1
|
He A, Liang Y, Li J, Zhou Z, Li F, Li Z, Wang Y, Jiang G. A Critical Review of Populations with Occupational Exposure to Per- and Polyfluoroalkyl Substances: External Exposome, Internal Exposure Levels, and Health Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:10715-10733. [PMID: 40442988 DOI: 10.1021/acs.est.4c14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The relationship between per- and polyfluoroalkyl substances (PFAS) exposure and human health has received widespread attention. This review focuses on the key distinctions in PFAS exposure between the occupational population and the general population from different countries. A systematic summary is made from the external exposure environment, exposure pathways, internal exposure levels, and health effects of the occupational population. The manufacturing, use, and disposal processes of PFAS increase their concentration levels in the ambient environment, leading to significantly higher concentrations than background areas. Different PFAS exposure pathways may lead to different molecular initiating events and health outcomes in the occupational population and the general population. Moreover, the PFAS exposure levels of the occupational population are nearly one hundred times higher than those of the general population. Mixed exposure to more unknown PFAS is another important feature of the occupational population. Although occupational exposure to PFAS is not associated with mortality, PFAS exposure can significantly disrupt metabolic pathways and cause adverse effects on the liver, kidney, and lipid homeostasis. Therefore, more stringent occupational protections for the PFAS occupational population are necessary to reduce their health risks.
Collapse
Affiliation(s)
- Anen He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Feifei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Beriro DJ, Bearcock JM, Vane CH, Marchant B, Martin I, Haslam A, Pickering H, Hughes M, James A. A comparative analysis of PFAS in archive and fresh soil samples in England and implications for large-scale surveys. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126401. [PMID: 40355067 DOI: 10.1016/j.envpol.2025.126401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/14/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
This research addresses a knowledge gap in the detectability, concentrations, and types of per and polyfluoroalkyl substances (PFAS) present in shallow soils in England, UK. While the water environment has been, and continues to be, the subject of significant testing and research for these chemicals, soils are still poorly understood. Estimates of anthropogenic background concentrations of PFAS helps with the assessment of potential contamination scenarios, setting benchmark levels and risk evaluation. This research comprised an assessment of the suitability of using archive soil samples to support contemporary samples to give a preliminary indication of anthropogenic background concentrations of PFAS in shallow soils in England. We retrieved 25 archive samples and collected nine contemporary samples from the same geographical location as their paired archive counterpart. Samples were analysed for 53 PFAS with limits of quantification between 0.1 and 0.5 μg/kg dry weight (dw). The results showed that archive samples contained lower concentrations (mean ∑PFAS-53, 1 μg/kg dw) than paired contemporary soil samples (mean ∑PFAS-53, 3 μg/kg dw). The concentrations reported by this study were similar to other surveys at international, national and regional scales. Our study showed that PFAS were detected in both archive and contemporary field samples. Contemporary field samples should be used as the primary sample type in future research on background concentrations of PFAS in soils. Archive samples have the potential provide complimentary temporal and compositional insights to support the derivation of background concentrations.
