1
|
Guo J, Zhang J, Tong X. Adhered-3D paper microfluidic analytical device based on oxidase-mimicking activity of Co-doped carbon dots nanozyme for point-of-care testing of alkaline phosphatase. Anal Chim Acta 2024; 1332:343378. [PMID: 39580181 DOI: 10.1016/j.aca.2024.343378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
Paper-based microfluidic analytical devices (μPADs) have become promising alternatives to clinical laboratory-based methods for point-of-care testing (POCT) of biomarkers in family care and resource-limited communities. Here, Co-doped carbon dots (Co-CDs) nanozyme with outstanding oxidase-mimicking catalytic activity and red fluorescent emission were prepared, and combined adhered-3D μPAD (A-3D μPAD) to monitor facilely alkaline phosphatase (ALP) level in whole blood samples. Co-CDs catalyzed the oxidization of nonfluorescent o-phenylenediamine (OPD) into 2,3-diaminophenazine (oxOPD) with yellow fluorescent emission due to the generation of tremendous O2•- species. With addition of ALP, ALP hydrolyzed l-ascorbic acid 2-phosphate into ascorbic acid, and the latter was oxidized by Co-CDs, then reacted with OPD to form blue fluorescent emission 3-(dihydroxyethyl)furo [3,4-b]quinoxaline-1-one (DFQ). Both DFQ and oxOPD quenched the fluorescence intensity of Co-CDs via inner-filter effect. The cascade reaction of ALP/Co-CDs was incorporated into A-3D μPAD based on above sensing principles. A-3D μPAD enabled sample pretreatment, cascade reaction and signal output, and integrated portable minimized device and smartphone for visual ALP detection. The linear range and limit of detection for ALP were 0.5-150 U L-1 and 0.1 U L-1, respectively, and the color varied from red, yellow to blue. The detection results for whole blood samples were consistent with biochemical detector. The efficiency, disposability, practicality and low-cost of A-3D μPAD can be extended to determine various biomarkers, and provided technical support for nanozyme applications in POCT environments.
Collapse
Affiliation(s)
- Jing Guo
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan, 031000, China
| | - Jing Zhang
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, 031000, China
| | - Xia Tong
- Stem Cell Translation Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
2
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024; 10:7268-7313. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
3
|
Zhang Y, Tang L, Yang G, Xin H, Huang Y, Li K, Liu J, Pang J, Cao D. Coumarin-aurone based fluorescence probes for cysteine sensitive in-situ identification in living cells. Colloids Surf B Biointerfaces 2024; 244:114173. [PMID: 39191111 DOI: 10.1016/j.colsurfb.2024.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
The quantification of cysteine (Cys) levels in the organisms holds paramount significance in biological research and disease diagnosis, which can give the correlation between abnormal Cys levels and diseases. In this study, two fluorescent probes, designated as DEA-OH and DEA-AC, featuring a coumarin-aurone backbone specifically engineered for Cys detection, were meticulously designed and synthesized. The diethylamino coumarin-aurone probe DEA-OH and the acrylate-substituted probe DEA-AC demonstrated remarkable sensitivity in detecting cysteine by means of copper displacement (DEA-OH) and acrylate hydrolysis mechanisms (DEA-AC) with fluorescence detection limits of 7.25 μM and 1.65 μM, respectively. Moreover, the fluorescence peak wavelength of the two probes displayed a linear relationship with solvent polarity in the ET (30) range of 30-65 kcal•mol-1, indicating the potential for monitoring changes in environmental polarity within this ET (30) range. The outstanding attributes exhibited by DEA-AC including superior photostability, remarkable selectivity, and swift response (kinetic rate constant: 0.00747 s-1), coupled with the exceptional anti-interference ability, have significantly broadened its scope of applications, for example detecting alterations in Cys within biological systems.
