1
|
Fang L, Lakshmanan P, Su X, Shi Y, Chen Z, Zhang Y, Sun W, Wu J, Xiao R, Chen X. Impact of residual antibiotics on microbial decomposition of livestock manures in Eutric Regosol: Implications for sustainable nutrient recycling and soil carbon sequestration. J Environ Sci (China) 2025; 147:498-511. [PMID: 39003065 DOI: 10.1016/j.jes.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 07/15/2024]
Abstract
The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, β-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs; Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4067, QLD, Australia
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yujia Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zheng Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wei Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and National Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Junxi Wu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and National Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Wang Z, Yin B, Ao G, Yang L, Ma Y, Shi Y, Sun S, Ling H. Important ecophysiological roles of Nocardiopsis in lignocellulose degradation during aerobic compost with humic acid addition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123901. [PMID: 39731951 DOI: 10.1016/j.jenvman.2024.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/14/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Improving lignocellulose degradation and organic matter conversion in agricultural and livestock wastes remains a great challenge. Here, the contribution of humic acid (HA) to lignocellulose degradation was investigated, focusing on the abundance of key microbial species and carbohydrate-active enzymes during aerobic composting. The results demonstrated that the addition of HA not only increased the complexity of the microbial network, but also enhanced the positive interaction between microorganism. The abundance of phylum Actinobacteria related to lignin degradation was significantly increased, especially genus Nocardiopsis (50.97 %), and Nocardiopsis was significantly positively correlated with HA and humus (HS) (p < 0.05). Additionally, the abundance of GH (43.45%) and AA (5.88%) enzymes and the activation of metabolic pathways of AA, carbohydrates and energy were significantly increased (p < 0.05). Remarkably, the quantity of lignocellulose-degrading genes and carbohydrate-active enzymes experienced a marked boost (p < 0.05), with the peak abundance observed in Nocardiopsis. The structural equation model revealed that the addition of HA boosted the abundance of Nocardiopsis, which in turn amplified lignocellulose degradation by up-regulating lignocellulose degradation genes and enhancing carbohydrase activity, and facilitating the conversion of HA and FA. The lignocellulose degradation experiment verified that Nocardiopsis alba exhibited good ability in the degradation of cellulose and hemicellulose. These findings provided a novel perspective on the mechanisms underlying lignocellulose degradation, and broaden the understanding of the ecophysiological role of Nocardiopsis in composting system.
Collapse
Affiliation(s)
- Zhaoxuan Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Bo Yin
- Institute of Microbiology, Heilongjiang Academy of Sciences, No. 68, Zhaolin Street, Daoli District, Harbin, 150010, China
| | - Guoxu Ao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Liguo Yang
- Heilongjiang Province Daxinganling Ecological Envirnoment Monitoring Center, 87 Guangming Road, Jiagedaqi District, Heilongjiang Province, China
| | - Yue Ma
- Heilongjiang Province Daxinganling Ecological Envirnoment Monitoring Center, 87 Guangming Road, Jiagedaqi District, Heilongjiang Province, China
| | - Yueqi Shi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Shanshan Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| | - Hongzhi Ling
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
3
|
Tao Y, Wang Y, Cui Y, Sun R, Zhang B, Qu J, Cai H, Zhang Y. Bioenhanced remediation of dibutyl phthalate contaminated black soil by immobilized biochar microbiota. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123317. [PMID: 39608239 DOI: 10.1016/j.jenvman.2024.123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/30/2024]
Abstract
To address the contamination caused by DBP residues prevalent in black soils, this study developed a multifunctional bioremediation material (BHF@DK-P3) using humic acid and iron-modified corn stover biochar in combination with microbiota. The microbiota contained DBP-degrading bacteria (Enterobacterium sp. DNB-S2), phosphorus-solubilizing bacteria (Enterobacter sp. P1) and potassium-solubilizing bacteria (Paenibacillus sp. KT), and formed a good mutualistic symbiosis. In the biochar microenvironment, the microflora had lower DBP biotoxicity responses and more cell membrane formation. The addition of BHF@DK-P3 brought the structure of the DBP-contaminated black soil closer to the optimal three-phase ratio. The microbiota was able to perform their biological functions stably under both DBP stress and acid-base stress conditions. The stability of soil aggregates and the efficiency of N, P, K nutrients were improved, with available phosphorus increasing by 21.45%, available potassium by 12.54% and alkali-hydrolysable nitrogen by 14.74%. The relative abundance of copiotrophic bacterial taxa in the soil increased and the relative abundance of oligotrophic bacterial taxa decreased, providing a good mechanism for the conversion and utilization of soil nutrients. Biochar and microbiota jointly influenced soil carbon and nitrogen metabolism in response to DBP.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yao Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yunhe Cui