Collapse
Affiliation(s)
- D J Beriro
- British Geological Survey, Nicker Hill, Keyworth, Nottinghamshire, NG12 5GG
| | - J M Bearcock
- British Geological Survey, Nicker Hill, Keyworth, Nottinghamshire, NG12 5GG
| | - C H Vane
- British Geological Survey, Nicker Hill, Keyworth, Nottinghamshire, NG12 5GG
| | - B Marchant
- British Geological Survey, Nicker Hill, Keyworth, Nottinghamshire, NG12 5GG
| | - I Martin
- Environment Agency, Bristol, BS1 5AH
| | - A Haslam
- Environment Agency, Bristol, BS1 5AH
| | | | - M Hughes
- Environment Agency, Bristol, BS1 5AH
| | - A James
- Environment Agency, Bristol, BS1 5AH
| |
Collapse
|
3
|
Peter L, Modiri‐Gharehveran M, Alvarez‐Campos O, Evanylo GK, Lee LS. PFAS fate using lysimeters during degraded soil reclamation using biosolids. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:41-53. [PMID: 38816342 PMCID: PMC11718147 DOI: 10.1002/jeq2.20576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Carbon- and nutrient-rich biosolids are used in agriculture and land reclamation. However, per- and polyfluoroalkyl substances (PFAS) typically present in biosolids raise concerns of PFAS leaching to groundwater and plant uptake. Here, we investigated PFAS persistence and leaching from biosolids applied to a site constructed artificially to mimic degraded soils. Treatments included biosolids and biosolids blended with mulch applied at different rates to attain either one and five times the agronomic N rate for vegetable crops and a control treatment with synthetic urea and triple superphosphate fertilizer. Leachates were collected for a 2-year period from 15-cm depth zero-tension drainage lysimeters. Soils were analyzed post biosolids application. PFAS were quantified using isotope-dilution, solid-phase extraction and liquid chromatography tandem mass spectrometry. Leachate profiles exemplified an initial high total PFAS concentration, followed by a sharp decline and subsequent small fluctuations attributed to pre-existing soil conditions and rainfall patterns. Quantifiable PFAS in leachate were proportional to biosolids application rates. Short-chain perfluoroalkyl acids (CF2 < 6) were dominant in leachate, while the percentage of longer chains homologues was higher in soils. A 43% biosolids blend with mulch resulted in 21% lower PFAS leachate concentrations even with the blend application rate being 1.5 times higher than biosolids due to the blend's lower N-content. The blending effect was more pronounced for long-chain perfluoroalkyl sulfonic acids that have a greater retention by soils and the air-water interface. Biosolids blending as a pragmatic strategy for reducing PFAS leachate concentrations may aid in the sustainable beneficial reuse of biosolids.
Collapse
Affiliation(s)
- Lynda Peter
- Department of Agronomy, Ecological Sciences & Engineering Interdisciplinary Graduate ProgramPurdue UniversityWest LafayetteIndianaUSA
| | - Mahsa Modiri‐Gharehveran
- Environmental & Ecological EngineeringPurdue UniversityWest LafayetteIndianaUSA
- EA Engineering, Science, and Technology, Inc., PBCHunt ValleyMarylandUSA
| | - Odiney Alvarez‐Campos
- USAIDWashingtonDistrict of ColumbiaUSA
- School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| | - Gregory K. Evanylo
- School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| | - Linda S. Lee
- Department of Agronomy, Ecological Sciences & Engineering Interdisciplinary Graduate ProgramPurdue UniversityWest LafayetteIndianaUSA
- Environmental & Ecological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
4
|
Gravesen CR, Lee LS, Alukkal CR, Openiyi EO, Judy JD. Per- and polyfluoroalkyl substances in water treatment residuals: Occurrence and desorption. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:31-40. [PMID: 37775154 PMCID: PMC10978552 DOI: 10.1002/jeq2.20520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) in surface and ground waters supplying municipal drinking water are a growing concern. However, PFAS concentrations in water treatment residuals (WTRs)-a solid by-product of water treatment-have yet to be explored. In a first of its kind assessment, we examine PFAS occurrence in seven calcium (Ca)-, iron-, and aluminum-based drinking water treatment residuals (DWTRs) and one wastewater effluent treatment residual (WWETR) produced using aluminum chlorohydrate (ACH). Only perfluoroalkyl acids (PFAAs) were detected, with total PFAA concentrations in the seven DWTRs produced from naturally recharged water sources ranging from 0 to ∼3.3 μg kg-1; no PFAS were detected in either of the Ca-DWTRs. The ACH-WWETR contained the highest number and concentration of PFAAs (34 μg kg-1). Desorption of resident PFAAs from the WTRs was negligible for the carboxylates (PFCAs). Some desorption of the sulfonates (PFSAs) was detected, particularly for PFOS which had the highest concentration among all resident PFAAs. The ACH-WWETR was further evaluated for its potential to attenuate additional PFAAs (3500 μg mL-1 total PFAAs) in a biosolid-derived porewater matrix. Sorption was highest for long-chain PFAAs and subsequent desorption of the adsorbed PFAAs ranged from 0% to no more than 26%, with the WWETR mass added strongly affecting both PFSA and PFCA sorption/desorption. These findings suggest that WTRs, if introduced into the environment, are unlikely to be a major source of PFAS. Also, the use of particular WTRs as amendments may provide a beneficial reduction in PFAS mobility.
