1
|
Zhao Z, Li P, Zhang M, Feng W, Tang H, Zhang Z. Unlocking the potential of Chinese herbal medicine residue-derived biochar as an efficient adsorbent for high-performance tetracycline removal. ENVIRONMENTAL RESEARCH 2024; 252:118425. [PMID: 38325789 DOI: 10.1016/j.envres.2024.118425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
This study employed hydrothermal carbonization (HTC) in conjunction with ZnCl2 activation and pyrolysis to produce biochar from one traditional Chinese medicine astragali radix (AR) residue. The resultant biochar was evaluated as a sustainable adsorbent for tetracycline (TC) elimination from water. The adsorption performance of TC on two micropore-rich AR biochars, AR@ZnCl2 (1370 m2 g-1) and HAR@ZnCl2 (1896 m2 g-1), was comprehensively evaluated using adsorption isotherms, kinetics, and thermodynamics. By virtue of pore diffusion, π-π interaction, electrostatic attraction, and hydrogen bonding, the prepared AR biochar showed exceptional adsorption properties for TC. Notably, the maximum adsorption capacity (930.3 mg g-1) of TC on HAR@ZnCl2 can be achieved when the adsorbent dosage is 0.5 g L-1 and C0 is 500 mg L-1 at 323 K. The TC adsorption on HAR@ZnCl2 took place spontaneously. Furthermore, the impact of competitive ions behavior is insignificant when coexisting ion concentrations fall within the 10-100 mg L-1 range. Additionally, the produced biochar illustrated good economic benefits, with a payback of 701 $ t-1. More importantly, even after ten cycles, HAR@ZnCl2 still presented great TC removal efficiency (above 77%), suggesting a good application prosperity. In summary, the effectiveness and sustainability of AR biochar, a biowaste-derived product, were demonstrated in its ability to remove antibiotics from water, showing great potential in wastewater treatment application.
Collapse
Affiliation(s)
- Ziheng Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pengwei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Miaomiao Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Hanxiao Tang
- College of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Wang C, Qiao J, Yuan J, Tang Z, Chu T, Lin R, Wen H, Zheng C, Chen H, Xie H, Peng C, Tan Y. Novel chitosan-modified biochar prepared from a Chinese herb residue for multiple heavy metals removal: Characterization, performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 402:130830. [PMID: 38734264 DOI: 10.1016/j.biortech.2024.130830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
In this study, the sorption properties of Cr(VI), As(III), and Pb(II) on chitosan-modified magnetic biochar (CMBC) derived from residues of Ligusticum chuanxiong Hort. were investigated. CMBC was found to be a valuable material for removing three heavy metals from water simultaneously. Kinetic analysis suggested Cr(VI), As(III), and Pb(II) were chemisorbed onto CMBC, while isotherm data conformed well to Langmuir model, the maximum adsorption capacity of CMBC was found to be 65.74 mg/g for Cr(VI), 49.32 mg/g for As(III), and 69.45 mg/g for Pb(II). Experiments, characterization, and density functional theory (DFT) calculations were employed to explore the mechanisms. Furthermore, CMBC demonstrated excellent removal rates of over 95% for Cr(VI), 99% for As(III) and Pb(II) from contaminated water bodies. This work shows that CMBC holds significant potential for wastewater treatment of heavy metals and provides an effective solution for the utilization of Chinese herb residues in environmental remediation.