Collapse
Affiliation(s)
- Yan Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Luyao Tang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Guiyi Yang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Haotian Xin
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Yan Huang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Keyi Li
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Jiandong Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Jiaojiao Pang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, China.
| |
Collapse
|
4
|
Cheng T, Zhuang Z, He G, Lu A, Zhou J, Wei Y. Assembly of protein-directed fluorescent gold nanoclusters for high-sensitivity detection of uranyl ions. Int J Biol Macromol 2024; 278:134883. [PMID: 39168203 DOI: 10.1016/j.ijbiomac.2024.134883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Uranium is a key element in the nuclear industry, whose accidental release causes health and environmental problems. In this paper, a protein-directed fluorescent sensor with aggregation-induced emission characteristics (gold nanoclusters@ovalbumin, AuNCs@OVA) was synthesized for the detection of UO22+ with high sensitivity and selectivity. The sensor exhibited good fluorescence stability, and its fluorescence intensity could be selectively enhanced by UO22+. Based on FT-IR and XPS analyses, the increase in fluorescence intensity of AuNCs@OVA after the addition of UO22+ was attributed to aggregation induced by the complexation between UO22+ and the amino, carboxyl, hydroxyl, and phosphate groups of ovalbumin. The detection limit was determined to be 34.4 nM, and the sensor showed excellent ion selectivity for UO22+. In combination with a smartphone program, the sensor could realize the real-time detection of UO22+ in a quantitative and portable way.
Collapse
Affiliation(s)
- Tingting Cheng
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Zaifei Zhuang
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Guiqiang He
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Aixia Lu
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Jian Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| | - Yanxia Wei
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
5
|
Li X, Yan L, Feng J, Shi L. Smartphone-based sensing and in vivo and in vitro imaging of Mn(VII) based on nitrogen-doped red fluorescent carbon dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3757-3765. [PMID: 38818636 DOI: 10.1039/d4ay00783b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Smartphone-assisted visual assay platform provides novel insight for the real-time in-field quantitation of intended analytes in resource-insufficient areas. Herein, nitrogen-doped red fluorescent (FL) carbon dots (R-CDs) were developed for the timely on-site quantitation of Mn(VII) using the smartphone-assisted assay platform. R-CDs, possessing a desirable bright red FL at 616 nm under a 470 nm excitation, were fabricated through hydrothermal treatment adopting passion fruit and neutral red as precursors. Interestingly, bright red FL at 616 nm are gradually quenched upon introducing Mn(VII) based on the inner filter effect, concurrently accompanying with significant FL color variation from bright red to dark red. Inspired by the above-mentioned phenomena, hue-saturation-values (HSV) of real-time captured images could be precisely quantified through a color recognition APP within the smartphone, of which the V/S values could be employed to quantify Mn(VII) with a linear range of 50-400 μM. Furthermore, confocal fluorescence imaging of HeLa cells and zebrafish larvae demonstrates that R-CDs could be employed for the visual determination of Mn(VII) in vivo and in vitro, illustrating that R-CDs possess powerful practical application prospect in biosystem.