Collapse
Affiliation(s)
- Caleb R. Gravesen
- University of Florida, Department of Soil, Water, and Ecosystem Sciences, Gainesville FL
| | - Linda S. Lee
- Purdue University, Department of Agronomy, West Lafayette IN
- Purdue University, Ecological Sciences & Engineering Interdisciplinary Graduate Program, West Lafayette IN
- Purdue University, Environmental & Ecological Engineering, West Lafayette IN
| | - Caroline R. Alukkal
- Purdue University, Ecological Sciences & Engineering Interdisciplinary Graduate Program, West Lafayette IN
- Purdue University, Environmental & Ecological Engineering, West Lafayette IN
| | - Elijah O. Openiyi
- Purdue University, Department of Agronomy, West Lafayette IN
- Purdue University, Ecological Sciences & Engineering Interdisciplinary Graduate Program, West Lafayette IN
| | - Jonathan D. Judy
- University of Florida, Department of Soil, Water, and Ecosystem Sciences, Gainesville FL
| |
Collapse
|
5
|
Shang Y, Chen K, Ni H, Zhu X, Yuan X, Wang Y, Liu X, Cui Z, Niu Y, Shi Y, Wu H, Xia D, Wu Y. Environmentally relevant concentrations of perfluorobutane sulfonate impair locomotion behaviors and healthspan by downregulating mitophagy in C. elegans. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135938. [PMID: 39326150 DOI: 10.1016/j.jhazmat.2024.135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Perfluorobutane sulfonate (PFBS), a chemical compound within the group of per- and polyfluoroalkyl substances (PFAS), has been utilized as an alternative to perfluorooctane sulfonate (PFOS) recently. Previous research has indicated that PFBS might be linked to a range of health concerns. However, the potential impacts of environmentally relevant concentrations of PFBS (25 nM) on aging as well as the underlying mechanisms remained largely unexplored. In this study, we investigated the impact of PFBS exposure on aging and the associated mechanisms in Caenorhabditis elegans. Our findings indicated that exposure to PFBS impaired healthspan of C. elegans. Through bioinformatic screening analyses, we identified that the dysfunctions of pink-1 mediated mitophagy might play a critical role in PFBS induced aging. The results furtherly revealed that PFBS exposure led to elevated levels of reactive oxygen species (ROS) and mitophagy impairment through downregulating pink-1/pdr-1 pathway. Furthermore, the mitophagy agonist Urolithin A (UA) effectively reversed PFBS-induced mitophagy dysfunction and enhanced healthspan in C. elegans. Taken together, our study suggested that exposure to environmentally relevant concentrations of PFBS could accelerate aging by downregulating the pink-1 mediated mitophagy. Promoting mitophagy within cells could be a promising therapeutic strategy for delaying PFBS-induced aging.