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Rui Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Hongguang Cai
- Jilin Academy of Agricultural Sciences, Changchun, 130000, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Zuo X, Lu W, Ling W, Czech B, Oleszczuk P, Chen X, Gao Y. Biodegradation of PAEs in contaminated soil by immobilized bacterial agent and the response of indigenous bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124925. [PMID: 39255922 DOI: 10.1016/j.envpol.2024.124925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Phthalic acid esters (PAEs) are common hazardous organic contaminants in agricultural soil. Microbial remediation is an effective and eco-friendly method for eliminating PAEs. Nevertheless, the operational mode and potential application of immobilized microorganisms in PAEs-contaminated soil are poorly understood. In this study, we prepared an immobilized bacterial agent (IBA) using a cedar biochar carrier to investigate the removal efficiency of PAEs by IBA in the soil. We found that IBA degraded 88.35% of six optimal-control PAEs, with 99.62% biodegradation of low-molecular-weight PAEs (DMP, DEP, and DBP). The findings demonstrated that the IBA achieved high efficiency and a broad-spectrum in degrading PAEs. High-throughput sequencing revealed that IBA application altered the composition of the soil bacterial community, leading to an increase in the relative abundance of PAEs-degrading bacteria (Rhodococcus). Furthermore, co-occurrence network analysis indicated that IBA promoted microbial interactions within the soil community. This study introduces an efficient method for the sustainable remediation of PAEs-contaminated soil.
Collapse
Affiliation(s)
- Xiangzhi Zuo
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyi Lu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bozena Czech
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, 20-031, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, 20-031, Lublin, Poland
| | - Xuwen Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Xu M, Yu B, Chen Y, Zhou P, Xu X, Qi W, Jia Y, Liu J. Mitigating greenhouse gas emission and enhancing fermentation by phosphorus slag addition during sewage sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122740. [PMID: 39378818 DOI: 10.1016/j.jenvman.2024.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
During the composting of sewage sludge (SS), a quantity of greenhouse gases has been produced. This study aimed to clarify the microbial mechanisms associated with the addition of industrial solid waste phosphorus slag (PS) to SS composting, specifically focusing on its impact on greenhouse gas emissions and the humification. The findings indicated that the introduction of PS increased the temperature and extended the high-temperature phase. Moreover, the incorporation of 10% and 15% PS resulted in a decrease of N2O emissions by 68.9% and 88.6%, respectively. Microbial diversity analysis indicated that PS improved waste porosity, ensuring the aerobic habitat. Therefore, the environmental factors of the system were altered, leading to the enrichment of various functional bacterial species, such as Firmicutes and Chloroflexi, and a reduction of pathogenic bacterium Dokdonella. Consequently, incorporating PS into SS composting represents an effective waste treatment strategy, exhibiting economic feasibility and promising application potential.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Bao Yu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yue Chen
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ping Zhou
- Kunming Dianchi Water Treatment Co., Ltd, Kunming, 650228, China
| | - Xingkun Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenzhi Qi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yufeng Jia
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Lu M, Hao Y, Lin B, Huang Z, Zhang Y, Chen L, Li K, Li J. The bioaugmentation effect of microbial inoculants on humic acid formation during co-composting of bagasse and cow manure. ENVIRONMENTAL RESEARCH 2024; 252:118604. [PMID: 38548254 DOI: 10.1016/j.envres.2024.118604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 06/07/2024]
Abstract
The effective degradation of recalcitrant lignocellulose has emerged as a bottleneck for the humification of compost, and strategies are required to improve the efficiency of bagasse composting. Bioaugmentation is a promising method for promoting compost maturation and improving the quality of final compost. In this study, the bioaugmentation effects of microbial inoculants on humic acid (HA) formation during lignocellulosic composting were explored. In the inoculated group, the maximum temperature was increased to 72.5 °C, and the phenol-protein condensation and Maillard humification pathways were enhanced, thus increasing the HA content by 43.85%. After inoculation, the intensity of the microbial community interactions increased, particularly for fungi (1.4-fold). Macrogenomic analysis revealed that inoculation enriched thermophilic bacteria and lignocellulose-degrading fungi and increased the activity of carbohydrate-active enzymes and related metabolic functions, which effectively disrupted the recalcitrant structure of lignocellulose to achieve a high humification degree. Spearman correlation analysis indicated that Stappia of the Proteobacteria phylum, Ilumatobacter of the Actinomycetes phylum, and eleven genera of Ascomycota were the main HA producers. This study provides new ideas for bagasse treatment and recycling and realizing the comprehensive use of resources.