Collapse
Affiliation(s)
- Chengjiu Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jixu Qiao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jiandan Yuan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhentao Tang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Tianzhe Chu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ruifeng Lin
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hongting Wen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu 611930, PR China.
| | - Hulan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, PR China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
3
|
Lei C, Yang X, Lei X, Xie J, Chen W, Huang B. Photochemical-promoted ZVI reduction for highly efficient removal of 4-chlorophenol and Cr(VI): Catalytic activity, performance and electron transfer mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170540. [PMID: 38301795 DOI: 10.1016/j.scitotenv.2024.170540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Zero-valent iron (ZVI) reduction represents a promising methodology for water remediation, but its broad application is limited by two critical challenges (i.e., aggregation and passivation). Here, we report a hybrid strategy of photochemical-promoted ZVI reduction with high efficiency and reduction capacity for removing coexisting refractory pollutants in water. A composite material with Pd/Fe bimetallic nanoparticles supported onto semiconducting metal oxide (Pd/Fe@WO3-GO) was prepared and subsequently used as the model catalyst. By using the developed strategy with visible light as light source, this catalyst showed a remarkable catalytic performance for simultaneously eliminating 4-chlorophenol (4-CP) and Cr(VI), with dehalogenation rate as high as 0.43 min-1, outperforming the reported ZVI-based catalysts. A synergistic interaction of photocatalysis and ZVI reduction occurred in this strategy, where the interfacial electron transfer on particles surface were greatly strengthened with light irradiation. The activation was attributed to the dual functions of semiconducting material as support to disperse Pd/Fe nanoparticles and as (photoexcited) electron donor to directly trigger reduction reactions and/or indirectly inhibit the formation of oxides passivation layer. Both direct electron transfer and H*-mediated indirect electron transfer mechanisms were confirmed to participate in the reduction of pollutants, while the later was quantitatively demonstrated as the predominant reaction route. Importantly, this strategy showed a wide pH applicability, long-term durability and excellent catalytic performance in different real-water systems. This work provides new insights into ZVI reduction and advances its applications for the removal of combined organic and inorganic pollutants. The developed photochemical-promoted ZVI reduction strategy holds a great potential for practical applications.
Collapse
Affiliation(s)
- Chao Lei
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xiwen Yang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiaojia Lei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jituo Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wenqian Chen
- Department of Pharmacy, National University of Singapore, Science Drive 4, Singapore 117560, Singapore
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Yin X, Xu P, Wang H. Efficient and Selective Removal of Heavy Metals and Dyes from Aqueous Solutions Using Guipi Residue-Based Hydrogel. Gels 2024; 10:142. [PMID: 38391472 PMCID: PMC10887816 DOI: 10.3390/gels10020142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The presence of organic dyes and heavy metal ions in water sources poses a significant threat to human health and the ecosystem. In this study, hydrogel adsorbents for water pollution remediation were synthesized using Guipi residue (GP), a cellulose material from Chinese herbal medicine, and chitosan (CTS) through radical polymerization with acrylamide (AM) and acrylic acid (AA). The characteristics of the hydrogels were analyzed from a physicochemical perspective, and their ability to adsorb was tested using model pollutants such as Pb2+, Cd2+, Rhodamine B (RhB), and methyl orange (MO). The outcomes revealed that GP/CTS/AA-co-AM, which has improved mechanical attributes, effectively eliminated these pollutants. At a pH of 4.0, a contact duration of 120 min, and an initial concentration of 600 mg/L for Pb2+ and 500 mg/L for Cd2+, the highest adsorption capabilities were 314.6 mg/g for Pb2+ and 289.1 mg/g for Cd2+. Regarding the dyes, the GP/CTS/AA-co-AM hydrogel displayed adsorption capacities of 106.4 mg/g for RhB and 94.8 mg/g for MO, maintaining a stable adsorption capacity at different pHs. Compared with other competitive pollutants, GP/CTS/AA-co-AM demonstrated a higher absorption capability, mainly targeted toward Pb2+. The adsorption processes for the pollutants conformed to pseudo-second-order kinetics models and adhered to the Langmuir models. Even after undergoing five consecutive adsorption and desorption cycles, the adsorption capacities for heavy metals and dyes remained above 70% and 80%. In summary, this study effectively suggested the potential of the innovative GP/CTS/AA-co-AM hydrogel as a practical and feasible approach for eliminating heavy metals and dyes from water solutions.
