1
|
Jia Z, Zhou S, Xie X, Xu M, Luo Q, Zhu T, Wu S. Precision management of Cd-contaminated paddy fields with high geochemical backgrounds in karst regions: integrating Bayesian decision tree and spatial zoning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126282. [PMID: 40268048 DOI: 10.1016/j.envpol.2025.126282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/23/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Cadmium (Cd) contamination in paddy fields with high geochemical backgrounds in karst regions poses significant challenges. This study aims to explore practical technologies applicable to different risk causal zones throughout karstic Cd-polluted paddy fields, by integrating a Bayesian decision tree-based risk warning model with spatial zoning. In the study area, 92.1 % of soil and 30.1 % of rice samples exceeded Cd limits, yet the synergy between elevated Cd levels in soil and rice was weak. The model achieved an accuracy of 93.4 % in predicting Cd risk in rice and generated 13 risk classification rules for evaluating Cd risk levels in paddy fields. Notably, the identified risk zones were primarily concentrated in areas with relatively low total Cd concentrations in the soil. Regional management framework, including passivation techniques, phytoremediation, agronomic regulation, was proposed according to 7 causal rules across the fields. Each zone was associated with a customized method for rice safe production, subsequently developing a spatially precise, differentiated solution. This study offers new insights into managing Cd-contaminated paddy fields in karst regions.
Collapse
Affiliation(s)
- Zhenyi Jia
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Zhejiang Key Laboratory of Digital Intelligence Monitoring and Restoration of Watershed Environment, Zhejiang Normal University, Jinhua, 321004, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China
| | - Xuefeng Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Zhejiang Key Laboratory of Digital Intelligence Monitoring and Restoration of Watershed Environment, Zhejiang Normal University, Jinhua, 321004, China.
| | - Mingxing Xu
- Zhejiang Institute of Geosciences, Hangzhou, 310007, China
| | - Qiuping Luo
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ting Zhu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shaohua Wu
- School of Public Administration, Zhejiang University of Finance & Economics, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Zeng Y, Huang C, Tian B, Li L, Luo X, Hu Z, Du H, Deng X, Yang Y, Zeng Q, Luo S. Influence of cropping rotation and straw management on Cd accumulation in rice ( Oryza sativa L.): a perspective from the rape ( Brassica campestris)-rice system. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-13. [PMID: 40331747 DOI: 10.1080/15226514.2025.2499120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Cadmium (Cd) contamination is a major concern due to its toxicity and bioaccumulation in crops. The study researched the impact of rape (Brassica campestris) cultivation and influence of straw management on Cd accumulation in rice (Oryza sativa L.) under rape-rice rotation system. Field experiments were set in moderately Cd-contaminated farmlands, with treatments including rape-rice rotation with straw removal (NR), rape-rice rotation with straw return (RR), and single cropping rice (SR). In contrast with SR, the NR effectively reduced 6.67-19.59% soil available Cd and the 37.18-39.10% rice grains Cd accumulation during 3 years. Compared with the RR, SR significantly decreased 17.17-27.78% soil available Cd concentrations and 33.30-53.84% rice grain Cd accumulation. Soil physical and chemical properties were influenced by rape cultivation and straw return, further affecting Cd mobility. This study underscores that rape-rice rotation with straw removal can be an effective tactic for reducing the Cd contamination in rice grains and improve soil environment. This research provides critical insights into sustainable agricultural practices for Cd-contaminated soils, offering practical solutions for mitigating Cd risk in rice, while highlighting the importance of straw management in crop rotations.