Collapse
Affiliation(s)
- Mengling Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuhao Hao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Binfeng Lin
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Zhi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Yu Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Liang Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China; Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
7
|
Yan B, Lan T, Lv Y, Xing C, Liang Y, Wang H, Wu Q, Guo L, Guo WQ. Enhancing simultaneous nitrogen and phosphorus availability through biochar addition during Chinese medicinal herbal residues composting: Synergism of microbes and humus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172515. [PMID: 38642759 DOI: 10.1016/j.scitotenv.2024.172515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.
Collapse
Affiliation(s)
- Bo Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tian Lan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lv
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuanming Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongqi Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liang Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Liu H, Awasthi MK, Zhang Z, Syed A, Bahkali AH. Evaluation of gases emission and enzyme dynamics in sheep manure compost occupying with peach shell biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124065. [PMID: 38697253 DOI: 10.1016/j.envpol.2024.124065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
The effect of peach shell biochar (PSB) amendment on sheep manure (SM) composting was investigated. Five different ratios of PSB were applied (0%, 2.5%, 5%, 7.5%, and 10% PSB), and named T1 to T5, and run 50 days of composting experiment. It was found that PSB (especially 7.5% and 10%) could improve the compost environment, regulate the activity of microorganisms and related enzymes, and promote the decomposition of compost. 7.5% and 10% PSB advanced the heap into the thermophilic stage and increased the maximum temperature, while also increasing the germination index by 1.40 and 1.39 times compared to control. Importantly, 10% PSB effectively retained more than 60% of carbon and 55% of nitrogen by inhibiting the excess release of NH3 and greenhouse gases. High proportion PSB amendment increased the activity of dehydrogenase and cellulase, but inhibited protease and urease. The correlation results indicated that PSB changed the key bacterial genus, and there was a stronger association with environmental factors at 7.5% and 10%. Therefore, 7.5% and 10% peach shell biochar can be used as appropriate proportions to improve composting conditions.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
9
|
Su Y, Zhou L, Zhuo Q, Fang C, You J, Han L, Huang G. Microbial mechanisms involved in negative effects of amoxicillin and copper on humification during composting of dairy cattle manure. BIORESOURCE TECHNOLOGY 2024; 399:130623. [PMID: 38518876 DOI: 10.1016/j.biortech.2024.130623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Livestock manure often contains various pollutants. The aim of this study was to investigate how adding amoxicillin (AMX), Cu, and both AMX and Cu (ACu) affected humification during composting and the microbial mechanisms involved. The cellulose degradation rates were 16.96%, 10.86%, and 9.01% lower, the humic acid contents were 18.71%, 12.89%, and 16.78% lower, and the humification degrees were 24.72%, 24.16%, and 15.73% lower for the AMX, Cu, and ACu treatments, respectively, than the control. Adding AMX and Cu separately or together inhibited humic acid formation and decreased the degree of humification, but the degree of humification was decreased less by ACu than by AMX or Cu separately. The ACu treatment decreased the number of core bacteria involved in humic acid formation and decreased carbohydrate and amino acid metabolism during the maturing period, and thereby delayed humic acid formation and humification. The results support composting manure containing AMX and Cu.
Collapse
Affiliation(s)
- Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ling Zhou
- Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, Xinjiang 843300, China
| | - Qianting Zhuo
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chen Fang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China; College of Agriculture, Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Jia You
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Liu N, Liu Z, Wang K, Zhao J, Fang J, Liu G, Yao H, Pan J. Comparison analysis of microbial agent and different compost material on microbial community and nitrogen transformation genes dynamic changes during pig manure compost. BIORESOURCE TECHNOLOGY 2024; 395:130359. [PMID: 38272144 DOI: 10.1016/j.biortech.2024.130359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
This study aimed to assess the impact of microbial agent and different compost material, on physicochemical parameters dynamic change, nitrogen-transfer gene/bacterial community interaction network during the pig manure composting. Incorporating a microbial agent into rice straw-mushroom compost reduced the NH3 and total ammonia emissions by 25.52 % and 14.41 %, respectively. Notably, rice straw-mushroom with a microbial agent reduced the total ammonia emissions by 37.67 %. NH4+-N and pH emerged as primary factors of phylum-level and genus-level microorganisms. Microbial agent increased the expression of narG, nirK, and nosZ genes. Rice straw-mushroom elevated the content of amoA, nirK, nirS, and nosZ genes. Alcanivorax, Luteimonas, Pusillimonas, Lactobacillus, Aequorivita, Clostridium, Moheibacter and Truepera were identified as eight core microbial genera during the nitrogen conversion process. This study provides a strategy for reducing ammonia emissions and analyzes the potential mechanisms underlying compost processes.