Collapse
Affiliation(s)
- Xiaochun Yin
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
5
|
Peng M, You D, Jin Z, Ni C, Shi H, Shao J, Shi X, Zhou L, Shao P, Yang L, Luo X. Investigating the potential of structurally defective UiO-66 for Sb (V) removal from tailing wastewater. ENVIRONMENTAL RESEARCH 2023; 236:116752. [PMID: 37527747 DOI: 10.1016/j.envres.2023.116752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Antimony contamination of tailings from the mining process remain attracted a great amount of concern. In this study, defective UiO-66-X crystal materials are rationally constructed using trifluoroacetic acid and hydrochloric acid as modulators for the removal of Sb(V) from actual tailing sand leachates. XRD and TG characterizations reveal that the number and kind of defects in UiO-66 are influenced by the type of modulators and the addition of trifluoroacetic acid makes UiO-66-TFA contain both cluster and ligand defects. Adsorption experiments show that UiO-66 and UiO-66-HCl achieve 100% removal of Sb(V) at pH 7.5 of the tailing sand leachate, and up to 90% removal of Sb(V) by the three materials at pH 2.5. It is noteworthy that the removal rate of Sb(V) by UiO-66-HCl is still satisfactory even under strongly acidic conditions at pH 0.5, with good potential for practical applications. Four kinetic models are used to fit the adsorption data and the analysis shows that the mechanism of Sb(V) adsorption by three adsorbent is all pseudo-second order and chemisorption acts as an important role in the adsorption process. In addition, the fixed bed adsorption experiments show that the material exhibit good prospects for practical applications.
Collapse
Affiliation(s)
- Mingming Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Deng You
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhennan Jin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Chenquan Ni
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Jiachuang Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xuanyu Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Lei Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; School of Life Science, Jinggangshan University, Ji'an, 343009, PR China.
| |
Collapse
|
6
|
Yin X, Ke T, Zhu H, Xu P, Wang H. Efficient Removal of Heavy Metals from Aqueous Solution Using Licorice Residue-Based Hydrogel Adsorbent. Gels 2023; 9:559. [PMID: 37504438 PMCID: PMC10379308 DOI: 10.3390/gels9070559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The removal of heavy metals through adsorption represents a highly promising method. This study focuses on the utilization of an abundant cellulose-rich solid waste, licorice residue (LR), as a natural material for hydrogel synthesis. To this end, LR-EPI hydrogels, namely, LR-EPI-5, LR-EPI-6 and LR-EPI-8, were developed by crosslinking LR with epichlorohydrin (EPI), specifically targeting the removal of Pb, Cu, and Cr from aqueous solutions. Thorough characterizations employing Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy confirmed the successful crosslinking of LR-EPIs by EPI, resulting in the formation of porous and loosely structured hydrogels. Batch studies demonstrated the high efficacy of LR-EPI hydrogels in removing the three heavy metal ions from aqueous solutions. Notably, LR-EPI-8 exhibited the highest adsorption capacity, with maximum capacities of 591.8 mg/g, 458.3 mg/g, and 121.4 mg/g for Pb2+, Cr3+, and Cu2+, respectively. The adsorption processes for Pb2+ and Cu2+ were well described by pseudo-second-order kinetics and the Langmuir model. The adsorption mechanism of LR-EPI-8 onto heavy metal ions was found to involve a combination of ion-exchange and electrostatic interactions, as inferred from the results obtained through X-ray photoelectron spectroscopy and FTIR. This research establishes LR-EPI-8 as a promising adsorbent for the effective removal of heavy metal ions from aqueous solutions, offering an eco-friendly approach for heavy metal removal and providing an environmentally sustainable method for the reutilization of Chinese herb residues. It contributes to the goal of "from waste, treats waste" while also addressing the broader need for heavy metal remediation.