Collapse
Affiliation(s)
- Yahui Shang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Ni
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Zhu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Liu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequn Niu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Han Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Tokranov AK, Ransom KM, Bexfield LM, Lindsey BD, Watson E, Dupuy DI, Stackelberg PE, Fram MS, Voss SA, Kingsbury JA, Jurgens BC, Smalling KL, Bradley PM. Predictions of groundwater PFAS occurrence at drinking water supply depths in the United States. Science 2024; 386:748-755. [PMID: 39446898 DOI: 10.1126/science.ado6638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), known colloquially as "forever chemicals," have been associated with adverse human health effects and have contaminated drinking water supplies across the United States owing to their long-term and widespread use. People in the United States may unknowingly be drinking water that contains PFAS because of a lack of systematic analysis, particularly in domestic water supplies. We present an extreme gradient-boosting model for predicting the occurrence of PFAS in groundwater at the depths of drinking water supply for the conterminous United States. Our model results indicate that 71 million to 95 million people in the conterminous United States potentially rely on groundwater with detectable concentrations of PFAS for their drinking water supplies before any treatment.
Collapse
|
7
|
Alcala CS, Lane JM, Midya V, Eggers S, Wright RO, Rosa MJ. Exploring the link between the pediatric exposome, respiratory health, and executive function in children: a narrative review. Front Public Health 2024; 12:1383851. [PMID: 39478741 PMCID: PMC11521889 DOI: 10.3389/fpubh.2024.1383851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Asthma is a highly prevalent inflammatory condition, significantly affecting nearly six million U.S. children and impacting various facets of their developmental trajectories including neurodevelopment. Evidence supports a link between pediatric environmental exposures in two key areas: asthma and executive function (E.F.). E.F.s are a collective of higher-order cognitive processes facilitating goal-oriented behaviors. Studies also identify asthma-associated E.F. impairments in children. However, limited research has evaluated the inter-relationships among environmental exposures, asthma, and E.F. in children. This review explored relevant research to identify and connect the potential mechanisms and pathways underlying these dynamic associations. The review suggests that the role of the pediatric exposome may function through (1) several underlying biological pathways (i.e., the lung-brain axis, neuroendocrine system, and hypoxia), which could drive asthma and maladaptive E.F. in children and (2) the relationships between the exposome, asthma, and E.F. is a bidirectional linkage. The review reveals essential synergistic links between asthma and E.F. deficits, highlighting the potential role of the pediatric exposome.
Collapse
Affiliation(s)
- Cecilia S. Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jamil M. Lane
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shoshannah Eggers
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, United States
| | - Robert O. Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Maria José Rosa
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
8
|
Jahura FT, Mazumder NUS, Hossain MT, Kasebi A, Girase A, Ormond RB. Exploring the Prospects and Challenges of Fluorine-Free Firefighting Foams (F3) as Alternatives to Aqueous Film-Forming Foams (AFFF): A Review. ACS OMEGA 2024; 9:37430-37444. [PMID: 39281906 PMCID: PMC11391440 DOI: 10.1021/acsomega.4c03673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024]
Abstract
This review provides a comparative analysis of the performance, toxicity, environmental impact, and health risks associated with fluorotelomer-based/short-chain AFFF and F3. Despite notable progress in F3 development, achieving comparable performance remains challenging in some cases. F3 formulations, while promising, are yet to be considered a direct replacement for AFFF in all Class B fire suppression scenarios due to variations in their performance across different fuel types and test conditions. Available studies indicate that commercially available F3 exhibit greater biodegradability and reduced environmental persistence compared to AFFF. However, some alternatives may still pose similar environmental impacts. Limited ecotoxicity studies suggest that some F3 may exhibit equal or even higher toxicity to aquatic species than short-chain (C6) AFFF. Toxicological assessments and risk evaluations of F3 should consider factors beyond environmental persistence, including acute and chronic ecotoxicity, potential endocrine disruption, and the full toxicological profile of foam formulations and their individual components. Further research is necessary to understand the fate, transport, bioaccumulation, and toxicity of F3 degradation products. Addressing these knowledge gaps is crucial to ensure the safe and sustainable implementation of F3 as an alternative fire suppression solution.
