, were further removed by air flotation filter. Hence, DOM transformation of different PCWs along similar treatments varied significantly. This study provides in-depth insights on DOM transformation along a full-scale PCW treatment process.
Collapse
Affiliation(s)
- Yue Kou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Juntao Jiang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Baiyu Yang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - He Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Leqi Wang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
23
|
Chen W, Gu Z, He C, Li Q. Molecular-level transformation of refractory organic matter during flocculation-ultraviolet/peroxymonosulfate treatment of MBR-treated landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130086. [PMID: 36272369 DOI: 10.1016/j.jhazmat.2022.130086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Refractory organic matter in membrane bioreactor effluent resulting from landfill leachate treatment has a complex composition. This paper identified the transformation mechanism of organic matter in a flocculation-ultraviolet (UV)/peroxymonosulfate (PMS) system at the molecular level using electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry. The results showed that the flocculation system was able to remove a large amount of dissolved organic matter (DOM) with high oxidation and unsaturation/saturation. UV radiation displayed a relatively strong reactivity for DOM with an electron-rich structure, which it can transform into DOM with lower aromaticity through photolysis and photosensitivity, although the effectiveness of the transformation was poor. In comparison, due to the action of reactive oxygen species, the UV/PMS system can enable reactions such as demethylation, dehydrogenation, decarboxylation, dehydroxylation, ring cleavage, and decarbonylation. It can remove approximately 60% quantity of the total DOM and produce DOM featuring a higher degree of oxidation and saturation than that of the UV system alone. The results showed that the UV/PMS system was a complementary of flocculation in DOM removal from the membrane bioreactor effluent, while the system also resulted in a large number of sulfuric compounds; thus, requiring further evaluation of its ecological effects.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
24
|
Merel S. Critical assessment of the Kendrick mass defect analysis as an innovative approach to process high resolution mass spectrometry data for environmental applications. CHEMOSPHERE 2023; 313:137443. [PMID: 36464021 DOI: 10.1016/j.chemosphere.2022.137443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The growing application of high resolution mass spectrometry (HRMS) over the last decades has dramatically improved our knowledge about the occurrence of environmental contaminants. However, most of the compounds detected remain unknown and the large volume of data generated requires specific processing approaches. Therefore, this study presents the concepts of mass defect (MD), Kendrick mass (KM) and Kendrick mass defect (KMD) to the expert and non-expert reader along with relevant examples of applications in environmental HRMS data processing. A preliminary bibliometric overview indicates that the potential benefits of KMD analysis are rather overlooked in environmental science. In practice, a simple calculation allows transforming a mass from the IUPAC system (normalized so that the mass of 12C is exactly 12) to its corresponding KM normalized on a specific moiety such as CH2 (the mass of CH2 is exactly 14). Then, plotting the KMD according to the nominal KM allows revealing groups of compounds that differ only by their number of CH2 moieties. For instance, data processing using KM and KMD was proven particularly useful to characterize natural organic matter in a sample, to reveal the occurrence of polymers as well as poly/perfluorinated alkylated substances (PFASs), and to search for transformation products (TPs) of a given chemical.
Collapse
Affiliation(s)
- Sylvain Merel
- INRAE, UR RiverLy, 5 Rue de la Doua, F-69625, Villeurbanne, France.
