1
|
Li Z, Huang Y, Guo T, Li L, Hou Q, Chen S, Liu W. Enhancing anticorrosion performance of metals by incorporating cellulose nanofibrils/α-ZrP composite as nanofiller into water-based coating. Carbohydr Polym 2025; 347:122755. [PMID: 39486984 DOI: 10.1016/j.carbpol.2024.122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 11/04/2024]
Abstract
The anticorrosion of metals has gain considerable interest in view of economic and environmental issues. Coating protection is one of the most effective and cost-effective methods for anticorrosion of metals. However, the traditional coatings often suffer from many issues such as poor performance or high cost. For the first time, a strategy was proposed by constructing cellulose nanofibrils (CNF)/alpha‑zirconium phosphate (α-ZrP) composite as nanofiller and incorporating into water-based coatings for anticorrosion of metals. The successful coordination of α-ZrP nanosheet and CNF were characterized. The effects of the resultant composite on anticorrosion performance were investigated. The results showed that, the as-prepared coating exhibited superior anticorrosion performance to commercial coatings. The impedance of the test sample coated with the as-prepared coating reached up to 4.38 × 105 Ω when it was immersed in 3.5 % NaCl solution with few corrosions fragmentation on metal surface, exhibiting a favorable long-term anticorrosion performance. Meanwhile, the anticorrosion mechanism was proposed. It is expected that this strategy would provide novel solutions for developing highly efficient water-based anticorrosive coatings of metals.
Collapse
Affiliation(s)
- Zhikun Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Key Laboratory of Marine Resource Chemistry and Food Technology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yi Huang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Key Laboratory of Marine Resource Chemistry and Food Technology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Taoli Guo
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Key Laboratory of Marine Resource Chemistry and Food Technology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Long Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Key Laboratory of Marine Resource Chemistry and Food Technology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qingxi Hou
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Key Laboratory of Marine Resource Chemistry and Food Technology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shangqing Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Wei Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Key Laboratory of Marine Resource Chemistry and Food Technology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Bhagwat SB, Jaspal D, Tiwari AK, Malviya A, Petrounias P. Sustainable polyurethane for the remediation of oil spills: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27509-27530. [PMID: 38573572 DOI: 10.1007/s11356-024-33037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Catastrophic oil spill is one of the major issues to the environment. Various methods have been used to treat oil spillage including in situ burning, the use of skimmers, dispersants, bioremediation, dispersing agents, oil sorbents, and biological agents. Application of oil sorbent is one of the effective solutions in oil spill clean-up. Polymers are sustainable extraordinary materials for the treatment of oil spillage due to their special physicochemical characteristics such as high porosity, good hydrophobicity, and reusability. Polymers are modified using suitable chemical reagents and their hydrophobicity is enhanced, making them suitable for oil spill clean-up. The present manuscript is an attempt to summarize the study of chemical modifications done on a polymer polyurethane (PU) for achieving the desirable properties, for efficient oil spill clean-up. A patent analysis has been carried out for the leading countries, top inventors, leading assignees, trends of patent publications, citation analysis, and summary of granted patents in the area of the use of a polymer Polyurethane (PU) for oil spill clean-up.
Collapse
Affiliation(s)
- Sanjay B Bhagwat
- Department of Applied Science, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, 412115, India
- Department of Chemistry, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India
| | - Dipika Jaspal
- Department of Applied Science, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, 412115, India.
| | - Amit Kumar Tiwari
- Ex-Professor and Head-Intellectual Property, Symbiosis Centre for Research and Innovation (SCRI), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, 412115, India
- Senior Patent Associate, R. K. Dewan & Co, Pune, Maharashtra, India
| | - Arti Malviya
- Lakshmi Narain College of Technology, Bhopal, 462021, Madhya Pradesh, India
| | | |
Collapse
|
3
|
Bi H, Mulligan CN, Lee K, An C, Wen J, Yang X, Lyu L, Qu Z. Preparation, characteristics, and performance of the microemulsion system in the removal of oil from beach sand. MARINE POLLUTION BULLETIN 2023; 193:115234. [PMID: 37399736 DOI: 10.1016/j.marpolbul.2023.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Oil deposited on shoreline substrates has serious adverse effects on the coastal environment and can persist for a long time. In this study, a green and effective microemulsion (ME) derived from vegetable oil was developed as a washing fluid to remove stranded oil from beach sand. The pseudo-ternary phase diagrams of the castor oil/water (without or without NaCl)/Triton X-100/ethanol were constructed to determine ME regions, and they also demonstrated that the phase behaviors of ME systems were almost independent of salinity. ME-A and ME-B exhibited high oil removal performance, low surfactant residues, and economic benefits, which were determined to be the W/O microstructure. Under optimal operation conditions, the oil removal efficiencies for both ME systems were 84.3 % and 86.8 %, respectively. Moreover, the reusability evaluation showed that the ME system still had over 70 % oil removal rates, even though it was used six times, implying its sustainability and reliability.
Collapse
Affiliation(s)
- Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Catherine N Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada.
| | - Jiyuan Wen
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Zhaonian Qu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| |
Collapse
|
4
|
Du H, Zhao X, Wang X, Wang C, Liu Z, Wang H, Liu F. Surfactant-Free Emulsion of Epoxy Resin/Sodium Alginate for Achieving Robust Underwater Superoleophobic Coating via a Combination of Phase Separation and Biomineralization. J Colloid Interface Sci 2023; 642:488-496. [PMID: 37023520 DOI: 10.1016/j.jcis.2023.03.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Underwater superoleophobic coatings exhibit promising prospects in the field of oil contamination resistance. However, their poor durability, stemming from the fragile structures and unstable hydrophilicity, greatly restricted their development. In this report, we proposed a novel strategy of combination water-induced phase separation and biomineralization to prepare the robust underwater superoleophobic epoxy resin-calcium alginate (EP-CA) coating by utilizing a surfactant-free emulsion of epoxy resin/sodium alginate (EP/SA). The EP-CA coating not only exhibited excellent adhesion to various substrates, but also had remarkable resistance to the physical/chemical attacks such as abrasion, acid, alkali and salt. It could also protect the substrate (e.g., PET substrate) from the damage of organic solution and the fouling of crude oil. This report provides a new perspective to fabricate robust superhydrophilic coating with a facile way.
Collapse
Affiliation(s)
- Hongzhong Du
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Xingjian Zhao
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Xinran Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Chijia Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Zhanjian Liu
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Huaiyuan Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China; School of Chemical Engineering and Technology, and State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Fatang Liu
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China; School of Chemical Engineering and Technology, and State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|