Collapse
Affiliation(s)
- Fatema Tuj Jahura
- Textile Protection and Comfort Center (TPACC), Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Nur-Us-Shafa Mazumder
- Textile Protection and Comfort Center (TPACC), Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Md Tanjim Hossain
- Textile Protection and Comfort Center (TPACC), Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Arash Kasebi
- Textile Protection and Comfort Center (TPACC), Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Arjunsing Girase
- Textile Protection and Comfort Center (TPACC), Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - R Bryan Ormond
- Textile Protection and Comfort Center (TPACC), Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| |
Collapse
|
9
|
Baqar M, Zhao M, Saleem R, Cheng Z, Fang B, Dong X, Chen H, Yao Y, Sun H. Identification of Emerging Per- and Polyfluoroalkyl Substances (PFAS) in E-waste Recycling Practices and New Precursors for Trifluoroacetic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16153-16163. [PMID: 39178241 DOI: 10.1021/acs.est.4c05646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Electronic waste is an emerging source of per- and polyfluoroalkyl substance (PFAS) emissions to the environment, yet the contribution from hazardous recycling practices in the South Asian region remains unclear. This study detected 41 PFAS in soil samples from e-waste recycling sites in Pakistan and the total concentrations were 7.43-367 ng/g dry weight (dw) (median: 37.7 ng/g dw). Trifluoroacetic acid (TFA) and 6:2 fluorotelomer sulfonic acid emerged as the dominant PFAS, constituting 49% and 13% of the total PFAS concentrations, respectively. Notably, nine CF3-containing emerging PFAS were identified by the high-resolution mass spectrometry (HRMS)-based screening. Specifically, hexafluoroisopropanol and bistriflimide (NTf2) were consistently identified across all the samples, with quantified concentrations reaching up to 854 and 90 ng/g dw, respectively. This suggests their potential association with electronic manufacturing and recycling processes. Furthermore, except for NTf2, all the identified emerging PFAS were confirmed as precursors of TFA with molar yields of 8.87-40.0% by the TOP assay validation in Milli-Q water. Overall, this study reveals significant emission of PFAS from hazardous e-waste recycling practices and emphasizes the identification of emerging sources of TFA from precursor transformation, which are essential for PFAS risk assessment.
Collapse
Affiliation(s)
- Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rimsha Saleem
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Osonga FJ, Eshun GB, Xue H, Kurilla S, Al Hassan MT, Qamar A, Chen H, Boufadel M, Sadik OA. IMPACT: Innovative (nano)Materials and processes for advanced catalytic technologies to degrade PFOA in water. CHEMOSPHERE 2024; 364:143057. [PMID: 39146983 DOI: 10.1016/j.chemosphere.2024.143057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
We hereby report the development of a novel electrochemical method to degrade perfluorooctanoic acid (C7F15COOH, PFOA). At the center of the approach are bimetallic Pd-Ru nano-catalyst materials called IMPACT: Innovative (nano)Materials and Processes for Advanced Catalytic Technologies. IMPACT uses flavonoid-sequestered Pd-Ru, allowing the development of specialized electrodes with tunable properties to sequentially degrade PFOA in wastewater samples into a sustainable byproduct via an indirect electrochemical method. Electron transfers at RuOxHy species stabilize the Pd component of the nano-catalysts, enabling the degradation process via PFOA deprotonation, chain shortening, decarboxylation, hydrolysis, fluoride elimination, and CF2 flake-off mechanism. IMPACT enabled the observation of redox peaks at -0.26 V and 0.56 V for the first time, with accompanying reduction peaks at -0.5V and 0.29 V, respectively. These redox peaks, which correlated with the concentrations of PFOA (20, 50, 100, 200, and 400. mg L-1), were verified and confirmed using electrochemical simulations. Control experiments did not show degradation of PFOA in the absence of Pd-Ru nano-catalyst. The degradation in wastewater was obtained within 3 h with an efficiency of 98.5%. The electrochemical degradation products of PFOA were identified using High-resolution desalting paper spray mass spectrometry (DPS-MS) and collision-induced dissociation (CID) analysis. The results yielded C2F5COOH, C3F7COOH, and C6F13OH with dissociation losses of CF2O or CO2. IMPACT introduces a novel nano-catalyst with high efficiency and a reliable capability that defluorinates strong C-F bonds that are components of recalcitrant organics in myriad environmental matrices.