Collapse
Affiliation(s)
- Xiaofeng Li
- Taiyuan University, Taiyuan, Shanxi 030012, PR China
| | - Liru Yan
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Jianyang Feng
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Lihong Shi
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
6
|
Zhang J, Gao Y, Hou J, Guo J, Shao Z, Ming Y, He L, Chen Q, Wang S, Zhang K, Zhang Z. One particle three targets: Phosphate anion-modified magnetic mesoporous silica with enhanced fluorescence for sensitive detection, efficient adsorption, and repeated removal of uranium (VI) ions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133286. [PMID: 38134698 DOI: 10.1016/j.jhazmat.2023.133286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
An ideal adsorbent material that combines the multiple capabilities of sensitive detection, efficient adsorption, and repeatable removal of uranium (U) from the environment remains a serious challenge. Herin, a general method was developed for synthesizing a series of phosphate anions (such as: PO43-, P2O74-, P3O105- and P6O186-) modified magnetic mesoporous silica nanoparticles (Fe3O4 @mSiO2-Zn2+ NPs). The mesoporous surfaces and abundant phosphate groups provide potential, powerful uranium-binding sites for capturing U(VI) ions. Especially, the optimum adsorption capacity of Fe3O4 @mSiO2-Zn2+/P3O105- NPs was as high as 885.90 mg·g-1 (298 K), which was higher than that of unmodified or other phosphate anions-modified Fe3O4 @mSiO2-Zn2+ NPs. Meanwhile, P3O105--binding sites and mesoporous surfaces also strongly restrict U(VI) ions' fluorescence vibrational inactivation, the adsorption results in rapid green fluorescence enhancement (within 180 s), and an ultra-low detection limit (4.5 nmol·L-1), which is well below the standard in drinking water of the World Health Organization (WHO). Furthermore, even after 5 cycles, the adsorbent still maintained their original adsorption capacity of 80.21% and displayed excellent selectivity for detecting and removing U(VI) from seawater. Based on these results, the Fe3O4 @mSiO2-Zn2+/P3O105- NPs seem to be a suitable multifunctional adsorbent for the detection, adsorption, and removal of U(VI) from environment.
Collapse
Affiliation(s)
- Jian Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Yue Gao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Jinjin Hou
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Jing Guo
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Zhaoshuai Shao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Yuanhang Ming
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Lifang He
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Qian Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Suhua Wang
- College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China.
| | - Zhongping Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230000, China
| |
Collapse
|
7
|
Wang D, Zhang LJ, Liu MH, Du FF, Shen ZY, He L, Wang LL. Aggregation enhanced FRET: A simple but efficient strategy for the ratiometric detection of uranyl ion. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131497. [PMID: 37119574 DOI: 10.1016/j.jhazmat.2023.131497] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Uranium is one of the most important radionuclides but could also cause potential health risks to human beings due to its radioactive and chemical toxicity. It is an urgent task to develop a simple but efficient sensing platform for UO22+, the main existing form of uranium in environment. Herein, a rhodamine-functionalized carbon dots (o-CDs-Rho) was synthesized and applied for UO22+ sensing through a simple but novel aggregation-enhanced FRET strategy. The weak FRET efficiency (16.2%) of o-CDs-Rho in dispersed solution is significantly enhanced (>77.2%) after UO22+ triggered aggregation due to the increased number of rhodamine acceptors around each CDs from dispersed 80 to aggregated 2800. This is the first ratiometric fluorescence sensor with an inverse change of fluorescence intensity at dual emission wavelengths under single-wavelength excitation for UO22+. Under optimized experiment conditions, o-CDs-Rho nanosensor shows a low detection limit of 53 nM and excellent selectivity. Meanwhile, the as-prepared nanosensor also shows high reliability and stability. These excellent properties make it successful in detecting uranium content in real samples.