| |
Collapse
|
25
|
Gu Z, Bao M, He C, Chen W. Transformation of dissolved organic matter in landfill leachate during a membrane bioreactor treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159066. [PMID: 36174682 DOI: 10.1016/j.scitotenv.2022.159066] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In this study, a cutting-edge mass spectrometry (MS) technique, Orbitrap fusion MS with ultrahigh resolution, was used to analyze the molecular composition, chemical properties, formation mechanism, and environmental impact of refractory dissolved organic matter (rDOM) in leachate. The results showed that the bioavailable DOM (bDOM) and rDOM constituents varied substantially during the biological treatment of landfill leachate. Compared with bDOM, the rDOM in leachate had a higher degree of unsaturation, aromaticity, and oxidation, and a larger molecular weight, and contained more organic matter with benzene ring and biphenyl structures. Using high-throughput 16S rRNA sequencing, metagenomics, the Kendrick mass defect (KMD), and a mass difference network (MDiN), it was found that rDOM in leachate is generated through carboxylation (+COO), dehydro-oligomerization (-H2), and chain scission (-CH2) pathways due to the activity of microbes such as Patescibacteria, Chloroflexi, and Proteobacteria. Compared with Suwannee River fulvic acid (SRFA), the rDOM in leachate contained more organics with nitrogen, sulfur, benzene rings, and biphenyls. If the rDOM in leachate enters the environment it will affect the composition of the original organic matter, and its biogeochemical transformation and environmental fate will then need to be monitored and may require special attention.
Collapse
Affiliation(s)
- Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Min Bao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
26
|
Cao X, Zhu F, Zhang C, Sun X. Degradation of UV-P mediated by hydroxyl radical, sulfate radical and singlet oxygen in aquatic solution: DFT and experimental studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120416. [PMID: 36240969 DOI: 10.1016/j.envpol.2022.120416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
2-(2'-hydroxy-5'-methylphenyl) benzotriazole (UV-P) is a type of emerging persistent organic pollutant that is reported harmful to organisms. However, its degradation mechanisms and transformation behaviors in aquatic environments are not yet clear, which are significant for better understanding its environmental fate and potential toxicological impacts. In present work, the degradation mechanisms, kinetics, half-life times and eco-toxicity assessment of UV-P initiated by hydroxyl radical (•OH), sulfate radical (SO4•‾), and singlet oxygen (1O2) are systematically studied using density functional theory (DFT) and experimental methods. The initiated reaction results show that benzene ring of UV-P is vulnerable to attack by •OH, while benzotriazole is easily attacked by SO4•‾. The kinetic calculations indicate that •OH-addition reaction R15 is dominant initial pathway. And the half-life (t1/2) of UV-P is calculated according to rate constants, t1/2 decreases rapidly with [ROS] increasing. UV-P exhibits environmental persistence when [•OH] ≤ 10-17 M. The subsequent degradation mechanisms of hydroxylated UV-P react with •OH and O2 are also calculated. A novel ring-opening reaction channel is proposed that O2-addition intermediate combines with hydroperoxyl radical (HO2•) to cleave aromatic ring. The rate-determining step is intramolecular dehydration reaction with the energy barrier of 32.98 kcal mol-1 and 41.13 kcal mol-1 to cleave benzene ring and benzotriazole ring, respectively. The degradation experiments of UV-P are conducted in Co3O4 activated potassium peroxymonosulfate (PMS) system, and liquid chromatograph-mass spectrometer (LC-MS) results identified that dihydroxylated species are main intermediates, which is consistent with theoretical calculation results. Furthermore, the eco-toxicity assessment shows that the acute and chronic toxicities of most degradation products are reduced compared with UV-P, however, their toxicity levels still keep at toxic and harmful. The environmental risk of UV-P deserves more attention.
Collapse
Affiliation(s)
- Xuesong Cao
- Environment Research Institute, Shandong University, Qingdao, 266200, PR China
| | - Fanping Zhu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, PR China
| | - Chenxi Zhang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, 256600, PR China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao, 266200, PR China.
