1
|
Gahlowt P, Singh S, Gupta R, Zheng BS, Tripathi DK, Singh VP. Arsenite in plant biology: How plants tackle it? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109332. [PMID: 39637707 DOI: 10.1016/j.plaphy.2024.109332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Among toxic elements, arsenic (As) comes under group 1 carcinogenic metalloid. Its presence in the soil and irrigation water in a higher concentration than permissible limit has become a threat to crop production and human livelihood. Crop plants, specifically those used as staple foods, exhibit the highest As accumulation which subsequently accumulates in the human body after their consumption, leading to severe fatal diseases. As occurs in two main inorganic forms including trivalent (As(III)) and pentavalent (As(V)), of which the trivalent form is more toxic. In plants, uptake of As(III) is affected by oxidizing or reducing environment of the soil and the pH and is mediated by various transporters such as Nodulin-26-like aquaporins (such as Lsi1 and Lsi2). Plants utilize various strategies that help them to withstand the toxic effect of As(III) including reshuffling in many biochemical and physiological processes. These strategies include the use of endogenously generated or exogenously applied chemicals or plant growth regulators. This review article discusses the uptake, transport, and various mechanisms to tolerate higher As(III) in plants. Besides, an update on the use of protectants in curtailing As(III) toxicity in crop plants has also been described.
Collapse
Affiliation(s)
- Priya Gahlowt
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Samiksha Singh
- Department of Botany, S.N. Sen B.V. Post Graduate College, Chhatrapati Shahu Ji Maharaj University, Kanpur 208001, India
| | - Ravi Gupta
- Plant Stress Physiology and Proteomics Laboratory, College of General Education, Kookmin University, Seoul, 02707, South Korea
| | - Bing Song Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida-201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Jia W, Yu Z, Chen J, Zhang J, Zhu J, Yang W, Yang R, Wu P, Wang S. Synergistic effect between biochar and nitrate fertilizer facilitated arsenic immobilization in an anaerobic contaminated paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177007. [PMID: 39427894 DOI: 10.1016/j.scitotenv.2024.177007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Nitrate nitrogen fertilizer was usually used to mitigate arsenic (As) release and mobilization in the anaerobic contaminated paddy soil. However, the effect of the interplay between nitrate fertilizer and biochar on As availability as well as the involved mechanism were poorly understood. Herein, the effects and mechanisms of biochar, nitrate fertilizer, and biochar-based nitrate fertilizer on the availability of As in the contaminated paddy soil were investigated via a microcosm incubation experiment. Results indicated that the application of biochar-based nitrate fertilizer significantly lessened the available As concentration in the contaminated paddy soil from 3.01 ± 0.03 (control group) to 2.24 ± 0.08 mg kg-1, which presented an immobilization efficiency of 26.6 % better than those of individual biochar (13.5 %) and nitrate fertilizer (17.6 %), exhibiting a synergistic effect. Moreover, the biochar-based nitrate fertilizer also facilitated the transformation of more toxic arsenite in the contaminated soil to less toxic arsenate. Further, biochar-based nitrate fertilizer increased soil redox potential (Eh), dissolved organic carbon, organic matter, and nitrate yet decreased soil pH and ammonium, which changed the microbial community in the soil, enhancing the relative abundance of Bacillus, Arthrobacter, and Paenibacillus. These functional microorganisms drove the coupled transformation between nitrate denitrification and Fe(II) or As(III) oxidation, favoring As immobilization in the anaerobic paddy soil. Additionally, the co-application of biochar offset the negative effect of single nitrate fertilizer on microbial community diversity. Overall, biochar-based nitrate fertilizer could be a promising candidate for the effective immobilization of As in the anaerobic paddy soil. The current research can provide a valuable reference to the remediation of As-contaminated paddy soil and the production of safe rice.