Collapse
Affiliation(s)
- Xiaochun Yin
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Ting Ke
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Hai Zhu
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
7
|
Zhang F, Zhang C, Teng J, Han D, Wu L, Hou W. Preparation of hydrogels based on poplar cellulose and their removal efficiency of Cd(II) from aqueous solutions. JOURNAL OF WATER AND HEALTH 2023; 21:676-686. [PMID: 37387335 PMCID: wh_2023_252 DOI: 10.2166/wh.2023.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Industrial heavy metal-contaminated wastewater is one of the main water pollution problems. Adsorbents are a promising method for the removal of heavy metal contaminants. Herein, polyaspartic acid/carboxymethyl poplar sawdust hydrogels (PASP/CMPP) and ascorbic acid/carboxymethyl poplar sawdust hydrogels (VC/CMPP) were prepared by aqueous polymerization using alkalized poplar sawdust (CMPP) as the substrate and PASP and vitamin C (VC) as modifiers. The effective results, provided by the characterization analysis of SEM and BET, indicate that the surface of the PASP/CMPP hydrogel has a larger number of loose pores and a larger pore volume than the VC/CMPP hydrogel. The treatment effects of the two hydrogels on simulated wastewater containing Cd(II) were investigated by a batch of experiments. The results showed that PASP/CMPP had a better adsorption effect than VC/CMPP under the same adsorption conditions. Interestingly, the solid concentration effect was found in the process of sorption kinetics and sorption isotherms. The sorption kinetic curves of Cd(II) on PASP/CMPP were well-fitted by the quasi-second-order kinetics under different adsorbent concentrations. The adsorption conforms to Langmuir and Freundlich adsorption isotherm models. More importantly, PASP/CMPP composites are expected to be used as a new kind of environmental adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Fengrong Zhang
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China E-mail:
| | | | - Jia Teng
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Dandan Han
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Lishun Wu
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| |
Collapse
|
8
|
Long X, Lu Y, Guo H, Tang Y. Recent Advances in Solid Residues Resource Utilization in Traditional Chinese Medicine. ChemistrySelect 2023. [DOI: 10.1002/slct.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Xu Long
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| | - Ying‐Lei Lu
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| | - Hui Guo
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| | - Yu‐Ping Tang
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| |
Collapse
|
9
|
Wei Y, Chen T, Qiu Z, Liu H, Xia Y, Wang Z, Zou R, Liu C. Enhanced lead and copper removal in wastewater by adsorption onto magnesium oxide homogeneously embedded hierarchical porous biochar. BIORESOURCE TECHNOLOGY 2022; 365:128146. [PMID: 36261111 DOI: 10.1016/j.biortech.2022.128146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Removing non-biodegradable Pb2+ and Cu2+ is the top priority in wastewater purification, while adsorption is a green technology to remove them. Herein, MgO-embedded granular hierarchical porous biochar (HP-MgO@BC) was fabricated by pyrolysis of porous Mg-infused chitosan beads. MgO nanoparticles were homogeneously embedded throughout the hierarchical porous biochar matrix in a high-density and accessible manner, thus providing a large number of easily accessible adsorption sites. Pb2+ and Cu2+ sorption capacities on HP-MgO@BC are 1044.8 and 811.2 mg/g at pH 5, respectively. It could effectively remove Pb2+ and Cu2+ across a broad pH range of 2-7, and show excellent adsorption efficiency in the presence of interfering cations. It also possessed excellent reusability. In the fixed-bed operation, 7880 BV (78.80 L) and 1610 BV (16.10 L) of synthetic Pb2+ and Cu2+ wastewater could be purified by HP-MgO@BC packed column, respectively. The adsorption mechanism involves mineral precipitation, ion exchange, and surface coordination.
Collapse
Affiliation(s)
- Yuanfeng Wei
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Tao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Zhiyuan Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Huiling Liu
- School of Science, Hunan University of Technology and Business, Changsha 410205, PR China
| | - Yufen Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Zhimin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Ruiying Zou
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|