Collapse
Affiliation(s)
- Yuhui Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, PR China
| | - Changsong Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha, PR China
| | - Beibei Tian
- College of Resources and Environment, Hunan Agricultural University, Changsha, PR China
| | - Li Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, PR China
| | - Xufeng Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, PR China
| | - Zhong Hu
- College of Resources and Environment, Hunan Agricultural University, Changsha, PR China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, Changsha, PR China
| | - Xiao Deng
- College of Resources and Environment, Hunan Agricultural University, Changsha, PR China
| | - Yang Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, PR China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, PR China
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, PR China
| |
Collapse
|
3
|
Wang L, Liu Q, Fu J, Xiao Y, Yang J, Liao X. Sustainable remediation of Cd-contaminated farmland through the rotation of rapeseed-rice varieties with different Cd accumulation potentials. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117453. [PMID: 39647366 DOI: 10.1016/j.ecoenv.2024.117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
In response to the safety risks posed by cadmium (Cd)-contaminated rice fields worldwide, a suitable production-and-restoration strategy is required for actual agricultural practices. To investigate the remediation effects of different accumulation varieties in rapeseed-rice cropping systems and their influence on Cd migration and transportation, field experiments were conducted based on different planting combinations (FWHR, conventional rice variety (HR) monoculture under fallow; FWLR, low Cd-accumulating rice variety (LR) monoculture under fallow; LOLR, LO (low Cd-accumulating rapeseed variety)-LR rotation; LOHR, LO-HR rotation; HOLR, HO (high Cd-accumulating rapeseed variety)-LR rotation; HOHR, HO-HR rotation). The study found that a rapeseed and rice rotation with appropriate varieties could reduce the rice grain Cd content, increase rice yield, and remove soil Cd without affecting agricultural production efficiency. Compared to the fallow-conventional rice pattern, various rapeseed-rice rotations reduced the Cd content of rice grains by 15 %-38 %, and significantly increased the available potassium (Ava-K) in the subsequent rice soil by 29.6-56.4 mg/kg. The total economic benefits increased by $500-$1800 per hectare. A high accumulation variety of rapeseed and low accumulation variety of rice produced the most effective reduction in Cd levels, with a reduction rate of 38 % in brown rice and an annual removal rate of 24.42 g/hm2. This combination also resulted in a 29 % increase in rice yield compared to the fallow-low accumulation variety rice pattern. Structural equation modeling revealed that with the combined action of crop rotation and variety selection the crop rotation directly reduced the soil available Cd or had an indirect effect by weakening the root-zone acidification effect and increasing soil Ava-P. The rotation of rapeseed and rice with carefully selected matching varieties is a feasible solution for the safe production and pollution remediation of Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Liang Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Qiqing Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Jingyi Fu
- College of Environment & Ecology, Hunan Agricultural University, Changsha, China
| | - Yuxuan Xiao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Jun Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China.
| |
Collapse
|
4
|
Ju X, Zhou T, Liu H, Huang Y, Wu L, Wang W. Optimizing Soil Sampling for Accurately Prediction of the Potential Remediation-Effective Area in a Contaminated Agricultural Land. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:22. [PMID: 39096372 DOI: 10.1007/s00128-024-03911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/29/2024] [Indexed: 08/05/2024]
Abstract
To achieve food security in a contaminated agricultural land, the remediation areas usually need more samples to obtain accurate contamination information and implement appropriate measures. In this study, we propose an optimal encryption sampling design to instead of the detailed survey, which is determined by the variation of heavy metals and the technology capability of remediation, to guide soil sampling for accurately remediation in the potential remediation-effective areas (PRA). The coefficient of screening variation threshold (CSVT), considering spatial variation, technology capacity and acceptable error of sampling, together with the spatial cyclic statistics method of neighbourhood analysis, is introduced to identify and delineate the PRA. Both of the hypothetical analysis and application case studies are conducted to illustrate the advantages and disadvantages of the optimization. The results show that, compared with the detailed survey, the optimal design shows a lower overall accuracy due to its sparsely sampling at the clean area, but it exhibits a similar effect of accurately prediction in boundary delineation and further classification in the PRA in both simulation and application studies. This work provides an effective method for subsequent accurate remediation at the investigation stage and valuable insights into application combination of technology capacity and contaminated agricultural land investigation.
Collapse
Affiliation(s)
- Xianhang Ju
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Tong Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hongyan Liu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yufeng Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Longhua Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wenyong Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- Jiangsu Firefly Environmental Science and Technology Co. Ltd, Nanjing, 210008, China.
| |
Collapse
|
5
|
Wang X, Zhai X, Lian J, Cheng L, Wang M, Huang X, Chen Y, Pan J, He Z, Yang X. Varietal responses to a soil amendment: Balancing cadmium mitigation and mineral biofortification in wheat production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171772. [PMID: 38499106 DOI: 10.1016/j.scitotenv.2024.171772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The application of soil amendment (SA) and the cultivation of low Cd-accumulating varieties have been a widely favored strategy to enable the safe utilization of Cd-contaminated arable land. However, little has been reported on the reciprocal effects of SA on the Cd mitigation and nutritional quality of different wheat varieties. In this study, we evaluated the impact of an SA on agronomic traits, Cd accumulation, translocation and mineral nutrition of 12 wheat varieties in an acidic field with a Cd concentration of 0.46 mg/kg. The results showed that the SA significantly reduced soil DTPA Cd (42.3 %) and resulted in a slight decrease in wheat grain yield (4.24-9.72 %, average 7.62 %). Similarly, the SA significantly reduced grain Cd concentrations (average 61.65 %) while increased the concentrations of beneficial elements such as Mo and Se in all wheat varieties. However, this intervention also led to a reduction in the concentration of essential mineral elements (such as Ca, Fe, and Mn) in whole wheat grain and starchy endosperm, as well as a reduction in their proportion in the bran. Based on genotypic differences, Huaimai 33, Zhenmai 168, Sumai 188 and Yangmai 28 were considered to be the relatively most promising wheat varieties for achieving a balance among food safety, nutritional quality, and economic yield in this region. Taken together, this study highlights the varietal differences in Cd mitigation and mineral accumulation in different wheat varieties in response to the SA, offering new perspectives for phytoremediation and biofortification strategies for Cd-contaminated farmland.