Collapse
Affiliation(s)
- Francis J Osonga
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Gaddi B Eshun
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Huize Xue
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Stephen Kurilla
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Md Tanim Al Hassan
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Areej Qamar
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Hao Chen
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Michel Boufadel
- Department of Civil & Environmental Engineering, 323 Martin Luther King Blvd, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA.
| |
Collapse
|
11
|
Soltanian M, Gitipour S, Baghdadi M, Rtimi S. PFOA-contaminated soil remediation: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49985-50011. [PMID: 39088169 DOI: 10.1007/s11356-024-34516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Soil and groundwater contamination has been raised as a concern due to the capability of posing a risk to human health and ecology, especially in facing highly toxic and emerging pollutants. Because of the prevalent usage of perfluorooctanoic acid (PFOA), in industrial and production processes, and subsequently the extent of sites contaminated with these pollutants, cleaning up PFOA polluted sites is paramount. This research provides a review of remediation approaches that have been used, and nine remediation techniques were reviewed under physical, chemical, and biological approaches categorization. As the pollutant specifications, environmental implications, and adverse ecological effects of remediation procedures should be considered in the analysis and evaluation of remediation approaches, unlike previous research that considered a couple of PFAS pollutants and generally dealt with technical issues, in this study, the benefits, drawbacks, and possible environmental and ecological adverse effects of PFOA-contaminated site remediation also were discussed. In the end, in addition to providing sufficient and applicable understanding by comprehensively considering all aspects and field-scale challenges and obstacles, knowledge gaps have been found and discussed.
Collapse
Affiliation(s)
- Mehdi Soltanian
- School of Civil and Environmental Engineering, Faculty of engineering and IT, University of Technology Sydney, Sydney, Australia
| | - Saeid Gitipour
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1201, Geneva, Switzerland.
| |
Collapse
|
12
|
Yatera K, Nishida C. Contemporary Concise Review 2023: Environmental and occupational lung diseases. Respirology 2024; 29:574-587. [PMID: 38826078 DOI: 10.1111/resp.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
Air pollutants have various effects on human health in environmental and occupational settings. Air pollutants can be a risk factor for incidence, exacerbation/aggravation and death due to various lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), hypersensitivity pneumonitis or pneumonia (HP), pulmonary fibrosis such as pneumoconiosis and malignant respiratory diseases such as lung cancer and malignant pleural mesothelioma. Environmental and occupational respiratory diseases are crucial clinical and social issues worldwide, although the burden of respiratory disease due to environmental and occupational causes varies depending on country/region, demographic variables, geographical location, industrial structure and socioeconomic situation. The correct recognition of environmental and occupational lung diseases and taking appropriate measures are essential to their effective prevention.
Collapse
Affiliation(s)
- Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
13
|
Anderson RH, Modiri M. Application of Gaussian mixture models to quantify the upper background threshold for perfluorooctane sulfonate (PFOS) in U.S. surface soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:229. [PMID: 38306000 DOI: 10.1007/s10661-024-12400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Studies on the occurrence and environmental distribution of per- and polyfluoroalkyl substances (PFAS) have clearly demonstrated their ubiquity in surface soil as a result of historic and ongoing emissions from various manufacturing and industrial activities worldwide. Given global efforts to characterize and mitigate risk from point source-impacted sites, there is, thus, an urgent need to quantify nonpoint source threshold concentrations (i.e., background) to support site management decisions particularly for perfluorooctane sulfonate (PFOS) as a top priority. Accordingly, this study evaluated the application of Gaussian mixture models (GMMs) fitted to log-transformed PFOS concentrations using nation-wide metadata consisting of thousands of surface soil samples representative of both background and aqueous film-forming foam (AFFF) impacts with unknown proportion. Multiple GMMs were fitted for a given number of components using different methods to account for bias associated with a marginal non-detect fraction (n = 8%) including exclusion, substitution, and imputation. Careful evaluation of the rate of change among multiple goodness-of-fit measures universally justified fitting a 2-component GMM; thus, discriminating between background and AFFF-impacted samples among the metadata. Background threshold PFOS concentrations were defined as the intersection of the probability density functions and ranged between 1.9 and 13.8 µg/kg within a broader concentration range extending up to ~ 50,000 µg/kg reflecting AFFF impacts. By demonstrating an innovative statistical approach that intelligently incorporates different criteria for model selection, this research makes significant contributions to risk mitigation efforts at point source-impacted sites and lays the groundwork for future targeted regulatory actions.