Collapse
Affiliation(s)
- Dan Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Li-Jie Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ming-Hui Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fang-Fang Du
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ze-Ya Shen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Longwei He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Li-Li Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
8
|
Wang S, Ding Y, Zhang L, Cheng Y, Deng Y, Jiang Q, Gao H, Gu J, Yang G, Zhu L, Yan T, Zhang Q, Ye J. Combination of colorimetry, inner filter effect-induced fluorometry and smartphone‑based digital image analysis: A versatile and reliable strategy for multi-mode visualization of food dyes. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130563. [PMID: 37055971 DOI: 10.1016/j.jhazmat.2022.130563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 06/19/2023]
Abstract
Herein, a multi-mode visualization platform was initiated for in-situ detection of food dyes (FDs) by combining colorimetry, fluorometry and smartphone‑based digital image analysis, in which water-dispersible quantum dots (QDs) were served as nanoprobes. Colorimetry was achieved by color comparison, while both fluorometry and fluorescence quantification were performed through inner filter effect (IFE)-induced fluorescence quenching, then color information (RGB & gray-scale values) of colorimetry and fluorometry was picked by a smartphone to reconstruct digitized alignments. Since IFE mechanism was concentration-dependent but did not rely on the interaction between fluorophore and quencher, the whole process of fluorescence response could be finished within 10 s, and both color gradients and fluorescence changes showed fine mappings to FDs concentrations in the range of 1.0 × 10-3∼0.035 mg/mL for brilliant blue, and 1.0 × 10-4∼0.1 mg/mL for Allura red and sunset yellow. As a proof-of-concept, the in-situ multi-mode visualization of these FDs in real beverages was experimentally proved to be highly feasible and reliable as compared with instrumental techniques like UV-vis/fluorescence spectrometry, along with HPLC. Finally, this strategy was extended to the multi-mode visualization of non-food dyes in three simulated wastewater samples with high credibility by contrast with the true additive amounts of model dyes.
Collapse
Affiliation(s)
- Shuangshou Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China.
| | - Yuwen Ding
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Lu Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Yingle Cheng
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Ying Deng
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Qin Jiang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Hongrui Gao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Jing Gu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Ganggang Yang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Tingxuan Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Qi Zhang
- Department of Process Analysis of Tobacco, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450007, China.
| | - Jin Ye
- Institute of grain and oil quality and safety, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
9
|
Wang S, Wang H, Yuan Z, Li M, Gao H, Shan L, Li A, Ding Y, Gu J, Zhu L, Yan T, Ye M, Ye J. Colorimetry Combined with Inner Filter Effect-Based Fluorometry: A Versatile and Robust Strategy for Multimode Visualization of Food Dyes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57251-57264. [PMID: 36516434 DOI: 10.1021/acsami.2c17679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, a strategy combining colorimetry and inner filter effect (IFE)-based fluorometry was developed for multimode visualization of food dyes (FDs) using CdTe quantum-dots-doped fluorescent indicator papers as a sample-to-answer device. Colorimetry was straightforwardly achieved by FDs extraction through electrostatic interaction and hydrophobic effect while fluorometry was implemented by IFE-induced fluorescence quenching. RGB/gray-scale values of colorimetry and fluorometry were furtherly picked by a smartphone application and applied to reconstruct color information-based digital image analysis for both direct alignments and linear regression analysis. The apparent color and fluorescence of FDs-bound indicator papers, together with their digitized color information, showed a good mapping to FDs concentrations in the range of 0-0.5 mg/mL for Sunset Yellow, 0-0.2 mg/mL for Allura Red, and 0-0.08 mg/mL for Brilliant Blue. As a proof of concept, the dosages of these FDs in real beverages and simulated dye effluents were deduced and cross-validated by different visualization modes, and finally double-checked by instrumental techniques such as spectrometric methods, high-performance liquid chromatography (HPLC), and mass spectroscopy (MS). The above findings concluded that (i) IFE mechanism is generally applicable to build fluorometric systems and (ii) cross validation of different visualization modes can markedly improve detection accuracy, which may provide references for design and fabrication of novel "lab-on-paper" devices for visualization applications with high reliability.
Collapse
Affiliation(s)
- Shuangshou Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu 233030, China
| | - Haili Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Zhihong Yuan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Mengyao Li
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Hongrui Gao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Liangjingjing Shan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Aowei Li
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Yuwen Ding
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Jing Gu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Tingxuan Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Mingfu Ye
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Jin Ye
- Institute of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
10
|
Jafar-Nezhad Ivrigh Z, Fahimi-Kashani N, Morad R, Jamshidi Z, Hormozi-Nezhad MR. Toward visual chiral recognition of amino acids using a wide-range color tonality ratiometric nanoprobe. Anal Chim Acta 2022; 1231:340386. [DOI: 10.1016/j.aca.2022.340386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
|