Collapse
Affiliation(s)
- Xin Wang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xu Zhai
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Liping Cheng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Miao Wang
- Hangzhou City University, Hangzhou 310058, China
| | - Xiwei Huang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonglong Chen
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Pan
- Agricultural and Rural Bureau of Changxing County, Zhejiang Province, Huzhou 323000, China
| | - Zhenli He
- Department of Soil, Water and Ecosystem Sciences, Indian River Research and Education Center, University of Florida-IFAS, Fort Pierce, FL 34945, USA
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Zheng X, Zou D, Wu Q, Zhang L, Tang J, Liu F, Xiao Z. Speciation, leachability, and phytoaccessibility of heavy metals during thermochemical liquefaction of contaminated peanut straw. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:20-29. [PMID: 38246074 DOI: 10.1016/j.wasman.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/14/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
In this study, the speciation, leachability, phytoaccessibility, and environmental risks of heavy metals (Cd, Zn, and Cu) during liquefaction of contaminated peanut straw in ethanol at different temperatures (220, 260, 300, 340, and 380 °C) were comprehensively investigated. The results showed that elevated temperatures facilitated heavy metal accumulation in the biochar. The acid-soluble/exchangeable and reducible fraction percentages of heavy metals were substantially reduced in the biochar after liquefaction as the temperature increased, and the oxidizable fraction became the dominant heavy metal fraction, accounting for 44.14-78.67%. Furthermore, although an excessively high liquefaction temperature (380 °C) increased the residual fraction percentages of Zn and Cu, it was detrimental to Cd immobilization. The acid-soluble/exchangeable Cd in the contaminated peanut straw readily migrates to the bio-oil during liquefaction, with the highest concentration of 1.60 mg/kg at 260 °C liquefaction temperature, whereas Zn and Cu are predominantly bound to the unexchangeable fraction in the bio-oil. Liquefaction inhibited heavy metal leachability and phytoaccessibility in biochar, the lowest extraction rates of Cd, Zn, and Cu were 0.71%, 1.66% and 0.95% by diethylenetriamine pentaacetic acid, respectively. However, the leaching and extraction concentrations increased when the temperature was raised to 380 °C. Additionally, heavy metal risk was reduced from medium and high risk to no and low risk. In summary, liquefaction reduces heavy metal toxicity and the risks associated with contaminated peanut straw, and a temperature range of 300-340 °C for ethanol liquefaction can be considered optimal for stabilizing heavy metals.
Collapse
Affiliation(s)
- Xiaochen Zheng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Dongsheng Zou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Qingdan Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Liqing Zhang
- Moutai Institute, Renhuai, Guizhou 564507, PR China
| | - Jialong Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Fen Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhihua Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
7
|
Li R, Zhou Z, Zhang T, Su H, Li J. Overexpression of LSU1 and LSU2 confers cadmium tolerance by manipulating sulfur metabolism in Arabidopsis. CHEMOSPHERE 2023; 334:139046. [PMID: 37244555 DOI: 10.1016/j.chemosphere.2023.139046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Phytoremediation using plants is an environmentally friendly and cost-effective strategy for removing cadmium (Cd) from soil. Plants used for phytoremediation must have a high Cd accumulation capacity and strong Cd tolerance. Therefore, understanding the molecular mechanism of Cd tolerance and accumulation in plants is of great interest. In response to Cd exposure, plants produce various thio-rich compounds, such as glutathione, phytochelatins, and metallothioneins, which play important roles in Cd immobilization, sequestration, and detoxification. Therefore, sulfur (S) metabolism is crucial for Cd tolerance and accumulation. In this study, we report that the overexpression of low-S responsive genes, LSU1 and LSU2, confers Cd tolerance in Arabidopsis. First, LSU1 and LSU2 promoted S assimilation under Cd stress. Second, LSU1 and LSU2 inhibited the biosynthesis and promoted the degradation of aliphatic glucosinolates, which could limit the consumption and enhance the release of S, thus, facilitating the production of the S-rich metabolites, glutathione, phytochelatins, and metallothioneins. We further demonstrated that the Cd tolerance mediated by LSU1 and LSU2 was dependent on the myrosinases BGLU28 and BGLU30, which catalyze the degradation of aliphatic glucosinolates. In addition, the overexpression of LSU1 and LSU2 improved Cd accumulation, which has great potential for the phytoremediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Rui Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zihuan Zhou
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Tianqi Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Hongzhu Su
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
8
|
Yang Z, Wang M, Hou J, Xiong J, Chen C, Liu Z, Tan W. Prediction of cadmium bioavailability in the rice-soil system on a county scale based on the multi-surface speciation model. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130963. [PMID: 36805442 DOI: 10.1016/j.jhazmat.2023.130963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Relative to total cadmium (Cd) content, bioavailable Cd in paddy soil is regarded as a more reasonable indicator for the risk of Cd bioaccumulation in rice. However, there is still a lack of approach to accurately predict the content of bioavailable Cd in paddy soil due to its heterogeneity and complexity. Here, multi-surface speciation model (MSM) was employed to predict the bioavailable Cd and Cd immobilization effect. Moreover, a precise remediation strategy was designed based on screening and scenario simulation of the sensitive factors with MSM. The results demonstrated that MSM can well predict Cd bioaccumulation risk in rice. The contribution of pH to Cd bioavailability was quantified under three analysis scenarios, accounting for 87.51% of the total variance of bioavailable Cd. In addition, the pH alert value (6.31 ± 0.52) for Cd risk was acquired for each rice field on a county scale. A precise map for the application amount of lime materials was constructed by taking CaCO3 (3.38-15.75 t ha-1) as a recommended economical and green immobilization agent. This study provides a potentially effective approach for risk assessment of Cd contamination in rice and important reference for precise Cd remediation in paddy soil.