Collapse
Affiliation(s)
- Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Zhuangzhuang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Jinfeng Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Bao J, Li S, Qv M, Wang W, Wu Q, Kristianto Nugroho Y, Huang L, Zhu L. Urea addition as an enhanced strategy for degradation of petroleum contaminants during co-composting of straw and pig manure: Evidences from microbial community and enzyme activity evaluation. BIORESOURCE TECHNOLOGY 2024; 393:130135. [PMID: 38043688 DOI: 10.1016/j.biortech.2023.130135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Alterations in microbial community succession patterns and enzyme activities by petroleum pollutants during co-composting of straw and swine manure with the supplementary nitrogen source are unclear. In this study, urea was added into co-composting systems, and the removal performance of petroleum, microbial enzyme activity and community changes were investigated. Results showed that the polyphenol oxidase and catalase activities which were both related to the degradation of petroleum contaminants were accordingly increased from 20.65 to 30.31 U/g and from 171.87 to 231.86 U/g due to urea addition. The removal efficiency of petroleum contaminants in composting with urea increased from 45.06% to 82.29%. The addition of urea increased the diversity and abundance of petroleum-degrading microorganisms, and enhanced microbial linkages. This study provides a novel strategy for the degradation of petroleum hydrocarbon as well as a new insight into the effect of urea on both microbial processes and composting phases.
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Mingxiang Qv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Wei Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Qirui Wu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | | | - Lizhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
12
|
Qv M, Bao J, Wang W, Dai D, Wu Q, Li S, Zhu L. Bentonite addition enhances the biodegradation of petroleum pollutants and bacterial community succession during the aerobic co-composting of waste heavy oil with agricultural wastes. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132655. [PMID: 37827101 DOI: 10.1016/j.jhazmat.2023.132655] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Soil contamination with petroleum significantly threatens the ecological equilibrium and human health. In this context, aerobic co-composting of waste heavy oil with agricultural wastes was performed in the present study to remediate petroleum pollutants through four treatments: CK (control), T1 (petroleum pollutant), T2 (petroleum pollutant with bentonite), and T3 (petroleum pollutant with humic acid-modified bentonite). Comprehensive analyses were conducted to determine the physicochemical parameters, enzymatic activities, removal of petroleum pollutants, microbial community structure, and water-extractable organic matter in different composting systems. Structural equation modeling was employed to identify the key factors influencing the removal of petroleum pollutants. According to the results, petroleum pollutant removal percentages of 44.94%, 79.09%, and 79.67% could be achieved with T1, T2, and T3, respectively. In addition, the activities of polyphenol oxidase (51.21 U/g) and catalase (367.91 U/g), which are the enzymes related to petroleum hydrocarbon degradation, were the highest in T3. Moreover, bentonite addition to the treatment increased the nitrate nitrogen storage in the compost from 10.95 mg/kg in T1 to 18.63 and 17.41 mg/kg in T2 and T3, respectively. Humic acid-modified bentonite could enhance the degree of compost humification, thereby leading to a higher-quality compost product. Collectively, these findings established bentonite addition as an efficient approach to enhance the compost remediation of petroleum pollutants.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Jianfeng Bao
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
13
|
Sun L, Lin C, Zhou Z, Zhang F, Xu M, Jiao P, Zhu X, Yang X. Characteristics of organic pollutants and their effects on the microbial composition and activity in the industrial soils of Pearl River Delta, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114844. [PMID: 37001193 DOI: 10.1016/j.ecoenv.2023.114844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
To investigate the interaction between organic pollutants and soil microorganisms, industrial soils were collected from Pearl River Delta region of China for determining semi-volatile organic pollutants, the community structure and activity of microorganisms. The results showed that polycyclic aromatic hydrocarbons (PAHs) (63.3-4956 μg kg-1) and phthalate esters (PAEs) (272-65,837 μg kg-1) were main organic pollutants in the research area soils. Chemical manufacturing industry and plastics manufacturing industry contributed greatly to PAH pollution and PAE pollution, respectively. Organic pollutants changed the biomass of microorganisms. In most industrial soils, the biomass of actinomycetes was the highest in the industrial soils, followed by G- bacteria, G+ bacteria and fungi. The exception was that the biomass of fungi in the soil near chemical manufacturing industry was greater than that of G+ bacteria. The soil microbial biomass (including soil microbial biomass carbon, soil microbial biomass nitrogen, the biomass of actinomycetes, bacteria, and fungi) and soil enzyme activities (sucrase and urease) positively correlated with the organic pollutant residues, and the microbial species diversity and microbial species abundance decreased with organic pollutant residues increasing. Based on the correlation analysis, the urease activity, actinomycetes biomass, and fungi biomass were appropriate biological indicators for evaluating the stress of organic pollutants. Our research provides a new perspective for understanding the soil biological response in industrial soils.
