1
|
Wang L, Chen Y. A Schiff-base-modified Cu nanocluster with redox dual-catalytic sites and fluorescence sensing for the degradation and detection of atrazine. MATERIALS HORIZONS 2025; 12:2709-2721. [PMID: 39835686 DOI: 10.1039/d4mh01546k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Atrazine is a widely used and heavily contaminating pesticide. In this work, we designed and synthesized a versatile catalyst for the degradation and fluorescent detection of atrazine. This catalyst consists of Cu clusters modified by a Schiff base. The combination of Cu clusters and Schiff base enables it to act as a catalyst with the dual roles of oxidation and reduction. The inclusion of the Schiff base also narrows the band gap of Cu clusters and accelerates the redox electron transfer, leading to the degradation of atrazine up to 98%. Furthermore, the red fluorescence of Cu clusters and the green fluorescence of Schiff base allow this catalyst to sense atrazine like a sensor by a change in fluorescence color. The limit of detection for atrazine is as low as 0.1 nM and visual limit of detection is 10 nM. The mechanisms of catalysis and fluorescence sensing of the catalyst are verified by mass spectrometry and density functional theory. This multi-functional catalyst has great application potential in environmental protection, health and safety and other fields.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Yang Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| |
Collapse
|
2
|
Li D, He Z, Chen S, Chen J, Ding Z, Luo J, Li Z, Hu Y. Alleviation of cadmium uptake in rice (Oryza sativa L.) by iron plaque on the root surface generated by Providencia manganoxydans via Fe(II) oxidation. Arch Microbiol 2024; 206:387. [PMID: 39196357 DOI: 10.1007/s00203-024-04110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Iron plaque is believed to be effective in reducing the accumulation of heavy metals in rice. In this work, a known soil-derived Mn(II)-oxidizing bacterium, LLDRA6, which represents the type strain of Providencia manganoxydans, was employed to investigate the feasibility of decreasing cadmium (Cd) accumulation in rice by promoting the formation of iron plaque on the root surface. Firstly, the Fe(II) oxidation ability of LLDRA6 was evaluated using various techniques including Fourier Transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, phenanthroline photometry, and FeS gel-stabilized gradient assays. Subsequently, the formation of iron plaque on the root surface by LLDRA6 was investigated under hydroponic and pot conditions. Finally, Cd concentrations were examined in rice with and without iron plaque through pot and paddy-field tests. The results showed that LLDRA6 played an efficient role in the formation of iron plaque on seedling roots under hydroponic conditions, generating 44.87 and 36.72 g kg- 1 of iron plaque on the roots of Huazhan and TP309, respectively. In pot experiments, LLDRA6 produced iron plaque exclusively in the presence of Fe(II). Otherwise, it solely generated biofilm on the root surface. Together with Fe(II), LLDRA6 effectively reduced the concentrations of Cd in Huazhan roots, straws and grains by 25%, 46% and 44%, respectively. This combination also demonstrated a significant decrease in the Cd concentrations of TP309 roots, straws and grains by 20%, 52% and 44%, respectively. The data from the Cd translocation factor indicate that obstruction of Cd translocation by iron plaque predominantly occurred during the root-to-straw stage. In paddy-field tests, the Cd concentrations of grains harvested from the combination treatment of LLDRA6 and Fe(II) exhibited a decline ranging from 40 to 53%, which fell below the maximum acceptable value for Cd in rice grains (0.2 mg kg- 1) as per the China national standard for food security (GB2762-2017). Meanwhile, the relevant phenotypic traits regarding the yield were not adversely affected. These findings have demonstrated that LLDRA6 can impede the uptake of Cd by rice in Cd-contaminated soils through the formation of iron plaque on roots, thus providing a promising safe Cd-barrier for rice production.
Collapse
Affiliation(s)
- Ding Li
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
- Zhuzhou City Joint Laboratory of Environmental Microbiology and Plant Resources Utilization, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Zeping He
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Sha Chen
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
- Zhuzhou City Joint Laboratory of Environmental Microbiology and Plant Resources Utilization, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jinyuan Chen
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zhexu Ding
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Luo
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zongpei Li
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yuanyi Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya, 572000, China.