Collapse
Affiliation(s)
- Zhenglun Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; StateEnvironmental Protection Key Laboratory of Soil Health and GreenRemediation, Wuhan 430070, China
| | - Mingxia Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; StateEnvironmental Protection Key Laboratory of Soil Health and GreenRemediation, Wuhan 430070, China.
| | - Jingtao Hou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; StateEnvironmental Protection Key Laboratory of Soil Health and GreenRemediation, Wuhan 430070, China
| | - Juan Xiong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; StateEnvironmental Protection Key Laboratory of Soil Health and GreenRemediation, Wuhan 430070, China
| | - Chang Chen
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; StateEnvironmental Protection Key Laboratory of Soil Health and GreenRemediation, Wuhan 430070, China
| | - Zhaoyang Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; StateEnvironmental Protection Key Laboratory of Soil Health and GreenRemediation, Wuhan 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; StateEnvironmental Protection Key Laboratory of Soil Health and GreenRemediation, Wuhan 430070, China
| |
Collapse
|
9
|
Zhang Q, Wang L, Xiao Y, Liu Q, Zhao F, Li X, Tang L, Liao X. Migration and transformation of Cd in four crop rotation systems and their potential for remediation of Cd-contaminated farmland in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163893. [PMID: 37146815 DOI: 10.1016/j.scitotenv.2023.163893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
A crop rotation system combining agricultural production with phytoremediation is an economical and sustainable method of remediation of cadmium (Cd)-contaminated farmland. This study focuses on migration and transformation of Cd in rotation systems and the influencing factors. In a two-year field experiment, four rotation systems were evaluated: traditional rice and oilseed rape (TRO), low-Cd rice and oilseed rape (LRO), maize and oilseed rape (MO), and soybean and oilseed rape (SO). Oilseed rape is a remediation plant in rotation systems. Compared to 2020, the grain Cd concentrations of traditional rice, low-Cd rice, and maize in 2021 decreased by 73.8 %, 65.7 %, and 24.0 % (below the safety limits), respectively. However, soybean increased by 71.4 %. The LRO system featured the highest oil content of rapeseed (about 50 %) and economic output/input ratio (1.34). Removal efficiency of total Cd in soil was 10.03 % (TRO) > 8.3 % (LRO) > 5.32 % (SO) > 3.21 % (MO). Crop uptake of Cd was influenced by bioavailability of soil Cd, and soil environmental factors regulated the bioavailable Cd. Redundancy analysis (RDA) indicated that soil nitrate‑nitrogen (NO3--N) had a dominant impact on bioavailable Cd in soil, with variance contributions of 56.7 % for paddy-upland (TRO and LRO) and 53.5 % for dryland (MO and SO) rotation systems. The difference reflected that ammonium N (NH4+-N) was a secondary factor in paddy-upland rotations, while it was the available phosphorus (P) in dryland rotations, with variance contributions of 10.4 % and 24.3 %, respectively. The comprehensive evaluation of crop safety, production, economic benefits, and remediation efficiency revealed that the LRO system was efficient and more acceptable to local farmers, providing a new direction for the utilization and remediation of Cd-contaminated farmland.
Collapse
Affiliation(s)
- Qingying Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Yuxuan Xiao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Qiqing Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fenghua Zhao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xiaofang Li
- Oil Crops Research Institute, Hengyang Academy of Agricultural Sciences, Hengyang 421000, China
| | - Liping Tang
- Oil Crops Research Institute, Hengyang Academy of Agricultural Sciences, Hengyang 421000, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China.
| |
Collapse
|