Collapse
Affiliation(s)
- Lulu Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chaoba Lin
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxing Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fuying Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiyuan Jiao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuezhu Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xinping Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Pereira AR, Gomes IB, Simões M. Impact of parabens on drinking water bacteria and their biofilms: The role of exposure time and substrate materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117413. [PMID: 36764214 DOI: 10.1016/j.jenvman.2023.117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Parabens have been detected in drinking water (DW) worldwide, however, their impact on DW microbial communities remains to be explored. Microorganisms can easily adapt to environmental changes. Therefore, their exposure to contaminants of emerging concern, particularly parabens, in DW distribution systems (DWDS) may affect the microbiological quality and safety of the DW reaching the consumers tap. This work provides a pioneer evaluation of the effects of methylparaben (MP), propylparaben (PP), butylparaben (BP), and their combination (MIX), in bacterial biofilms formed on different surfaces, representative of DWDS materials - high-density polyethylene (HDPE), polypropylene (PPL) and polyvinyl chloride (PVC). Acinetobacter calcoaceticus and Stenotrophomonas maltophilia, isolated from DW, were used to form single and dual-species biofilms on the surface materials selected. The exposure to MP for 7 days caused the most significant effects on biofilms, by increasing their cellular culturability, density, and thickness up to 233%, 150%, and 224%, respectively, in comparison to non-exposed biofilms. Overall, more pronounced alterations were detected for single biofilms than for dual-species biofilms when HDPE and PPL, demonstrating that the surface material used affected the action of parabens on biofilms. Swimming motility and the production of virulence factors (protease and gelatinase) by S. maltophilia were increased up to 141%, 41%, and 73%, respectively, when exposed to MP for 7 days. The overall results highlight the potential of parabens to interfere with DW bacteria in planktonic state and biofilms, and compromise the DW microbiological quality and safety.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
15
|
Wang X, Su D. Using fluorescence and circular dichroism (CD) spectroscopy to investigate the interaction between di-n-butyl phthalate and bovine serum albumin. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:997-1002. [PMID: 36285349 DOI: 10.1080/10934529.2022.2136909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The interaction between di-n-butyl phthalate (DBP) and bovine serum albumin (BSA) in physiological Tris-HCl buffer at pH 7.4 was investigated by fluorescence quenching technique. By analyzing the fluorescence spectrum and intensity, it was observed that the DBP had a strong ability to quench the intrinsic fluorescence of BSA through a static quenching procedure. The binding constants K and the number of binding sites n of DBP with BSA were calculated to be 0.11 × 102 L·mol-1 and 0.52 at 298 K, respectively. The thermodynamic parameters of enthalpy change (ΔH) and entropy change (ΔS) were also calculated to be positive showing that hydrophobic forces might play a major role in the binding of DBP to BSA. The binding process was spontaneous in which Gibbs free energy change (ΔG) was negative. The distance (r) between the donor (BSA) and acceptor (DBP) was calculated to be 2.02 nm based on Forster's non-radiative energy transfer theory, which indicated that the energy transfer from BSA to DBP occurs with a high possibility. The synchronous fluorescence, three-dimensional fluorescence, and circular dichroism (CD) spectra showed that the binding of di-n-butyl phthalate to BSA induced conformational changes in BSA. The interaction between DBP and BSA can help researchers better understand the nature of poisons and serve people in the right way with first aid and detoxification.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Eco-Remediation of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, People's Republic of China
| | - Dan Su
- School of Environmental Science, Liaoning University, Shenyang, Shenyang, People's Republic of China
| |
Collapse
|