| |
Collapse
|
27
|
Mu S, Chen X, Song B, Wu C, Li Q. Enhanced performance and mechanism of the combined process of ozonation and a semiaerobic aged refuse biofilter for mature landfill leachate treatment. CHEMOSPHERE 2022; 308:136432. [PMID: 36115471 DOI: 10.1016/j.chemosphere.2022.136432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
A semiaerobic aged refuse biofilter (SAARB) can effectively treat mature landfill leachate (ML), but prolonged operation can lead to the enrichment of pollutants in the biofilter, resulting in severely degraded treatment performance. In this study, we constructed a combination process of ozonation and a SAARB to treat ML based on the principles of selective oxidation of aromatic organics by ozone and the preference of microorganisms for ozonation products. The results showed that the removal of organic and nitrogen pollutants became extremely poor after long-term treatment of ML using the SAARB alone. The decrease of chemical oxygen demand (COD), light absorbance at 254 nm (UV254), NH4+, and total nitrogen (TN) improved significantly after recirculating the ozonated ML effluent (OLE) into the SAARB, and the removal extents increased significantly to 63.59% (COD), 26.14% (UV254), 92.85% (NH4+), and 52.04% (TN), respectively. In addition, the recirculation of OLE enhanced the complete denitrification and tolerance to high NH4+ loading by the SAARB. An analysis of the community composition of 16S_bacteria and ammonia oxidation bacteria (AOB) showed that long-term treatment of ML using the SAARB alone had difficulty enriching the dominant functional bacteria. In the OLE recirculation stage, environmental factors-such as influent organic matter species and concentration, nitrogen pollutant concentration, and pH-were changed to influence the community composition of 16S_bacteria and AOB and enrich functional bacteria (e.g., Truepera, Luteibacter, and Nitrosospira). Therefore, ozonation combined with a SAARB can remove organic and nitrogen pollutants more effectively. In particular, this can be used to solve the problem of inefficient total nitrogen removal using the SAARB alone. This study provides a theoretical reference for the efficient and stable operation of biological processes when treating ML.
Collapse
Affiliation(s)
- Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xinglong Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Bowen Song
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chuanwei Wu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
28
|
Bai J, Li Y, Song B, Wang Q. Activation of peroxymonosulfate by modified coagulation sludge for bisphenol A degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78832-78847. [PMID: 35699880 DOI: 10.1007/s11356-022-21419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
This study used coagulation sludge from a landfill leachate treatment to prepare a modified coagulation sludge (MCS) catalyst by the limited oxygen pyrolysis method, and the adsorption, degradation efficiency, and reaction mechanism of bisphenol A (BPA) in the MCS activated peroxymonosulfate (MCS/PMS) process were investigated. The pyrolysis temperature determined the adsorption capacity and the activation ability of MCS. At a pyrolysis temperature of 300 °C for 2 h, the MCS300-2 test material had the best adsorption capacity for BPA, while MCS450-2 prepared at a pyrolysis temperature of 450 °C for 2 h had a better catalytic performance towards PMS. In the MCS/PMS process, BPA (20 mg/L) could be completely degraded at 120 min under room temperature when the initial pH = 7, PMS dosage = 3 g/L, and MCS dosage = 0.3 g/L. Radical quenching experiments indicated that both hydroxyl radical (·OH) and sulfate radical (SO4-·) existed in the MCS/PMS process, and ·OH played a major role in BPA degradation. The changes in morphology, functional groups, components, and surface element valence state of MCS catalysts before and after the reaction were investigated. It was found that the BPA degradation reaction was a coupled adsorption and oxidation process, in which homogenous in situ and heterogeneous effects were included in the reactions. In addition, the stability of the MCS/PMS process was verified in different environmental scenarios, including ultrapure water, tap water, and municipal wastewater. Furthermore, the degradation intermediates (such as p-hydroxyl phenol and p-hydroxybenzoic acid) of BPA were determined by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and the reaction mechanisms in the MCS/PMS process were investigated.