Collapse
Affiliation(s)
| | - Mahsa Modiri
- EA Engineering, Science, and Technology, Inc, PCB, Hunt Valley, MD, 21031, USA
| |
Collapse
|
14
|
Shields EP, Krug JD, Roberson WR, Jackson SR, Smeltz MG, Allen MR, Preston Burnette R, Nash JT, Virtaranta L, Preston W, Liberatore HK, Ariel Geer Wallace M, Ryan JV, Kariher PH, Lemieux PM, Linak WP. Pilot-Scale Thermal Destruction of Per- and Polyfluoroalkyl Substances in a Legacy Aqueous Film Forming Foam. ACS ES&T ENGINEERING 2023; 3:1308-1317. [PMID: 38989445 PMCID: PMC11235189 DOI: 10.1021/acsestengg.3c00098] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The destruction of per- and polyfluoroalkyl substances (PFAS) is critical to ensure effective remediation of PFAS contaminated matrices. The destruction of hazardous chemicals within incinerators and other thermal treatment processes has historically been determined by calculating the destruction efficiency (DE) or the destruction and removal efficiency (DRE). While high DEs, >99.99%, are deemed acceptable for most hazardous compounds, many PFAS can be converted to other PFAS at low temperatures resulting in high DEs without full mineralization and the potential release of the remaining fluorocarbon portions to the environment. Many of these products of incomplete combustion (PICs) are greenhouse gases, most have unknown toxicity, and some can react to create new perfluorocarboxylic acids. Experiments using aqueous film forming foam (AFFF) and a pilot-scale research combustor varied the combustion environment to determine if DEs indicate PFAS mineralization. Several operating conditions above 1090 °C resulted in high DEs and few detectable fluorinated PIC emissions. However, several conditions below 1000 °C produced DEs >99.99% for the quantifiable PFAS and mg/m3 emission concentrations of several non-polar PFAS PICs. These results suggest that DE alone may not be the best indication of total PFAS destruction, and additional PIC characterization may be warranted.
Collapse
Affiliation(s)
- Erin P Shields
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Jonathan D Krug
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - William R Roberson
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Stephen R Jackson
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Marci G Smeltz
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | | | | | - John T Nash
- Jacobs Technology Inc., Cary, NC, 27518, USA
| | - Larry Virtaranta
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | | | - Hannah K Liberatore
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - M Ariel Geer Wallace
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Jeffrey V Ryan
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Peter H Kariher
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Paul M Lemieux
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Homeland Security and Materials Management Division, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - William P Linak
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| |
Collapse
|
15
|
Dragon J, Hoaglund M, Badireddy AR, Nielsen G, Schlezinger J, Shukla A. Perfluoroalkyl Substances (PFAS) Affect Inflammation in Lung Cells and Tissues. Int J Mol Sci 2023; 24:8539. [PMID: 37239886 PMCID: PMC10218140 DOI: 10.3390/ijms24108539] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Adverse lung outcomes from exposure to per-and polyfluoroalkyl substances (PFAS) are known; however, the mechanism of action is poorly understood. To explore this, human bronchial epithelial cells were grown and exposed to varied concentrations of short-chain (perfluorobutanoic acid, perflurobutane sulfonic acid and GenX) or long-chain (PFOA and perfluorooctane sulfonic acid (PFOS)) PFAS, alone or in a mixture to identify cytotoxic concentrations. Non-cytotoxic concentrations of PFAS from this experiment were selected to assess NLRP3 inflammasome activation and priming. We found that PFOA and PFOS alone or in a mixture primed and activated the inflammasome compared with vehicle control. Atomic force microscopy showed that PFOA but not PFOS significantly altered the membrane properties of cells. RNA sequencing was performed on the lungs of mice that had consumed PFOA in drinking water for 14 weeks. Wild type (WT), PPARα knock-out (KO) and humanized PPARα (KI) were exposed to PFOA. We found that multiple inflammation- and immune-related genes were affected. Taken together, our study demonstrated that PFAS exposure could alter lung biology in a significant manner and may contribute to asthma/airway hyper-responsiveness.