| |
Collapse
|
3
|
Jiang FW, Guo JY, Lin J, Zhu SY, Dai XY, Saleem MAU, Zhao Y, Li JL. MAPK/NF-κB signaling mediates atrazine-induced cardiorenal syndrome and antagonism of lycopene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171015. [PMID: 38369134 DOI: 10.1016/j.scitotenv.2024.171015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Atrazine (ATZ) is the most prevalent herbicide that has been widely used in agriculture to control broadleaf weeds and improve crop yield and quality. The heavy use of ATZ has caused serious environmental pollution and toxicity to human health. Lycopene (LYC), is a carotenoid that exhibits numerous health benefits, such as prevention of cardiovascular diseases and nephropathy. However, it remains unclear that whether ATZ causes cardiorenal injury or even cardiorenal syndrome (CRS) and the beneficial role of LYC on it. To test this hypothesis, mice were treated with LYC and/or ATZ for 21 days by oral gavage. This study demonstrated that ATZ exposure caused cardiorenal morphological alterations, and several inflammatory cell infiltrations mediated by activating NF-κB signaling pathways. Interestingly, dysregulation of MAPK signaling pathways and MAPK phosphorylation caused by ATZ have been implicated in cardiorenal diseases. ATZ exposure up-regulated cardiac and renal injury associated biomarkers levels that suggested the occurrence of CRS. However, these all changes were reverted, and the phenomenon of CAR was disappeared by LYC co-treatment. Based on our findings, we postulated a novel mechanism to elucidate pesticide-induced CRS and indicated that LYC can be a preventive and therapeutic agent for treating CRS by targeting MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jian-Ying Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | | | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Jia J, Xue P, Ma L, Li P, Xu C. Deep degradation of atrazine in water using co-immobilized laccase-1-hydroxybenzotriazole-Pd as composite biocatalyst. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133779. [PMID: 38367439 DOI: 10.1016/j.jhazmat.2024.133779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The efficient and green removal technology of refractory organics such as atrazine in water has been an important topic of research in water treatment. A novel membrane composite biocatalyst Lac-HBT-Pd/BC as prepared for the first time by co-immobilizing laccase, mediator 1-hydroxybenzotriazole (HBT) and metal Pd on functionalized bacterial cellulose (BC) to investigate the removal of atrazine and degradation of its intermediates under mild ambient conditions. It was found that atrazine could be completely degraded in 5 h by the catalysis of Lac-HBT-Pd/BC, and the removal rate of degradation intermediates from atrazine was about 85% after continuous catalysis, which achieved deep degradation of atrazine. The effect of electrochemical activity and radical stability of the membrane composite biocatalysts loaded with Pd was investigated. The possible degradation pathways were proposed by identifying and analyzing the deep degradation products of atrazine. The Lac-HBT-Pd/BC demonstrated deep degradation of atrazine and favorable reusability as well as considerable adaptability to various water qualities. This work provides an important reference for preparing new kinds of biocatalysts to degrade refractory organic pollutants in water.
Collapse
Affiliation(s)
- Juan Jia
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Ping Xue
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Lan Ma
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Peng Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Chongrui Xu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
5
|
Wang X, Ren K, Jiao K, Nie W, An X, Lian B. Selective immobilization of Pb(II) by biogenic whewellite and its mechanism. J Environ Sci (China) 2024; 137:664-676. [PMID: 37980049 DOI: 10.1016/j.jes.2023.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 11/20/2023]
Abstract
The development of bio-adsorbents with highly selective immobilization properties for specific heavy metals is a great challenge, but has important application value. Biogenic whewellite (BW) with high selectivity for Pb(II) was synthesized by mineral microbial transformation. The selective immobilization properties and mechanism of BW for Pb(II) were analyzed by combining mineral characterization technology and batch adsorption research methods. The results indicated that BW can efficiently and selectively immobilize Pb(II) in single or composite heavy metal adsorption solutions, and the immobilized Pb(II) is difficult to desorb. BW undergoes monolayer adsorption on Pb(II), Qmax ≈ 1073.17 mg/g. The immobilization of Pb(II) by BW is a physico-chemical adsorption process with spontaneous heat absorption and an accompanying increase in entropy. In addition, the sequestration of Pb(II) by BW remains around 756.99 mg/g even at pH = 1. The excellent selective immobilization properties of BW for Pb(II) are closely related to its smaller Ksp, electrostatic repulsion effect, organic-inorganic composite structure, acid resistance and the formation of Pb(II) oxalate. This study provides beneficial information about the recycling of lead in acidic lead-containing wastewater and composite heavy metal contaminated water bodies.
Collapse
Affiliation(s)
- Xingxing Wang
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Kaiyan Ren
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Kairui Jiao
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wenjun Nie
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiaochi An
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bin Lian
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
6
|
Cai Y, Yang K, Qiu C, Bi Y, Tian B, Bi X. A Review of Manganese-Oxidizing Bacteria (MnOB): Applications, Future Concerns, and Challenges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1272. [PMID: 36674036 PMCID: PMC9859543 DOI: 10.3390/ijerph20021272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Groundwater serving as a drinking water resource usually contains manganese ions (Mn2+) that exceed drinking standards. Based on the Mn biogeochemical cycle at the hydrosphere scale, bioprocesses consisting of aeration, biofiltration, and disinfection are well known as a cost-effective and environmentally friendly ecotechnology for removing Mn2+. The design of aeration and biofiltration units, which are critical components, is significantly influenced by coexisting iron and ammonia in groundwater; however, there is no unified standard for optimizing bioprocess operation. In addition to the groundwater purification, it was also found that manganese-oxidizing bacteria (MnOB)-derived biogenic Mn oxides (bioMnOx), a by-product, have a low crystallinity and a relatively high specific surface area; the MnOB supplied with Mn2+ can be developed for contaminated water remediation. As a result, according to previous studies, this paper summarized and provided operational suggestions for the removal of Mn2+ from groundwater. This review also anticipated challenges and future concerns, as well as opportunities for bioMnOx applications. These could improve our understanding of the MnOB group and its practical applications.
Collapse
Affiliation(s)
- Yanan Cai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | | | | | | | | | | |
Collapse
|