Collapse
Affiliation(s)
- Wenli Jia
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhi Yu
- Guizhou Research and Designing Institute of Environmental Sciences, Guiyang 550081, China
| | - Junfeng Chen
- Geological Brigade 105, Bureau of Geology and Mineral Exploration and Development of Guizhou Province, Guiyang 550018, China
| | - Jian Zhang
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystem Observation and Research Station, Ministry of Education, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Jian Zhu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Ruidong Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Pan Wu
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
3
|
Miao F, Zhang X, Fu Q, Hu H, Islam MS, Fang L, Zhu J. Sulfur enhances iron plaque formation and stress resistance to reduce the transfer of Cd and As in the soil-rice system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171689. [PMID: 38492599 DOI: 10.1016/j.scitotenv.2024.171689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Sulfur plays an essential role in agricultural production, but few studies have been reported on how sulfur simultaneously impacts the transformation of cadmium (Cd) and arsenic (As) in the soil-rice system. This research selected two soils co-contaminated with both Cd and As, varying in acidity and alkalinity levels, to study the impacts of elemental sulfur (S) and calcium sulfate (CaSO4) on the migration and accumulation of Cd and As by rice. Results indicated that two types of sulfur had a substantial (P < 0.05) impact on decreasing the contents of Cd (28.3-50.4 %) and As (20.1-38.6 %) in brown rice in acidic and alkaline soils. They also increased rice biomass (29.3-112.8 %) and reduced Cd transport coefficient (27.2-45.6 %) significantly (P < 0.05). Notably, sulfur augmented the generation of iron plaque on rice root surfaces, which increased the fixation of Cd (17.6-61.0 %) and As (14.0-45.9 %). SEM-EDS results also indicated that the rice root surface exhibited significant enrichment of Fe, Cd, and As. The mechanism of simultaneous Cd and As immobilization by sulfur application was mainly ascribed to the contribution of iron plaque. Additionally, sulfur reduced the contents of Cd and As in soil porewater and promoted the transformation of As(III) to As(V) to reduce the toxicity of As. The K-edge XAFS of As in iron plaque also confirmed that sulfur application significantly promoted As(III) oxidation. Sulfur also promoted the activities of antioxidant enzymes and the contents of NPT, GSH, and PCs in rice plants. In general, this study establishes a foundation for sulfur to lower As and Cd bioavailability in paddy soils, enhance iron plaque and rice resistance, and reduce heavy metal accumulation.
Collapse
Affiliation(s)
- Fei Miao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| | - Md Shoffikul Islam
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China; Department of Soil Science, University of Chittagong, Chattogram 4331, Bangladesh
| | - Linchuan Fang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Zhang X, Lin L, Li H, Liu S, Tang S, Yuan B, Hong H, Su M, Liu J, Yan C, Lu H. Iron plaque formation and its influences on the properties of polyethylene plastic surfaces in coastal wetlands: Abiotic factors and bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132585. [PMID: 37741204 DOI: 10.1016/j.jhazmat.2023.132585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Iron (Fe) plaques in coastal wetlands are widely recognized because of their strong adsorption affinity for natural particles, but their interaction behaviors and mechanisms with plastics remain unknown. Through laboratory incubation experiments, paired with multiple characterization methods and microbial analysis, this work focused on the characteristics of Fe plaques on low-density polyethylene plastic surfaces and their relationship with environmental factors in coastal wetlands (Mangrove and Spartina alterniflora soil). The results showed that iron plaques increased the adhesive force of the plastic surface from 65.25 to 300 nN and promoted the oxidation of the plastic surface. Fe plaque formation was stimulated by salinity, anaerobic conditions, natural organic matter, and a weak alkaline scenario (pH 8.0-8.3). The Fe content showed a stable positive correlation with heavy metals loading (i.e., As, Mn, Co, Cr, Pb, and Zn). Furthermore, we revealed that Fe plaque was positively regulated by Nitrospirae through 16S rRNA high-throughput sequencing analysis. Meanwhile, Verrucomicrobia and Kiritimatiellaeota. may act as depressants by consuming salt. This work illustrated that iron plaques could enhance the role of plastics in contaminant migration by altering their adsorption performance, providing new insights into plastic interface behavior and potential ecological effects in coastal wetlands.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Shanle Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Manlin Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
5
|
Yuan ZF, Zhou Y, Chen Z, Zhang T, Kappler A, Gustave W, Tang X, Xu J. Sustainable Immobilization of Arsenic by Man-Made Aerenchymatous Tissues in Paddy Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12280-12290. [PMID: 37549959 DOI: 10.1021/acs.est.3c03205] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Arsenic (As) is a major environmental pollutant and poses a significant health risk to humans through rice consumption. Elevating the soil redox potential (Eh) has been shown to reduce As bioavailability and decrease As accumulation in rice grains. However, sustainable methods for managing the Eh of rice paddies are lacking. To address this issue, we propose a new approach that uses man-made aerenchymatous tissues (MAT) to increase soil Eh by mimicking O2 release from wet plant roots. Our study demonstrated that the MAT method sustainably increased the soil Eh levels from -119 to -80.7 mV (∼30%), over approximately 100 days and within a radius of around 5 cm from the surface of the MAT. Moreover, it resulted in a significant reduction (-28.5% to -63.3%) in dissolved organic carbon, Fe, Mn, and As concentrations. MAT-induced Fe(III) (oxyhydr)oxide minerals served as additional adsorption sites for dissolved As in soil porewater. Furthermore, MAT promoted the oxidation of arsenite to the less mobile arsenate by significantly enhancing the relative abundance of the aioA gene (130% increase in the 0-5 cm soil zone around MAT). The decrease in As bioavailability significantly reduced As accumulation in rice grains (-30.0%). This work offers a low-cost and sustainable method for mitigating As release in rice paddies by addressing the issue of soil Eh management.
Collapse
Affiliation(s)
- Zhao-Feng Yuan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Andreas Kappler
- Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Williamson Gustave
- Chemistry, Environmental and Life Sciences, University of The Bahamas, New Providence, Nassau, The Bahamas
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|