Collapse
Affiliation(s)
- Jie Bai
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yihui Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Bowen Song
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qing Wang
- Xingrong Renewable Energy Co., Ltd., Chengdu, 610000, China.
| |
Collapse
|
29
|
Feng K, Mu S, Fang F, Xie M. An assessment of the UV/nFe 0 /H 2 O 2 system for the removal of refractory organics in the effluent produced by the biological treatment of landfill leachate. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10801. [PMID: 36307975 DOI: 10.1002/wer.10801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/11/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The removal efficiency and mechanism of the ultraviolet/nanoscale Fe0 /H2 O2 (UV/nFe0 /H2 O2 ) system for refractory organics in membrane bioreactor effluent were investigated. The most effective removal of organics was achieved at initial pH = 3.0, H2 O2 dosage = 50 mM, nFe0 dosage = 1.0 g/L, and UV power = 15 W, with a reaction time of 60 min. Under these conditions, the absorbance at 254 nm, chromaticity, and total organic carbon removal efficiencies were 65.13%, 79.67%, and 61.51%, respectively, and the aromaticity, humification, molecular weight, and polymerization of organics were all significantly reduced. The surface morphology and elemental valence analysis of nano zero-valent iron (nFe0 ) before and after the reaction revealed the formation of iron-based (hydrated) oxides, such as Fe2 O3 , Fe3 O4 , FeOOH, and Fe (OH)3 , on the surface of the nFe0 . Refractory organics were removed by Fenton-like reactions in the homogeneous and heterogeneous adsorption-precipitation of iron-based colloids. At the same time, UV radiation accelerated the formation of Fe2+ on the nFe0 surface and promoted the Fe3+ /Fe2+ redox cycle to a certain extent, enhancing the removal of refractory organics. The results provide a theoretical basis for the application of the UV/nFe0 /H2 O2 system to remove refractory organics in the effluent produced by the biological treatment of landfill leachate. PRACTITIONER POINTS: The UV/nFe0 /H2 O2 process is effective in refractory organics removal in leachate treatment. Humus in leachate was largely destroyed and mineralized by the UV/nFe0 /H2 O2 process. Active nFe0 material participated in the Fenton-like process and was promoted by UV. The effects of nFe0 material and UV introduction were investigated.
Collapse
Affiliation(s)
- Ke Feng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Feiyan Fang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mingde Xie
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
30
|
Chloride-Enhanced Removal of Ammonia Nitrogen and Organic Matter from Landfill Leachate by a Microwave/Peroxymonosulfate System. Catalysts 2022. [DOI: 10.3390/catal12101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Landfill leachate contains not only high concentrations of refractory organic matter and ammonia nitrogen, but also high concentrations of chloride ions (Cl−). The modification of reactive species of the peroxymonosulfate (PMS) oxidation system by Cl− and its priority sequence for the removal of NH4+-N and organic matter from landfill leachate remain unclear. This study investigated the removal characteristics of NH4+-N and organic matter in the microwave (MW)/PMS system with high Cl− content. The results show that increasing Cl− concentration significantly improves the production of hypochlorous acid (HOCl) in the MW/PMS system under acidic conditions, and that the thermal and non-thermal effects of MW irradiation have an important influence on the HOCl produced by PMS activation. The maximum cumulative concentration of HOCl was 748.24 μM after a reaction time of 2 min. The formation paths of HOCl are (i) SO4•− formed by the MW/PMS system interacting with Cl− and HO•, and (ii) the nucleophilic addition reaction of PMS and Cl−. Moreover, the high concentration of HOCl produced by the system can not only remove NH4+-N in situ, but also interact with PMS to continuously generate Cl• as an oxidant to participate in the reaction with pollutants (e.g., NH4+-N and organic matter). Common aqueous substances (e.g., CO32−, HCO3−, NO3−, and humic acid) in landfill leachate will compete with NH4+-N for reactive species in the system, and will thereby inhibit its removal to a certain extent. It was found that when NH4+-N and leachate DOM co-exist in landfill leachates, they would compete for reactive species, and that humic acid-like matter was preferentially removed, leading to the retention of fulvic acid-like matter. It is hoped that this study will provide theoretical support for the design and optimization of methods for removing NH4+-N and organic matter from landfill leachate with high chloride ion content.
Collapse
|