Collapse
Affiliation(s)
- Julie Dragon
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| | - Michael Hoaglund
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| | - Appala Raju Badireddy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| | - Greylin Nielsen
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Jennifer Schlezinger
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Arti Shukla
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| |
Collapse
|
16
|
Lin M, Liao Q, Tang P, Song Y, Liang J, Li J, Mu C, Liu S, Qiu X, Yi R, Pang Q, Pan D, Zeng X, Huang D. Association of maternal perfluoroalkyl substance exposure with postpartum haemorrhage in Guangxi, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114078. [PMID: 36137419 DOI: 10.1016/j.ecoenv.2022.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Postpartum haemorrhage (PPH) is the leading cause of maternal death worldwide, and it may be caused by environmental endocrine disruptors. Prenatal exposure to perfluoroalkyl substances (PFASs) in women has been linked to pregnancy disorders and adverse birth outcomes, but no data are available on the relationship between PFAS exposure during pregnancy and postpartum haemorrhage. This study aimed to explore the associations of maternal PFAS exposure with the postpartum haemorrhage risk and total blood loss. A total of 1496 mother-infant pairs in the Guangxi Zhuang birth cohort were included between June 2015 and May 2018. The concentration of PFASs in serum was detected using ultrahigh liquid chromatography-tandem mass spectrometry. Multiple binomial regression and linear regression models were used to analyse individual PFAS exposures. The mixture of PFASs was analysed using Bayesian Kernel Machine Regression (BKMR). In single substance exposure models, exposure to perfluorohexanesulfonic acid (PFHxS) increased the risk of postpartum haemorrhage (OR: 3.42, 95 % CI: 1.45, 8.07), while exposure to perfluorododecanoic acid (PFDoA) was inversely associated with the risk of postpartum haemorrhage (OR: 0.42, 95 % CI: 0.22, 0.80). The concentrations of perfluoroundecanoic acid (PFUnA) (β: 0.06, 95 % CI: 12.32, 108.82) and perfluorononanoic acid (PFNA) (β: 0.05, 95 % CI: 0.40, 88.95) exposure were positively correlated with the amount of postpartum haemorrhage; this result occurred only in the absence of covariate adjustment. In BKMR models, the risk of postpartum haemorrhage increased with increasing exposure to a PFAS mixture. In conclusion, our study suggested that maternal serum PFAS exposure during pregnancy was associated with the risk of postpartum haemorrhage.
Collapse
Affiliation(s)
- Mengrui Lin
- Department of Sanitary Inspection, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yanye Song
- Nanning Second People's Hospital, Nanning 530031, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jinxiu Li
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Changhui Mu
- Department of Sanitary Inspection, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Rui Yi
- Paediatrics, Tiandong Maternal and Child Health Hospital, Tiandong 531500, Guangxi, China
| | - Qiang Pang
- Department of Cardiology, Debao Maternal and Child Health Hospital, Debao 533700, Guangxi, China
| | - Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Dongping Huang
- Department of Sanitary Inspection, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|